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Abstract
The success of Transformers in long time series
forecasting (LTSF) can be attributed to their at-
tention mechanisms and non-autoregressive (NAR)
decoder structures, which capture long-range de-
pendencies. However, time series data also contain
abundant local temporal dependencies, which are
often overlooked in the literature and significantly
hinder forecasting performance. To address this
issue, we introduce SMARTformer, which stands
for SeMi-AutoRegressive Transformer. SMART-
former utilizes the Integrated Window Attention
(IWA) and Semi-AutoRegressive (SAR) Decoder
to capture global and local dependencies from both
encoder and decoder perspectives. IWA conducts
local self-attention in multi-scale windows and
global attention across windows with linear com-
plexity to achieve complementary clues in local and
enlarged receptive fields. SAR generates subse-
quences iteratively, similar to autoregressive (AR)
decoding, but refines the entire sequence in a NAR
manner. This way, SAR benefits from both the
global horizon of NAR and the local detail captur-
ing of AR. We also introduce the Time-Independent
Embedding (TIE), which better captures local de-
pendencies by avoiding entanglements of various
periods that can occur when directly adding po-
sitional embedding to value embedding. Our ex-
tensive experiments on five benchmark datasets
demonstrate the effectiveness of SMARTformer
against state-of-the-art models, achieving an im-
provement of 10.2% and 18.4% in multivariate and
univariate long-term forecasting, respectively.

1 Introduction
Multivariate Time Series Forecasting, as an interdisciplinary
research prevalent in scientific and engineering problems, has
witnessed great advances in recent years, with a notable trend
of predicting accurate series from short term [Li et al., 2018;
Liu et al., 2018; Salinas et al., 2020; Bai et al., 2020;
Deng et al., 2021] to long term [Zhou et al., 2021; Li et al.,
2023a; Li et al., 2023b]. Recently, Transformer-based mod-
els [Vaswani et al., 2017] have demonstrated great potentials
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Figure 1: Visualization on predicting 720 timesteps. (a) shows
the prediction from Non-stationary Transformers [Liu et al., 2022].
(b) shows the prediction by the equipment of our proposed Semi-
Autoregressive Decoder, which generates non-overlapping segments
through several steps recurrently. Segments from previous steps are
utilized again to auxiliary the following forecast.

on long time series forecasting (LTSF) for capturing long-
range correlations.

Despite these potentials, existing transformer-based mod-
els do not adequately consider the characteristics of time se-
ries data and are still suffering from ineffectiveness and in-
efficiency in capturing those local dependencies among com-
plicated temporal patterns, impairing the ability to accurately
model long time series. For instance, as shown in Figure 1a,
when predicting a long time sequence with a size of 720
timesteps for the real-world Exchange-rate dataset [Lai et al.,
2018], the non-stationary transformer [Liu et al., 2022] with
a typical non-autoregressive decoder, leads to performance
collapse in a single prediction step.

Moreover, positional embedding is also directly related to
local dependencies. Due to the different scales in time series,
directly adding positional embedding to the value embedding,
as previous works [Zhou et al., 2022a; Wu et al., 2021], can
result in entanglements of various periods, thus leading to
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Figure 2: (a) Experimental results demonstrates the effectiveness
of Time-Independent Positional Embedding (TI PE) in LTSF. (b)
Canonical self-attention scores from a 2-layer Transformer trained
on the Exchange-rate dataset, showing that LTSF attentions tend to
have strong local characteristics, and often be dominated by a few
points.

confusion for future prediction. Therefore, we develop TIE
to better capture the local dependencies.

We further investigate the vanilla attention mechanism’s
limitations by examining the attention maps among differ-
ent timesteps computed on the Exchange rate dataset (Fig-
ure 2b). The attention map is highly sparse, which aligns
with recent research [Zhou et al., 2021]. They found that the
attention feature map follows a long-tail distribution, where
a few dot-product pairs contribute to attentions while most
can be ignored. This limited attention mechanism hinders
transformer models from learning better temporal correla-
tions among timesteps, leading to significant computation
costs that restrict the practical deployment of such models in
real-world applications.

In summary, by investigating the architectures of Trans-
formers for time series interaction, there are several ma-
jor bottlenecks, i.e., the input embeddings that can incorpo-
rate more decoupled prior information, the attention mecha-
nism that can efficiently and effectively model the interaction
among different temporal patterns, and the decoder that can
stably forecast with consistent long-range dependencies.

We propose the SMARTformer, which stands for SeMi-
AutoRegressive Transformer with Efficient Integrated Win-
dow Attention, to address issues in general LTSF tasks. The
SMARTformer architecture is illustrated in Figure 3. To bet-
ter decouple positional embedding from value embedding, we
design a simple yet effective Time-Independent Embedding
(TIE) method, which avoids entanglements of various periods
and enhances the inductive bias of significant periodic varia-
tions. This improvement is shown on the Electricity Dataset
in Figure 2a. To capture abundant latent correlations, we
design the Integrated Window Attention (IWA), which sep-
arates an attention layer into two branches. One branch con-
ducts local self-attention in non-overlapping multi-scale win-
dows, while the other conducts global attention across win-
dows. These designs achieve valuable temporal patterns (as
shown in Table 7) and break the bottleneck of computational
efficiency (as demonstrated in Figure 5). Furthermore, to
enhance the decoder’s power for outputting consistent long-

range dependencies, we design a semi-autoregressive (SAR)
decoder. The promising performance of SAR is demonstrated
in Figure 1b, which enables the non-stationary Transformer
to better fit the ground truth sequence. Extensive experiments
on five public and commonly used multivariate time series
datasets from different domains demonstrate the outstanding
performance of the proposed SMARTformer.

2 Related Work
We review transformer models for LTSF according to the at-
tention mechanism and decoder design.

Efficient Attentions in LTSF. To tackle LTSF tasks, de-
signing effective self-attention mechanisms is crucial. Ac-
cording to attentions, Transformer variants can be roughly
categorized into two types. The first type is Temporal Sparse
Attention, which sparsifies attention with predefined pat-
terns [Li et al., 2019; Kitaev et al., 2020; Liu et al., 2021;
Cirstea et al., 2022]. Through reducing complexity, they are
trapped by prefined structures, failing to accurately capture
the correlations. The second type is Frequency Domain At-
tention, which fuses decomposition blocks with Fast Fourier
Transform or other frequency analysis method to discover
series-wise connections [Wu et al., 2021; Zhou et al., 2022a;
Chen et al., 2022]. However, converting data to frequency do-
main may inevitably lose fine temporal variations, thus lead-
ing to sub-optimal solutions. Based on the data distribution
of the attention matrices (as illustrated in Figure 2a), the pro-
posed Integrated Window Attention is designed to model lo-
cal and global interaction at the same time, which is signifi-
cantly different from existing methods.

Non-Autoregressive Decoding. Autoregressive (AR) de-
coding is widely used in NLP seq2seq models [Sutskever et
al., 2014] and Transformer-based pretraining models [Lewis
et al., 2019; Yang et al., 2019]. Meanwhile, AR decoding
dominates in short time series forecasting, [Qin et al., 2017;
Salinas et al., 2020; Lai et al., 2018; Li et al., 2019]. How-
ever, for LTSF, AR decoding achieves unsatisfactory perfor-
mance due to error accumulation, as mathematically proven
in [Sun and Boning, 2022]. Thus, Informer initially adopted
Non-autoregressive (NAR) decoding [Gu et al., 2017] to
avoid error accumulation and improve efficiency, which was
also used in subsequent works (Autoformer [Wu et al., 2021],
FEDformer [Zhou et al., 2022b], and Scaleformer [Shabani
et al., 2022]). Although these methods achieved encouraging
results by injecting multi-scale or decomposition prior, they
still neglected the disadvantages of NAR decoding itself. Our
SAR decoder acts orthogonally to their contributions and can
be easily adapted to them and other time series transformers
to consistently enhance their performance.

3 Method
Given a D-variates time series W = [w1,w2, . . . ,wT ] ∈
RT×D with T timesteps, the LTSF problem aims to predict
W̃ = [wT+1,wT+2, . . . ,wT+L] ∈ RL×D with L future
timestep values. To tackle the LTSF tasks, we design the ar-
chitecture of the proposed SMARTformer, as shown in Fig-
ure 3. In the following, we introduce the major components,
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Figure 3: SMARTformer architecture. The left part is Encoder, where the Time-Independent Embedding is applied before it and the Integrated
Window Attention is designed to capture comprehensive correlations. The middle part is the hierarchical Semi-Autoregressive (SAR) Decoder
to handle reliable long sequences prediction, which stacks the Segment Auto-regressive (AR) Layer and the Non-Autoregressive (NAR)
Refining Layer. The former focuses on decoding short sequences recurrently, while the latter is on refining the global context on top of it.
Their detailed structure is shown in the right part.

i.e., the Time-Independent Embedding, the Integrated Win-
dow Attention, and the hierarchical Semi-autoregressive De-
coder.

3.1 Time-Independent Embedding
In transformer-based time series forecasting, data embedding
significantly impacts performance because attentions are in-
sensitive to data order. To enhance the awareness of temporal
variations, local positional and temporal information is often
added [Zeng et al., 2022]. Previous studies use fixed posi-
tional encoding or date-specific embedding to maintain or-
dering information. However, time series data often contain
waveforms with different periods. Adding positional encod-
ing composed of periodic waveforms may destroy original
values by causing phase cancellation. We propose that po-
sitional encoding should be decoupled from values in time
series embedding to reduce the distortion of original data.

To this end, we design a Time-Independent (TI) embed-
ding method. Raw historical data are used as the encoder
input W1:T = {wi,d | 1 ≤ i ≤ T, 1 ≤ d ≤ D}, where wi,d

denotes the i-th timestep in dimension d. For each timestep,
we embed them through two parts: the Value Embedding with
a simple 1-D convolutional layer to embed each timestep of
raw data to a Cv dimension vector, and the Time-Independent
Positional Embedding denoted by Fi, calculated as the con-
catanation of three types of temporal features, i.e.,

Fi = (E
(m/h)
i +E

(wk)
i +E

(mth)
i ). (1)

Here E(m/h),E(wk),E(mth) denote three learnable projec-
tion matrices for positional embeddings of minute/hour,

weekday and month, respectively. Fi ∈ RCp denotes the
vector after positional embedding. Thus, the positional in-
formation is shared among timesteps of the same order on a
daily/weekly/monthly basis to enhance the understanding of
global temporal changes.

For each token wi, we concatenate and normalize these
two embeddings (following [Ba et al., 2016]) as

Ei = norm (Conv (wi) || Fi) , (2)

where Conv (wi) ∈ RCv denotes the latent variable after
Value Embedding and Ei ∈ RC (C = Cv + Cp) denotes
the input embedding. In this way, we leverage the posi-
tional information without destroying data semantics, acquir-
ing global awareness of ultra-long temporal changes.

3.2 Integrated Window Attention
First, the input feature X ∈ RT×C is linearly projected to
K heads, and our proposed attention splits them into two
groups — one with S heads (for Intra-window attention) and
the other with K-S heads (for Inter-window attention).

Intra-window Attention. For attention in windows, X
is evenly partitioned into non-overlapping windows of equal
length w along the time dimension. Here, we assume w is
divisible by the whole length T . w can be adjusted to balance
the learning capacity and computation complexity. Therefore,
intra-window attention can be defined as

X =
[
X1, X2, . . . , XM

]
,

Y i
k = Attention

(
XiWQ

k , XiWK
k , XiWV

k

)
,

Intra-Attention(X) =
[
Y 1
k , Y

2
k , . . . , Y

M
k

]
,

(3)
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Figure 4: Framework of Integrated Window Attention with two branches where one branch (with S heads) conducts local self-attention in
non-overlapping windows, while the other branch (with K − S heads) conducts global attention inter windows.

where Xi ∈ R T
M ×C and M = T/w (i = 1, 2, . . . ,M ).

WQ
k ∈ RC×dk , WK

k ∈ RC×dk , and WV
k ∈ RC×dk rep-

resent the projection matrices of queries, keys, and values for
the k-th head respectively where dk is set as C/K. Besides,
the window length w is an important parameter because it
achieves strong modeling capability while limiting the com-
putation cost, where we adjust by applying small lengths for
shallow layers and larger lengths for deep layers respectively
to capture multi-scale characteristics.

Inter-window Attention. For remaining K −S heads, we
perform Inter-Attention, where we shift the original sequence
X into Xs with os timesteps, and split it through the same
window size w as the former branch to acquire X̂ as

Xs = (X[os : T, 0 : C] || X[0 : os, 0 : C]),

X̂ =
[
X1

s , X
2
s , . . . , X

M
s

]
.

(4)

The shifted sequence X̂ is projected as Queries and X is
projected as Keys and Values. Then, we acquire the k-th head
attention scores Y i

k for the i-th window as

Y i
k = Attention

(
X̂iWQ

k , XiWK
k , XiWV

k

)
,

Inter-Attention(X) =
[
Y 1
k , Y

2
k , . . . , Y

M
k

]
,

(5)

where e ·w < os < (e+1) ·w, 0 < e < M . os is an offset to
establish powerful connections across different windows and
enhance interactions among tokens at the edge of windows.
Then, we integrate two branches to acquire the final output as

IntWin-Attention (X) = (Y1 || . . . ||Yk),

Yk =

{
Intra-Attentionk(X) 1 ≤ k ≤ S

Inter-Attentionk(X) S + 1 ≤ k ≤ K.

(6)

By doing so, the computation complexity of the Integrated
Window Attention in two branches is both O(w × L) =
O(L), scaling linearly with the input length L, reducing

greatly to a lower complexity than the standard MSA and en-
suring high throughput on GPUs. Moreover, another benefit
of head-splitting is that the learnable parameters Q, K, and
V are decomposed into two smaller matrices, which helps to
reduce model parameters. And we apply different w window
sizes for different layers, small w for early stages and larger w
for later. Adjusting the length of w provides the flexibility to
enlarge the attention area of each token. Thus, we reconcile
the global and local self-attention in a single layer to acquire
ample variations in an efficient and effective way.

3.3 Semi-Autoregressive Decoder
We describe our hierarchical SAR decoder to handle robust
long sequence prediction, as shown in Figure 3. It stacks the
Segment AR layer and the NAR refining layer. These layers
share the identical structure of a typical Transformer decoder,
except for using the IWA instead.

Segment AR Layer. Despite focusing on modeling a long
sequence, local contexts also play a crucial role in knowledge
propagation. Therefore, in the lower section of our network,
we adopt a Segment AR Decoder Layer, which predicts each
subsequence iteratively by applying the same decoder layer.
For a long sequence with a length of L to predict in the M -th
decoder layer, it generates non-overlapping segments through
k steps with a length lk. And the output of the M -th decoder
layer ZM

de ∈ RL×C is acquired by concatenating all the k-
step representations along the time dimension as

Y M
de = (Ŷ M

de(1)|| Ŷ M
de(2)|| . . . || Ŷ M

de(k)), (7)

where Ŷ M
de(j) denotes the j-th step output.

In the j-th step, we assume Lj for the predicted length. A
local representation HM

(j) ∈ RLj×C takes as the input, which
comes from the predictions of previous steps and positional
information of current step to capture local fine variations.
Ȳ M
de(j−1) ∈ RLj×C denotes a slice from the previous predic-
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Method SMARTformer Stationary DLinear FEDformer Autoformer Informer LogTrans LSSL LSTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
W

ea
th

er 96 0.171 0.224 0.190 0.237 0.196 0.255 0.217 0.296 0.266 0.336 0.300 0.384 0.689 0.596 0.174 0.252 0.369 0.406
192 0.224 0.268 0.241 0.281 0.237 0.296 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.238 0.313 0.416 0.435
336 0.283 0.313 0.309 0.328 0.283 0.335 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.287 0.355 0.455 0.454
720 0.361 0.358 0.406 0.394 0.375 0.381 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 0.384 0.415 0.535 0.520

T
ra

ffi
c 96 0.583 0.317 0.612 0.338 0.650 0.396 0.587 0.366 0.613 0.388 0.719 0.391 0.684 0.384 0.798 0.436 0.843 0.453

192 0.592 0.322 0.613 0.340 0.598 0.370 0.604 0.373 0.616 0.382 0.696 0.379 0.685 0.390 0.849 0.481 0.847 0.453
336 0.608 0.333 0.618 0.328 0.609 0.373 0.621 0.383 0.622 0.337 0.777 0.420 0.734 0.408 0.828 0.476 0.853 0.455
720 0.638 0.346 0.653 0.355 0.645 0.394 0.641 0.382 0.660 0.408 0.864 0.472 0.717 0.396 0.854 0.489 1.500 0.805

E
le

ct
ri

ci
ty 96 0.163 0.269 0.177 0.284 0.197 0.282 0.193 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.300 0.392 0.375 0.437

192 0.171 0.277 0.205 0.304 0.196 0.285 0.195 0.308 0.222 0.334 0.298 0.389 0.266 0.368 0.297 0.390 0.442 0.473
336 0.191 0.292 0.221 0.324 0.209 0.301 0.212 0.313 0.231 0.338 0.307 0.399 0.280 0.380 0.317 0.403 0.439 0.473
720 0.203 0.306 0.244 0.341 0.245 0.333 0.246 0.355 0.254 0.361 0.373 0.439 0.283 0.376 0.338 0.417 0.980 0.814

E
xc

ha
ng

e 96 0.109 0.233 0.111 0.237 0.088 0.218 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 0.395 0.474 1.453 1.049
192 0.186 0.314 0.239 0.345 0.176 0.315 0.195 0.308 0.222 0.334 1.204 0.895 1.040 0.851 0.776 0.698 1.846 1.179
336 0.348 0.421 0.421 0.476 0.320 0.427 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 1.029 0.797 2.136 1.231
720 0.789 0.649 1.082 0.804 0.839 0.695 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 2.283 1.222 2.984 1.427

IL
I

24 2.284 0.933 2.494 1.065 2.398 1.040 3.228 1.260 3.483 1.287 5.764 1.677 4.480 1.444 4.381 1.425 5.914 1.734
36 1.770 0.845 1.877 0.883 2.646 1.088 2.679 1.080 3.103 1.148 4.755 1.467 4.799 1.467 4.442 1.416 6.631 1.845
48 1.897 0.897 2.010 0.900 2.614 1.086 2.622 1.078 2.669 1.085 4.763 1.469 4.800 1.468 4.559 1.443 6.736 1.857
60 1.877 0.891 2.178 0.963 2.804 1.146 2.857 1.157 2.770 1.125 5.264 1.564 5.278 1.560 4.651 1.474 6.870 1.879

Table 1: Multivariate long-term series forecasting results on five datasets with a fixed input length I = 96 and prediction length O ∈
{96, 192, 336, 720} (For ILI dataset, input length I = 36 and prediction length O ∈ {24, 36, 48, 60}). A lower MSE/MAE indicates better
forecasting performance. The best results are highlighted in bold and the second best are underlined.

Method SMARTformer Stationary DLinear FEDformer Autoformer Informer LogTrans LSSL LSTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.0012 0.026 0.0013 0.027 0.0057 0.063 0.0035 0.046 0.0110 0.081 0.0038 0.044 0.0046 0.052 0.0067 0.065 0.0051 0.060

192 0.0014 0.028 0.0016 0.030 0.0061 0.066 0.0054 0.059 0.0075 0.067 0.0023 0.040 0.0056 0.060 0.0061 0.067 0.0054 0.056
336 0.0015 0.029 0.0016 0.030 0.0064 0.068 0.0041 0.050 0.0063 0.062 0.0041 0.049 0.0060 0.054 0.0034 0.038 0.0063 0.065
720 0.0019 0.033 0.0021 0.034 0.0067 0.070 0.0150 0.091 0.0085 0.070 0.0031 0.042 0.0071 0.063 0.0072 0.073 0.0054 0.060

T
ra

ffi
c 96 0.152 0.247 0.188 0.281 0.242 0.317 0.170 0.263 0.246 0.346 0.257 0.353 0.226 0.317 0.194 0.290 0.542 0.531

192 0.154 0.248 0.192 0.287 0.205 0.279 0.173 0.265 0.266 0.370 0.299 0.376 0.314 0.408 0.172 0.272 0.551 0.535
336 0.161 0.267 0.197 0.295 0.199 0.276 0.178 0.266 0.263 0.371 0.312 0.387 0.387 0.453 0.178 0.278 0.555 0.536
720 0.162 0.262 0.217 0.311 0.221 0.296 0.187 0.286 0.269 0.372 0.366 0.436 0.491 0.437 0.263 0.386 0.989 0.801

Table 2: Univariate long-term series forecasting results on two typical datasets with a fixed input length I = 96 and prediction length O ∈
{96, 192, 336, 720}. A lower MSE/MAE indicates better forecasting performance. The best results are highlighted in bold and the second
best are underlined.

tion Ŷ M
de(j−1) ∈ RLj−1×C which we pad or slice to a proper

length when j = 1 or lj−1 ̸= lj to align them in the time di-
mension. The positional embeddings F (j) ∈ RLj×Cp utilize
TIE to enhance the awareness of complicated periodic varia-
tions. We concatenate them along the channel dimension and
learn through an MLP as

HM
(j) = MLP([F(j)|| Ȳ M

de(j−1)]). (8)

The equation to perform in the Segment AR decoder can be
summarized as

Ŷ M
de(j) = Decoder(HM

(j), Y
N
en), (9)

where Y N
en denotes the final output after all the N layers en-

coder. As for the predicted length for each step, it can be
determined based on the sampling frequency of the dataset.
Selecting a length that is an integer multiple of the dataset
period (day/ week) can help with model prediction.

NAR Refining Layer. We introduce a NAR Refining
Layer to add global representational power beyond the Seg-

ment AR Layer. The input of the M+1-th Refining Layer
comes from the hidden states of the prior layer Y M

de ∈ RL×C .
And the equations of the M+1-th decoder layer can be sum-
marized as

Y M+1
de = Decoder(Y M

de , Y
N
en). (10)

We stack these two types of layers interchangeably to capture
both global and local contexts efficiently. Such design ben-
efits from both the global horizon of the NAR decoding and
the local detail capturing of the AR decoding to enhance the
power of the decoder for capturing short and long dependen-
cies steadily.

4 Experiments
4.1 Main Results
We conduct extensive experiments to evaluate the perfor-
mance of SMARTformer and further perform ablation studies
to justify how each component contributes to the final results.
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Method Informer +SAR decoder Promotion Autoformer +SAR decoder Promotion FEDformer +SAR decoder Promotion

Metric MSE MAE MSE MAE Ratio MSE MAE MSE MAE Ratio MSE MAE MSE MAE Ratio
E

le
ct

ri
ci

ty

96 0.274 0.368 0.268 0.361 2.04% 0.201 0.317 0.184 0.299 7.09% 0.193 0.297 0.174 0.279 7.95%
192 0.298 0.389 0.295 0.384 1.30% 0.222 0.334 0.195 0.308 11.14% 0.195 0.308 0.187 0.291 4.81%
336 0.307 0.399 0.301 0.391 2.05% 0.231 0.338 0.204 0.318 9.76% 0.212 0.313 0.198 0.295 6.17%
720 0.373 0.439 0.305 0.385 14.03% 0.254 0.361 0.229 0.338 8.86% 0.246 0.355 0.217 0.319 10.96%
960 0.334 0.405 0.324 0.394 2.79% 0.272 0.369 0.246 0.350 8.04% 0.250 0.354 0.236 0.334 5.64%
1200 0.348 0.420 0.329 0.403 4.22% 0.283 0.382 0.261 0.362 6.98% 0.265 0.370 0.249 0.354 5.18%

Tr
af

fic

96 0.719 0.391 0.651 0.356 9.20% 0.613 0.388 0.583 0.358 6.31% 0.587 0.366 0.583 0.317 7.03%
192 0.696 0.379 0.663 0.363 4.98% 0.616 0.382 0.592 0.358 5.37% 0.604 0.373 0.593 0.320 8.01%
336 0.777 0.420 0.693 0.382 12.12% 0.622 0.337 0.618 0.335 0.62% 0.621 0.383 0.611 0.333 7.33%
720 0.864 0.472 0.728 0.393 19.39% 0.660 0.408 0.637 0.372 5.94% 0.641 0.382 0.637 0.353 4.10%
960 0.799 0.434 0.748 0.409 6.81% 0.649 0.395 0.645 0.394 0.44% 0.647 0.394 0.639 0.369 3.79%
1200 0.901 0.492 0.819 0.447 10.01% 0.653 0.396 0.642 0.392 1.36% 0.651 0.400 0.641 0.378 3.51%

Table 3: Performance promotion by applying our proposed Semi-Autoregressive Decoder to Transformers. We report the averaged MSE/MAE
of all prediction lengths and the relative promotion ratios by our decoder.

Method T T+SAR T+TIE T+TIE+SAR T+TIE+IWA SMARTformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.201 0.250 0.185 0.233 0.183 0.234 0.176 0.228 0.181 0.231 0.171 0.224

192 0.260 0.297 0.234 0.279 0.233 0.277 0.228 0.271 0.231 0.277 0.224 0.268
336 0.321 0.340 0.302 0.325 0.304 0.328 0.289 0.315 0.303 0.319 0.283 0.313
720 0.405 0.388 0.377 0.370 0.381 0.370 0.368 0.366 0.380 0.373 0.361 0.358

Table 4: Ablation study of the components in SMARTformer: Time-Independent Embedding (TIE), Integrated Window Attention (IWA),
and Semi-Autoregressive decoder (SAR); T denotes Transformer.

Datasets. We perform empirical studies on five real-world
benchmark datasets as follows: (1) Electricity. (2) Weather2.
(3) Traffic3. (4) Exchange[Lai et al., 2018]. (5) ILI 4. The
train/val/test splits for the first three datasets are the same as
[Zhou et al., 2021], the last two are split by the ratio of 7:1:2
following [Wu et al., 2021].

Baselines. We select nine strong recent baselines, includ-
ing: Transformer-based models: Non-stationary Transform-
ers [Liu et al., 2022], FEDformer [Zhou et al., 2022a], Aut-
oformer [Wu et al., 2021], Informer [Zhou et al., 2021]and
LogTrans [Li et al., 2019]; MLP-based models: DLinear
[Zeng et al., 2022]; RNN-based model LSSL [Gu et al., 2022]
and LSTM [Hochreiter and Schmidhuber, 1997].

Forecasting Results. As shown in Table 1, for multi-
variate time series forecasting, SMARTformer outperforms
other deep models impressively in all benchmarks, with 37
top-1 and 40 top-2 cases out of 40 in total. Compared
with SOTA works (Non-stationary Transformers, Dlinear
and FEDformer), ours yields an overall 10.2%, 10.1% and
17.7% relative MSE reduction. We also list the univari-
ate results of two typical datasets in Table 2. Compared
with SOTA works (Non-stationary Transformers and Dlin-
ear), ours yields an overall 13.3% and 51.3% relative MSE
reduction. And on the Weather dataset, the improvement can
reach more than 70%. It proves the effectiveness of SMART-
former in long-term forecasting.

Implementation details. All the experiments are imple-
mented in PyTorch 1.9.1 [Paszke et al., 2019] and conducted

2Weather. https://www.bgc-jena.mpg.de/wetter/.
3Traffic. http://pems.dot.ca.gov/.
4ILI. https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.
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Figure 5: Running Time Efficiency Analysis. We compare the mean
running time per iteration in the training phase and their forecasting
performance, evaluated by MSE.

for three runs on a single NVIDIA 3090 GPU. Following pre-
vious works, the input sequence length is set to 36 for ILI and
96 for the other four datasets. We also use a data normal-
ization layer RevIN [Kim et al., 2022] as a pre-processing
block to further enhance the model’s robustness. Each model
is trained by ADAM [Kingma and Ba, 2015] using L2 loss
and batch size of 32. The model contains 3 encoder layers and
2 decoder layers. And we have an additional set of hyperpa-
rameters. In IWA, the shift length os = (M/2+1/2)×w, the
window size w ∈ {24, 36, 48}. And in TIE, the dim of value
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Method fixed PE w/o PE TIE

Metric MSE MAE MSE MAE MSE MAE
E

le
ct

ri
ci

ty 96 0.193 0.308 0.368 0.430 0.163 0.269
192 0.201 0.315 0.379 0.437 0.171 0.277
336 0.214 0.329 0.388 0.445 0.191 0.292
720 0.246 0.355 0.396 0.462 0.203 0.306

Table 5: Comparisons of Positional Embedding methods.

Method NAR Segment AR SAR

Metric MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.172 0.276 0.167 0.271 0.163 0.269

192 0.195 0.301 0.180 0.286 0.171 0.277
336 0.218 0.322 0.208 0.312 0.191 0.292
720 0.233 0.334 0.230 0.331 0.203 0.306

Table 6: Comparisons of components in SAR.

embedding Cv = 3/4×D, the dim of Positional Embedding
Cp = D/4, D denotes the dim of the model. In the segment
AR layer of SAR, the subsequence length is L/4 each time.

Semi-Autoregressive Decoder Generity. We apply our
SAR decoder to mainstream Transformers (Informer, Auto-
former, and FEDformer) and report the performance promo-
tion of each model (Table 3). Our method consistently im-
proves the forecasting ability of different benchmarks. Over-
all, it achieves averaged 7.7%, 6.2%, and 6.3% promotion
on Informer, Autoformer, and FEDformer, making each of
them surpass previous state-of-the-art, which validates that
our SAR decoder is an effective framework that can be widely
applied to Transformer-based models in long-term forecast-
ing to enhance their performance. It is worth noting that with
the predicted length increasing, the performance of the SAR
decoder changes quite steadily, implying its robustness in ex-
tremely long-term forecasting.

4.2 Ablation Study and Analysis
Ablation Study. We perform an ablation study on the
Weather dataset to study the effects of our three main mod-
ules: TIE, IWA, and SAR. We consider Transformer as the
baseline. As shown in Table 4, we observe that each module
is essential for accurate prediction where the accuracy drops
more significantly when without SAR or TIE, which justi-
fies our design choices. And we note that when replacing
IWA with canonical attention, the accuracy loss is relatively
smaller than removing other components. Another benefit of
IWA is greatly reducing the computations thus improving ef-
ficiency.

Impact of SAR. As shown in Table 6, we evaluate the com-
ponents of our SAR decoder. Using only the Segment AR
Layer performs better than using only the NAR decoder, for
providing more dependable local features. And combining
both achieves the best results stably, proving the importance
of modeling global and local features respectively.

Impact of TIE. In Table 5, we compare TIE with fixed po-
sitional embedding (fixed PE) and without positional embed-
ding in SMARTformer. As can be observed, the forecasting

Method Intra-Window Inter-Window IWA

Metric MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.164 0.269 0.167 0.271 0.163 0.269

192 0.177 0.283 0.178 0.286 0.171 0.277
336 0.201 0.307 0.196 0.299 0.191 0.292
720 0.223 0.321 0.208 0.310 0.203 0.306

Table 7: Comparisons of components in IWA.

Param e s

no shift w/4 w/2 0 1 M/2

192 MSE 0.234 0.227 0.224 0.239 0.226 0.224
MAE 0.282 0.271 0.268 0.287 0.270 0.268

720 MSE 0.366 0.363 0.361 0.368 0.367 0.361
MAE 0.364 0.362 0.358 0.366 0.365 0.358

Table 8: Impact of shift (os) in IWA, os = e × w + s. w is the
window size and M is the number of windows. When e varies, s is
fixed to M/2. When s varies, e is w/2.

performance declines rapidly without positional embedding.
And our method outperforms fixed PE, which is well aligned
with our design considerations for decoupling PE from value
embedding.

Impact of IWA. We study the effects of two branches
(Inter-Window and Intra-Window) in IWA. As shown in Ta-
ble 7, we observe the necessity of both branches. When the
predicted length is relatively small, the Intra-Window branch
contributes more, and the Inter-Window branch is quite es-
sential, especially in the relatively long predicted length.

Impact of os in IWA. As shown in Table 8, we evaluate
the impact of shift os under different e and w situations on
the Weather dataset. s = w/2, e = M/2 performs the best,
because the design of e and w is essential to enhance interac-
tions among tokens across windows.

Running Time Efficiency Analysis. As shown in Fig-
ure 5, we evaluate SMARTformer with 8 strong baselines,
Transformer based models: Autoformer, FEDformer, Quat-
former [Chen et al., 2022], Scaleformer[Shabani et al., 2022],
Non-stationary Transformers (represented as Stationary) and
GNN based models: DGCRN [Li et al., 2021], GWNet [Wu
et al., 2019] and AGCRN [Bai et al., 2020]. Experiments
are conducted on the Weather Dataset with a 96 length input
and a 720 predicted length output. Our SMARTformer is the
fastest and best accurate among the 9 models.

5 Conclusion
Long time series forecasting is notably associated with the
ability to stably capture local dependencies. Thus, we pro-
pose SMARTformer, consisting of three effective mecha-
nisms, where Time-Independent Embedding enhances peri-
odic variations, Integrated Window Attention achieves com-
plementary clues in various receptive fields, and Semi-
Autoregressive Decoder identifies solid local and global char-
acteristics in two stages. Extensive experiments show that our
framework achieves superior forecasting performance.
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