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Abstract
The problem of finding the degeneracy of a graph
is a subproblem of the k-core decomposition prob-
lem. In this paper, we present a (1+ϵ)-approximate
solution to the degeneracy problem which runs
in O(n log n) time, sublinear in the input size
for dense graphs, by sampling a small number of
neighbors adjacent to high degree nodes. This im-
proves upon the previous work on sublinear ap-
proximate degeneracy, which implies a (4 + ϵ)-
approximate Õ(n) solution. Our algorithm can be
extended to an approximate O(n log n) time solu-
tion to the k-core decomposition problem. We also
explore the use of our approximate algorithm as a
technique for speeding up exact degeneracy com-
putation. We prove theoretical guarantees of our al-
gorithm and provide optimizations, which improve
the running time of our algorithm in practice. Ex-
periments on massive real-world web graphs show
that our algorithm performs significantly faster than
previous methods for computing degeneracy.

1 Introduction
The degeneracy of an undirected graph G, denoted δ, is the
smallest δ such that every induced subgraph of G has a node
with degree at most δ. The problem of finding the degener-
acy of a graph is a subproblem of the k-core decomposition
problem, where a k-core is a maximal connected subgraph in
which all nodes have degree at least k, and k-core decompo-
sition problem is to find all k-cores of a given graph G. The
degeneracy of G is the maximum k for which G contains a
(non-empty) k-core.

The degeneracy of a graph is used for many applications
in graph analysis and graph theory including measuring the
sparcity of a graph, approximating dominating sets [Lenzen
and Wattenhofer, 2010; Dvorak, 2013], approximating the
arboricity of a graph within a constant factor [Eden et al.,
2022], and maximal clique enumeration [Eppstein and Strash,
2011]. It is also known that the degeneracy is at least half
the maximum density of any subgraph [Farach-Colton and
Tsai, 2014]. The k-core decomposition and degeneracy of
graphs also have real world applications including analyzing
social networks [Bhawalkar et al., 2012], graph visualization

[Alvarez-Hamelin et al., 2005], and describing protein func-
tions in protein-protein interaction networks [Altaf-Ul-Amin
et al., 2006]. Degeneracy is also used as a feature in ma-
chine learning applications such as network similarity analy-
sis [Nikolentzos et al., 2018], graph representation learning
for drug discovery and recommender systems [Brandeis et
al., 2020], and neural network initialization [Limnios et al.,
2021]. Thus, it is extremely beneficial to be able to efficiently
compute the degeneracy on large graphs.

The k-core decomposition problem, and consequently the
degeneracy problem, can be solved using a well known linear
time “peeling” algorithm [Matula and Beck, 1983]. Start-
ing with k = 1, the algorithm repeatedly removes all nodes
with degree less than k and their incident edges, until the
only remaining nodes have degree at least k and their con-
nected components are k-cores. Then k is incremented, and
the algorithm is repeated on the remaining subgraph. There
has been much work done to improve the practical running
time of k-core decomposition fully in-memory [Batagelj and
Zaversnik, 2003], with fully external-memory [Cheng et al.,
2011], and with semi external-memory [Wen et al., 2015].
There are also algorithms for approximating k-core in dy-
namic, streaming, and sketching settings [Li et al., 2014;
Sarı́yüce et al., 2013; Esfandiari et al., 2018]. A sublinear
approximate algorithm for degeneracy is the algorithm pre-
sented in [Bhattacharya et al., 2015] for computing maximum
density of any subgraph. It runs in Õ(n) time and implies a
(4 + ϵ)-approximate algorithm for degeneracy.

While k-core algorithms can be used to compute degener-
acy, they may incur unnecessary costs and space for process-
ing cores for small k. There are algorithms which directly
compute the degeneracy of the graph. The SemiDeg+ algo-
rithm from [Li et al., 2022] is the state-of-the-art in exact de-
generacy computation. In a semi-streaming model, [Farach-
Colton and Tsai, 2014], [Goodrich and Pszona, 2011], and
[Bahmani et al., 2012] propose (2 + ϵ)-approximate solu-
tions and [Farach-Colton and Tsai, 2016] proposes a (1 + ϵ)-
approximate solution. These require each edge to be scanned,
however [Farach-Colton and Tsai, 2016] can be modified to
run more efficiently for the adjacency list model.

In this work, we present a (1 + ϵ)-approximate O(n logn
ϵ3 )

time solution to the degeneracy problem where n is the num-
ber of nodes in the graph. Hence, our algorithm is sublinear
in the number of edges for dense graphs. We avoid the over-
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head of full k-core decomposition and directly compute de-
generacy of the given graph G by sampling the neighbors of
nodes starting with those with the highest degree above a cer-
tain threshold l. We then determine if the subgraph induced
by those nodes contains an l-core by repeatedly eliminating
nodes which did not sample a sufficient number of other high
degree nodes, similar to the peeling algorithm. If it does, we
output l as the (approximate) degeneracy of G. We prove the
theoretical guarantees of our algorithm and we also propose
optimizations which improve its practical running time. Our
algorithm can also be extended to compute exact degeneracy
and to a sublinear time algorithm for k-core decomposition.

We compare our solution to the (1 + ϵ)-approximate algo-
rithm of [Farach-Colton and Tsai, 2016] and the SemiDeg+
algorithm from [Li et al., 2022] on massive real-world we-
bgraphs and show that our algorithm is faster than both on
all datasets. We also show that our algorithm can sample
asymptotically less than the algorithm from [Farach-Colton
and Tsai, 2016] modified for the adjacency list model. Our
main theoretical result is the following:

Theorem 1. There is an algorithm for k-core decomposition
which runs in time O(n logn

ϵ3 ) and gives a (1 + ϵ) factor ap-
proximation for the core values of a graph with n nodes and
m edges in the adjacency-list model, with high probability.

2 Preliminaries
2.1 Definitions and Notation
Let G = (V,E) be an undirected graph with nodes V and
edges E, where |V | = n and |E| = m. We denote the degree
of a vertex v ∈ V in G as deg(v). A subgraph of G induced
by a subset of nodes V ′ ⊆ V is defined as GV ′ = (V ′, E′)
where E′ = {(u, v) | u, v ∈ V ′, (u, v) ∈ E}. We denote the
degree of a vertex v in GV ′ as dGV ′ (v).

For a graph G and an integer k, a k-core of G is the max-
imal induced connected subgraph of G such that every node
in the subgraph has degree at least k [Seidman, 1983]. The
core number of a node v ∈ V is the largest k for each there
is a k-core that contains v. The degeneracy δ of a graph G
is defined as the smallest integer such that every non-empty
induced subgraph has a vertex with degree at most δ [Lick
and White, 1970]. The degeneracy of G is also equal to the
largest k for which G contains a non-empty k-core [Eppstein
and Strash, 2011].

2.2 Problem Definition
Our goal is to design an efficient algorithm for computing a
(1 + ϵ) approximation of the degeneracy δ of a given graph
G for ϵ ∈ (0, 1], where ϵ is an input parameter, with high
probability. The output of the algorithm δ̂ is a (1+ ϵ) approx-
imation if δ/(1 + ϵ) ≤ δ̂ ≤ δ · (1 + ϵ). We define “with high
probability” (“w.h.p.”) as occurring with probability at least
1− O(1)

nc , where c is a constant given as an input parameter.

2.3 Graph Input Model
The graph input model we use is the adjacency list model,
where each node v ∈ V has an adjacency list of the neighbors

of v, arbitrarily ordered. This is a standard graph representa-
tion used in sublinear time algorithms [Bhattacharya et al.,
2015; Chazelle et al., 2005]. There are two types of queries
to access graph information in this model:

1) degree queries to get the degree of any node v ∈ V

2) neighbor queries to get the ith neighbor of any node v ∈
V , which is the ith element in v’s adjacency list

3 Related Work
Matula and Beck [1983] presented the linear time peeling
algorithm for k-core decomposition. Although it is super-
seded in practice by heuristic methods in other work and
presents unnecessary overhead for degeneracy computation
(as do other algorithms which enumerate all k-cores), it is
an efficient method for core computation especially for small
graphs and graphs with small degeneracy.

The work by Esfandiari et al. [2018] and Colton et al.
[2016] present (1 + ϵ)-approximate solutions for k-core de-
composition and degeneracy computation respectively. The
goal of both algorithms is to minimize memory usage in a
semi-streaming model, which make them inefficient in terms
of running time in the adjacency list model due to the require-
ment of making a random choice for every edge in the graph,
especially with large graphs. However, the algorithm from
[Farach-Colton and Tsai, 2016] can be modified to run more
efficiently in the adjacency list model.

Bhattacharya et al. [2015] proposes a (2 + ϵ)-approximate
solution to the densest subgraph problem in sublinear time,
which implies a (4 + ϵ)-approximate sublinear algorithm for
degeneracy, and uses it also uses the adjacency list model for
their graph input representation. The SemiDeg+ algorithm
[Li et al., 2022] is the state-of-the-art in practical exact degen-
eracy computation which uses binary search within known
bounds for degeneracy while maintaining an upper bound of
core values on nodes to speed up verification of if a core ex-
ists. We use it as a comparison baseline for the experiments
on the running times of our approximate algorithm.

Ghaffari et al. [2019] improves the work of [Esfandiari et
al., 2018] in a parallel computing environment by reducing
the number of parallel computation rounds required, while
maintaining a (1 + ϵ) approximation ratio, and uses a ver-
tex sampling technique instead of edge sampling. Eden et al.
[2022] present an O(log2 n)-approximate sublinear time al-
gorithm for finding the arboricity of a graph in the adjacency
list model which uses a technique similar to [Bhattacharya et
al., 2015].

4 Degeneracy Algorithm
4.1 High Level Description
The key insight behind the algorithm is that the maximum
core of the graph will contain high degree nodes which are
connected to many other high degree nodes. So, we can effi-
ciently compute the approximate degeneracy of the graph by
looking at the subgraph H induced by the high degree nodes.
Initially, the nodes in V are put into H if their degree is above
a certain threshold l, where l is what we approximate as the
degeneracy of the graph, and we decrease l in each iteration
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when there is a high probability that H does not contains an
l-core (within an approximation factor of (1 + ϵ)). To effi-
ciently check if there is a high probability that H does contain
an l-core, we sample a small number of neighbors adjacent to
each node in H . If a node v ∈ H is in the l-core, then it
is likely that it samples a sufficient fraction of its number of
neighbors that are also in H . If a node does not sample a
sufficient number of neighbors in H , then it is likely not part
of an l-core, and we remove the node from H and check its
neighbors and remove them from H if necessary (similar to
the peeling algorithm). If no nodes remain unpeeled, then we
lower the threshold and repeat the procedure. Otherwise, we
conclude that H has an approximate core number of l, and
we output l as the approximate degeneracy of G. In Section
5, we prove that the output is within a factor of (1 + ϵ) of the
true degeneracy of G with probability ≥ 1− 2

nc .

4.2 Algorithm Details
The approximate algorithm for computing degeneracy is il-
lustrated in Algorithm 1. In each iteration of the while-loop
at Line 3, we partition the nodes in V into H and L, where
H contains the nodes which have a degree greater than or
equal to a certain threshold l and L = V \ H (Line 4). Ini-
tially, l = n

(1+ϵ1)
, where ϵ1 = ϵ/3, and we decrease l by

a factor of (1 + ϵ1) (Lines 1 and 27). Then, we sample
a small number of neighbors for each node v ∈ H (Line
10). We sample k(v) neighbors u of v with replacement
for every node v ∈ H , where k(v) = ⌈p deg(v)⌉. Initially

p =
2((1+c) ln(n)+ln(log1+ϵ1

n))(1+ϵ1)
2

ϵ21n
and we increase p by a

factor of (1 + ϵ1) in each iteration (Lines 1 and 28).
Next, we check if H contains an l-core. This is done by a

process similar to peeling, in which we repeatedly peel nodes
from H which did not sample a sufficient number of neigh-
bors in H . In particular, each node v ∈ H is assigned a value
t(v) which is initially set to the number of neighbors sam-
pled by v, k(v), and represents the degree of v in H (Line
8). Then, since we sampled a k(v)/ deg(v) fraction of neigh-
bors, we expect that at least l ·k(v)/ deg(v) edges incident to
other nodes in H were sampled if the current nodes in H is an
l-core. So, if at any point t(v) for a node v ∈ V falls below
l·k(v)
deg(v) , then v is peeled from H to L (Lines 13 and 22).

In the sampling process (Lines 9 - 17), whenever a node
v ∈ H samples a neighbor u ∈ L, we decrement t(v) (Line
12). Otherwise, if it samples a neighbor u ∈ H , we must
remember that u was sampled by v so if u is peeled from H
later, we also decrement t(v). Each node in u ∈ H maintains
an initially empty list (with possible repeats) Sampled(u) of
nodes which sampled them. So, if v ∈ H samples a neighbor
u ∈ H , we add v to Sampled(u) (Line 17). Then, if a node
in u ∈ H is peeled due to t(u) falling below l·k(u)

deg(u) , we add
u to an initially empty queue Q (Line 15).

After the sampling process is finished, we remove each
node u from Q, iterate through each node v ∈ Sampled(u),
and decrement t(v) if v is still in H (Line 22). If t(v) for
a node v ∈ H falls to less than l·k(v)

deg(v) , then v is moved to
L and then is also added to Q (Lines 24 and 25). If there
are no remaining nodes in H , that means each node in H did

Algorithm 1 ApproximateDegeneracy(G, ϵ, c)
Input: Graph G = (V,E), error factor ϵ ∈ (0, 1], constant c
Output: Approximate degeneracy of G within a factor of (1 + ϵ)
with probability ≥ 1− 2

nc

1: ϵ1 = ϵ/3, l = n
(1+ϵ1)

, p =
2((1+c) ln(n)+ln(log1+ϵ1

n))(1+ϵ1)
2

ϵ21n

2: Sampled(v)← ∅ for all v ∈ V
3: while p < 1 do
4: H ← {v ∈ V | deg(v) ≥ l}, L← V \H
5: Q← ∅
6: for each node v ∈ H do
7: k(v)← ⌈p deg(v)⌉
8: t(v)← k(v)
9: for i ∈ 1, ..., k(v) do

10: pick a neighbor u of v independently at random
11: if u ∈ L then
12: t(v) = t(v)− 1

13: if t(v) < l·k(v)
deg(v)

then
14: H ← H \ {v}, L← L ∪ {v}
15: add v to Q
16: else
17: add v to Sampled(u)
18: while Q ̸= ∅ do
19: u← dequeue(Q)
20: for each node v ∈ Sampled(u) do
21: if v ∈ H then
22: t(v) = t(v)− 1

23: if t(v) < l·k(v)
deg(v)

then
24: H ← H \ {v}, L← L ∪ {v}
25: add v to Q
26: if H = ∅ then
27: l← l/(1 + ϵ1)
28: p← p · (1 + ϵ1)
29: Sampled(v)← ∅ for all v ∈ V
30: else
31: return l
32: compute δ by running the peeling algorithm
33: return δ

not sample a sufficient number of other nodes in H , and it is
likely that there is no l-core in G. So, we continue to the next
iteration where we repeat the process with l = l/(1+ϵ1), and
p = p · (1 + ϵ1), and we also set the sampled lists to empty
(Lines 27 - 29). Otherwise, if there are nodes remaining in H ,
then we expect that H is at least an l-core and l is the high-
est threshold for which we found a core thus far. Therefore,
we return l as an approximation to the degeneracy of G (Line
31). In the case where p ≥ 1 before l is found, we simply
compute δ by running the peeling algorithm and return δ.

5 Theoretical Guarantees
In this section, we will prove the probability of correctness
and sublinear running time of Algorithm 1.

5.1 Correctness
The correctness depends on showing that our sampling of
edges is effective, that is, for any node in H , w.h.p., t(v),
when appropriately scaled, gives a tight approximation of v’s
degree in H . The tightness relies on the application of Cher-
noff bounds, which can be used only because the edges in-
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cident to any one node v in any one iteration are sampled
independently at random. Let (H,L) be a partition of the
vertices of G. Initially H = V and L = ∅. Let dH(v) denote
the degree of a vertex v ∈ H in the subgraph induced by the
nodes in H . Lemma 1 enables us to regard each sample as
an independent uniformly random coin flip, whose outcome
is heads if the neighbor u incident to the sampled edge is in
H; the probability of heads is dH(v)/ deg(v).
Lemma 1. At any time during an iteration, the event that,
in a single execution of Line 10, the neighbor picked by v
is in H has probability dH(v)/ deg(v), and the set of events
corresponding to the k(v) executions of Line 10 are mutually
independent.

Proof. Consider H at a specific time. Let Ei be the event
that v’s ith sample (Line 10) is in H . The event that any
one neighbor is selected is an independent uniformly random
event with probability with probability 1/ deg(v). These ran-
dom choices are independent from the state of H at any time
and they are independent of each other since they are picked
with replacement. Thus, at any point in the algorithm, if we
fix the nodes in H , the probability of any node v sampling a
neighbor in H is exactly the number of its neighbors in H ,
dH(v), over its degree.

Lemma 2 states the value of t(v) at any time for any v ∈ H .
Lemma 2. At any time, for any node v ∈ H , t(v) is the
number of v’s sampled neighbors in H .

Proof. For each node v ∈ H , t(v) is initialized to the num-
ber of samples, k(v). Whenever v discovers that a sampled
neighbor is not in H , either in Line 11 or Line 21, t(v) is
decremented. So, t(v) = k(v) − the number of sampled
neighbors in L.

Then, we have that Lemma 3 follows from Lemma 2.
Lemma 3. The expected value of t(v) for each node v ∈ H

is E[t(v)] = dH(v)
deg(v)k(v).

Now, we will prove that the bound l·k(v)
deg(v) (Line 13 and 23),

which we require for t(v) for a node v to remain in H , gives
us an approximate bound for the degree of v in H .
Lemma 4. When a node is moved to L, for every node v ∈ H

1) if dH(v) ≥ l · (1 + δ1), then t(v) ≥ l·k(v)
deg(v) , and

2) if dH(v) < l/(1 + δ2), then t(v) < l·k(v)
deg(v)

w.h.p., where δ1 = ϵ1 and δ2 = 3
2ϵ1 for ϵ1 ≤ 1.

Proof. By Lemma 1, each sample can be regarded as an in-
dependent random coin flip which is heads when a sampled
neighbor is in H . We will use the following Chernoff bounds
from Theorem 2.1 in [Aamand et al., 2021]. Let X be the sum
of the number of heads and let µ = E[X]. For 0 < δ1, δ2

Pr(X < (1− δ1)µ
′) ≤ e

−δ21µ′

2 for all µ′ ≤ µ (1)

and

Pr(X ≥ (1 + δ2)µ
′) ≤ e

−δ22µ′

2+δ2 for all µ′ ≥ µ (2)

In our experiment, we have k(v) coin flips where the
probability of heads is dH(v)/ deg(v) and by Lemma 3,
E[t(v)] = dH(v)

deg(v)k(v) = µ.
To prove 1), when dH(v) ≥ l · (1 + δ1), let µ′ =

(1 + δ1) · l · k(v)/ deg(v). If dH(v) ≥ l · (1 + δ1), then
E[t(v)] ≥ µ′. Now, we can bound the probability that t(v) <
l·k(v)/ deg(v), which we can rewrite as t(v) < (1− δ1

1+δ1
)µ′.

By the Chernoff bound in Equation 1, the probability that

t(v) < (1− δ1
1+δ1

)µ′ is ≤ e
−δ21µ′

2(1+δ1)2 = e
−δ21·l·k(v)/ deg(v)

2(1+δ1) .
To prove 2), when dH(v) < l/(1 + δ2), let µ′ =
l

(1+δ2)
k(v)

deg(v) > dH(v)
deg(v)k(v) = µ. By the Chernoff bound

in Equation 2, Pr(t(v)) ≥ l · k(v)/ deg(v)) = Pr(t(v) ≥

(1 + δ2)µ
′) ≤ e

−µ′δ22
2+δ2 = e

−δ22l·k(v)/ deg(v)

(1+δ2)(2+δ2) .
Since k(v) ≥ p · deg(v), we have l · k(v)/ deg(v) ≥ l · p.

So, the probability that 1) fails to hold is ≤ e
−δ21l·p
2(1+δ1) and the

probability that 2) fails to hold is ≤ e
δ22l·p

(1+δ2)(2+δ2) . We let
δ2 = (3/2)δ1 to get that bound on the probability of error

2) is e
−(9/4)δ21l·p

2+(9/2)δ1+(9/4)δ21 ≤ e
−δ21l·p
2(1+δ1) when δ1 ≤ 1. Recall that

δ1 = ϵ1.
Then, we take the union bound of both error probabilities

1) and 2) over all n nodes. Since l is initialized to n/(1+ ϵ1),
and we decrease l by a factor of (1 + ϵ1) in each iteration,
the algorithm will take less than log1+ϵ1 n iterations. So,
we multiply both errors 1) and 2) by elnn+ln log1+ϵ1

n for
the union bound and over all possible iterations. Therefore,
the probability each error is less than 1/nc when l · p ≥
2((1+c) lnn+ln log1+ϵ1

n)(1+ϵ1)

ϵ21
and the probability any error

occurs is less than 2/nc for any c.

Next, we show that in any iteration of Algorithm 1, dH(v)
for any node v ∈ H satisfies the following conditions w.h.p.

Lemma 5. In any iteration of Algorithm 1,

1) every node v ∈ H is moved to L when dH(v) < l/(1 +
(3/2)ϵ1)

2) no node v ∈ H is moved to L when dH(v) ≥ l · (1+ ϵ1)

w.h.p.

Proof. By Lemma 4, w.h.p., no node v ∈ V with dH(v) >
l · (1 + ϵ1) has t(v) < l · k(v)/ deg(v), so v is not moved to
L. Also, every node v ∈ H with dH(v) < l/(1 + (3/2)ϵ1)
has t(v) < l · k(v)/ deg(v), so v is moved to L.

We can now relate dH(v) to the core values of the nodes in
L and the nodes in H .

Lemma 6. Let d1 = l · (1 + ϵ1) and d2 = l/(1 + (3/2)ϵ1).
At Line 26 of Algorithm 1, w.h.p., the nodes in H have core
values at least d2 and the nodes in L have core values less
than d1.

Proof. By condition 1 of Lemma 5, every node in H has≥ d2
neighbors in H . So, every node in H must have a core value
of at least d2.
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Suppose for a contradiction that a node is moved to L with
a core value ≥ d1. Then there must be a first node u for
which this happens. Since the core value of u is ≥ d1 by the
assumption, u must have ≥ d1 neighbors with core values
at least d1. Since u is the first such node to be moved to L
with core value ≥ d1, none of u’s neighbors which are in the
d1-core have been moved to L. Hence, dH(u) ≥ d1 and u
cannot be moved to L by condition 2 of Lemma 5.

We can now prove the bounds on the approximate degen-
eracy output by Algorithm 1.

Lemma 7. Let l be the output returned by the algorithm in
line 31 in the case a value is returned. W.h.p., for each v ∈ V ,
c(v) < l ·(1+ϵ1)

2 and for all v ∈ H , c(v) ≥ l/(1+(3/2)ϵ1).
In particular, δ/(1 + ϵ1)

2 < l ≤ δ(1 + (3/2)ϵ1).

Proof. In the iteration when the threshold was l · (1 + ϵ), all
nodes in H were moved to L. By Lemma 5, at the end of
the algorithm, when the threshold is l, dH(v) for each node
v ∈ H satisfies dH(v) ≥ l/(1 + (3/2)ϵ1) and since v was
moved to L in the previous iteration, dH(v) < l · (1 + ϵ1)

2.
Let c(v) denote the core number of a node v. Then by Lemma
6, for each v ∈ H we have c(v) < l · (1 + ϵ1)

2 and c(v) ≥
l/(1+(3/2)ϵ1), which gives us the bounds c(v)/(1+ ϵ1)

2 <
l ≤ c(v)(1 + (3/2)ϵ1). Since l is the highest threshold for
which not all nodes in H were moved to L, it follows that
δ/(1 + ϵ1)

2 < l ≤ δ(1 + (3/2)ϵ1).

We observe that if we set ϵ1 = ϵ/3, we get (1 + ϵ/3)2 =
1+2ϵ/3+ ϵ2/9 which is less than 1+ ϵ when ϵ ≤ 1. Also, if
no l is returned and p ≥ 1, we run the peeling algorithm and
return δ. Thus, Algorithm 1 gives a (1 + ϵ) approximation.

Lemma 8. Given a graph G, Algorithm 1 outputs a (1 + ϵ)
approximation to the degeneracy δ of G.

5.2 Running Time
Let j be the number of iterations (of the while-loop at Line 3)
which Algorithm 1 takes to compute the approximate degen-
eracy of an input graph G. When the output l = n/(1 + ϵ1)

j ,
then j = log1+ϵ1(n/l). Consider the cost of sampling
the neighbors of any node v ∈ H . Let ki(v) and pi be
the number of neighbors sampled and the value of p, re-
spectively, in any iteration i of the algorithm. The num-
ber of neighbors sampled by v over the algorithm is at most

log1+ϵ1(n/l) +
2((1+c) ln(n)+ln(log1+ϵ1

n))(1+ϵ1)
3

ϵ31l
deg(v).1

When sampling neighbors, every edge (u, v) may be ex-
amined when sampled in line 10 by u or v or both. We can
attribute the cost of sampling the endpoints of an edge to one
of its endpoints and take twice the cost to get an upper bound
on the number of samples made.

First, we consider the nodes v ∈ H which remain in H by
the end of iteration j. In iteration j − 1, v was moved to L.
For each edge (u, v), either u was moved to L before v, in
which case we attribute the edge in iteration j to u, otherwise
we attribute the edge to v. The number of remaining edges
incident to v, which are incident to nodes in H when v was

1Proof details are available in the full version [King et al., 2023]

moved to L, is dH(v) at the time of the move (in iteration
j − 1). By Lemma 5, dH(v) < l · (1 + ϵ1)

2 w.h.p. Thus, the
total number of edges attributed to v is less than l · (1 + ϵ1)

2.
Next, consider the nodes u ∈ H which were moved to L in

iteration j. By Lemma 5, dH(u) < l · (1 + ϵ1). So, the total
number of edges attributed to u is less than l · (1 + ϵ1).

Hence, the total number of edges attributed to all the
nodes in H is less than l · (1 + ϵ1)

2. We replace deg(v)
in the equation for the number of neighbors sampled by
the number of attributed edges. Thus, the number of sam-
ples of attributed edges for any node in H is less than

log1+ϵ1(n/l) +
2((1+c) ln(n)+ln(log1+ϵ1

n))(1+ϵ1)
3

ϵ31l
l · (1 + ϵ1)

2

= log1+ϵ1(n/l) +
2((1+c) ln(n)+ln(log1+ϵ1

n))(1+ϵ1)
5

ϵ31
which is

dominated by log1+ϵ1(n/l)+
ln(n)+ln(log1+ϵ1

n)

ϵ31
. We multiply

this bound by n to get the bound when summed over all nodes
and the total cost of sampling is bound by twice this, which
is 2n log1+ϵ1(n/l) +

2n(ln(n)+ln(log1+ϵ1
n))

ϵ31
= O(n logn

ϵ3 ).
Lines 6 to 17 of Algorithm 1 samples neighbors from nodes

in H and performs a constant amount of work per sampled
neighbor. In particular we note that in the adjacency list
model, each execution of line 10 requires only constant time.
Lines 18 to 25, for each node u in Q, perform a constant
amount of work for every node that sampled u and each node
in H can be added to the Q at most once. Thus, the running
time of the randomized part of Algorithm 1 (Lines 3 to 31) is
proportional to the number of samples.
Lemma 9. Let core(k) be the set of nodes in a k-core for
some k. Let outcore(k) = {(u, v) ∈ E | u ∈ core(k), v ∈⋃

i≥k core(i)}. Then |outcore(k)| ≤ k · |core(k)|.

Proof. In the peeling algorithm, after all nodes with core
value < k are peeled, every node remaining has degree at
least k. When the nodes with core value k are peeled, ev-
ery node peeled has degree no more than k when it is peeled.
Therefore |outcore(k)| ≤ k · |core(k)|.

The following lemma follows from Lemma 9.
Lemma 10. The number of edges incident to nodes with
core value no greater than k is no greater than k ·
|
⋃

k′≤k core(k
′)|.

When p ≥ 1, l = O(log n). By the proof of Lemma 7,
the core value of every node is O(log n) w.h.p. By Lemma
10, the number of edges incident to every node is O(log n).
Since the peeling algorithm has running time linear in the
number of edges, the running time of Line 32 of Algorithm 1
is O(n log n) w.h.p. Thus:

Lemma 11. The running time of Algorithm 1 is O(n logn
ϵ3 ).

5.3 Running Time Comparison against Colton and
Tsai Algorithm

The algorithm from [Farach-Colton and Tsai, 2016] uses an
expected number of Θ(n logn

ϵ2 ) edges in the sampled sub-
graph, which is obtained in the streaming model by sampling
each edge with probability Ω(n logn

ϵ2m ). Directly adapting this
method to the adjacency list model would require scanning
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over each edge. However, it can be modified to be more ef-
ficient for the adjacency list model by sampling a number of
edges incident to each node according to a binomial distribu-
tion such that the resulting graph has the required number of
edges. To compare the running time of our algorithm against
the modified algorithm from [Farach-Colton and Tsai, 2016],
we analyze the running time of Algorithm 1 with respect to
the nodes that are sampled from, which are the nodes with
degree > δ/(1 + ϵ1)

2, in Lemma 12.1 We present a scenario
where our algorithm performs asymptotically less sampling.

Lemma 12. Given a graph G = (V,E) with degeneracy δ,
the running time of Algorithm 1 is O(n + |Ds|

δ log n) where
Ds =

∑
v∈Ns

deg(v) and Ns denotes the set of nodes in V

with degree > δ/(1 + ϵ1)
2.

The modified algorithm from [Farach-Colton and Tsai,
2016] has a running time of O(n log n) since it also runs pro-
portionally to the number of sampled edges. Consider an in-
put graph G, with n nodes, which consists of the union of dis-
joint cliques as follows: G has one larger clique of nb nodes,
where b < 1, and several other smaller cliques of nb/(1+ϵ1)

2

nodes. We let B denote the set of nodes which belong to the
larger clique. The degeneracy of G is nb−1 and Algorithm 1
only samples neighbors adjacent to the nodes in B which each
have degree nb − 1. So, we have that Ds = nb(nb − 1). By
Lemma 12, the running time of Algorithm 1 is O(nb log n),
which is asymptotically less than the running time of the al-
gorithm from [Farach-Colton and Tsai, 2016].

6 Optimizations
In this section, we present optimizations to improve the run-
ning time of Algorithm 1 in practice.

6.1 Lower Starting Threshold
The initial degeneracy threshold of l = n

(1+ϵ1)
is too high in

practice since it is unlikely that the degeneracy of the graph
is n, and this will cause numerous iterations at the beginning
of the algorithm where we remove all the nodes from H . We
can improve this by lowering the starting threshold. Let d be
the maximal integer where there are at least d nodes in G with
degree d. The degeneracy of G is upper bounded by d. We
can compute d once at the beginning of the algorithm, then
divide l by (1 + ϵ1) and multiply p by (1 + ϵ1) until l ≤ d.

6.2 Larger Threshold Leaps
We can further reduce the number of iterations required by
changing l by more in each iteration where H becomes
empty. That is, we divide l and multiply p by the sequence
(1 + ϵ1), (1 + ϵ1)

2, (1 + ϵ1)
4, (1 + ϵ1)

8, ... until we find a
(1 + ϵ1)

2i for which H is not empty at Line 26. Then, we bi-
nary search in the range (1+ ϵ1)

2i−1

to (1+ ϵ1)
2i for the first

k where the factor (1 + ϵ1)
k results in H not being empty.

6.3 Reusing Randomness
On Line 10, computing a random neighbor with replacement
each time becomes very time consuming in practice. For
the random sampling method to work, it does not require a

Graph Nodes Edges
clueweb12 978,408,098 74,744,358,622
uk-2014 787,801,471 85,258,779,845
gsh-2015 988,490,691 51,984,719,160
sk-2005 50,636,154 3,639,246,313

twitter-2010 41,652,230 2,405,026,390

Table 1: Summary of datasets

new random number to be computed each time. In the cor-
rectness proof, in the proof of Lemma 4, since we take the
union bound on the probability of error over all nodes and
iterations, we can reuse the same randomness for sampling
from all nodes in all iterations. At the beginning of the algo-
rithm, we initialize an array R of size md(V ), where md(V )
is the maximum degree of any vertex in V of random numbers
within the range [0, 1). Then, each time we need to sample the
ith neighbor of a node v (Line 10), we take the ⌊Ri·deg(v)⌋th
element from v’s adjacency list. Since k(v) increases in each
iteration, we remember the sampled neighbors for v from the
previous iteration and add to it as needed.

7 Computing Exact Degeneracy
We can extend Algorithm 1 to compute the exact degeneracy
by running SemiDeg+. Since the output l of Algorithm 1
satisfies δ/(1 + ϵ) < l ≤ δ/(1 + ϵ) w.h.p., we can use l ·
(1+ ϵ) and l/(1+ ϵ) as tighter upper and lower bounds in the
SemiDeg+ algorithm binary search, which will will output
the exact degeneracy with a smaller search range.

8 Experiments
We refer to our approach as NESD (Neighbor Sampling for
Degeneracy).2 We compare NESD (including all the opti-
mizations from Section 6) to the approximation algorithm
from [Farach-Colton and Tsai, 2016] and the state-of-the-
art exact degeneracy algorithm, SemiDeg+, from [Li et al.,
2022]. Since the goal of our approach is to achieve an ef-
ficient sublinear (1 + ϵ) approximation algorithm, we do
not compare versus less accurate approximate algorithms
nor other exact algorithms since they are superseded by
SemiDeg+. We experiment with four different values of ϵ,
namely 0.5, 0.25, 0.1, and 0.05, to illustrate the varying ap-
proximation accuracies of our algorithm. The value of c did
not have a major impact on the results since the probability
of correctness is high with n being large in all of the datasets.
So, we use c = 0.5 for all experiments. We also show the
running time of SemiDeg+ using the bounds from NESD (as
described in Section 7), which we call NESD+, using the ϵ
values of 0.1 and 0.05.

We use the datasets twitter-2010, sk-2005, gsh-2015, uk-
2014, and clueweb12 from the Laboratory of Web Algorith-
mics [Boldi and Vigna, 2004; Boldi et al., 2011; Boldi et al.,
2014], and the characteristic of each graph is illustrated in
Table 1. We note that the number of edges shown in Table 1
is after symmetrization, where we add the reverse of directed

2An implementation of our method is available at https://github.
com/QuintonYong/NESD
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Figure 1: Running time comparison between SemiDeg+ and NESD with various ϵ and c = 0.5

Table 2: Error factors of NESD degeneracy outputs with various ϵ

edges if they do not already exist, and without any self loops.
Each of the graphs are massive webgraphs with over 1 bil-
lion edges, and the largest webgraph, clueweb12, has over 74
billion edges. The algorithms used in the experiments were
implemented in Java 11, and the experiments were run on
Amazon EC2 instances with the r5.24xlarge instance size (96
vCPU, 768GB memory) running Linux.

Figure 1 shows the running time results of NESD and
NESD+. On each of the datasets, the approximation algo-
rithm from [Farach-Colton and Tsai, 2016] was orders of
magnitude slower than our algorithm and SemiDeg+ due to
the requirement of passing through every single edge of the
graph. As such, when run on massive webgraphs, the running
time was extremely slow and we do not include the results in
the figure. NESD ran 2.21x to 4.43x faster than SemiDeg+
on twitter-2010, 1.44x to 2.6x faster on sk-2005, 2.61x to
2.88x faster on gsh-2015, 4.66x to 8.51x faster on uk-2014,
and 1.54x to 1.83x faster on clueweb12.

NESD+ with ϵ = 0.1 was between 1.2x and 2.58x faster
than SemiDeg+ on all datasets and NESD+ with ϵ = 0.05
was between 1.11x and 2.06x faster than SemiDeg+ on all
datasets. Furthermore, the total time of running NESD fol-
lowed by NESD+ with ϵ = 0.1 on the datasets uk-2014 and
twitter-2010 was 1.8x and 1.15x faster than SemiDeg+ re-
spectively, giving us a faster exact algorithm than the state-
of-the-art on some datasets.

Table 2 shows the degeneracy δ of each dataset (output by
SemiDeg+) as well as the approximate degeneracy and error
factors from the output by NESD. The error factors on each
dataset were between 0.869 and 0.952 for ϵ = 0.5, between
0.911 and 0.988 for ϵ = 0.25, between 0.955 and 0.994 for
ϵ = 0.1, and between 0.975 and 1.023 for ϵ = 0.05. This
shows that the error factors are well within the proven theo-
retical bounds and it also demonstrates the high level of de-
generacy approximation accuracy of our algorithm.

9 Extension to k-Core Decomposition
We can extend Algorithm 1 to solve full k-core decomposi-
tion.1 In this section, we describe how we can can modify
the algorithm to label each node in the graph with an approx-
imate core number within a factor of (1 + ϵ) of its true core
number w.h.p. in O(n log n) time.

9.1 Algorithm Modifications
Instead of returning l as the approximate degeneracy when H
is non-empty on Line 31, we continue the algorithm and as-
sign an approximate core numbers to nodes which remain in
H (Line 30). Within the body of the else statement on Line
30, we label all the nodes v ∈ H with the value of l of that
iteration. We then add the line of code V ← L such that in
the next iteration, the vertices in V are only the unlabelled
nodes. We then also perform the same updates to l, p and
Sampled(v) for all v ∈ V . On Line 32, when p ≥ 1, we run
the peeling algorithm to on the remaining unlabelled nodes
and assign core numbers to those nodes. Let l′ be the last ap-
proximate label assigned within the while-loop. If the peel-
ing algorithm assigns a core number of > l′/(1+ (3/2)ϵ1) to
a node, we instead label that node with l′. When all nodes
have an assigned label, we return those labels as (1 + ϵ)-
approximate core numbers for each node.

10 Conclusion
We have devised O(n logn

ϵ3 ) algorithms for degeneracy and
for k-core in the adjacency list model. Both algorithms give
provably close approximate solutions, w.h.p. We have shown
in experiments, that on all our instances of very large graphs,
our algorithm for degeneracy, NESD works within our ap-
proximation guarantees, and for all our datasets, it gives a
significant speed up over prior state-of-the-art methods for
computing degeneracy. Our algorithm features various opti-
mizations which may be of independent interest.
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and M. Tamer Özsu. Efficient core decomposition in mas-
sive networks. In 2011 IEEE 27th International Confer-
ence on Data Engineering, pages 51–62, 2011.

[Dvorak, 2013] Zdenek Dvorak. Constant-factor approxima-
tion of the domination number in sparse graphs. European
journal of combinatorics, 34(5):833–840, 2013.

[Eden et al., 2022] Talya Eden, Saleet Mossel, and Dana
Ron. Approximating the arboricity in sublinear time. In
SODA, 2022.

[Eppstein and Strash, 2011] David Eppstein and Darren
Strash. Listing all maximal cliques in large sparse real-
world graphs. In EXPERIMENTAL ALGORITHMS, vol-
ume 6630 of Lecture Notes in Computer Science, pages
364–375, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

[Esfandiari et al., 2018] Hossein Esfandiari, Silvio Lattanzi,
and Vahab Mirrokni. Parallel and streaming algorithms for
k-core decomposition. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1397–1406. PMLR, 10–
15 Jul 2018.

[Farach-Colton and Tsai, 2014] Martı́n Farach-Colton and
Meng-Tsung Tsai. Computing the degeneracy of large
graphs. In LATIN 2014: Theoretical Informatics, Lec-
ture Notes in Computer Science, pages 250–260. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[Farach-Colton and Tsai, 2016] Martı́n Farach-Colton and
Meng-Tsung Tsai. Tight approximations of degeneracy in
large graphs. In Evangelos Kranakis, Gonzalo Navarro,
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