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Abstract
As deep learning gains popularity in modelling dy-
namical systems, we expose an underappreciated
misunderstanding relevant to modelling dynamics
on networks. Strongly influenced by graph neural
networks, latent vertex embeddings are naturally
adopted in many neural dynamical network mod-
els. However, we show that embeddings tend to
induce a model that fits observations well but si-
multaneously has incorrect dynamical behaviours.
Recognising that previous studies narrowly focus
on short-term predictions during the transient phase
of a flow, we propose three tests for correct long-
term behaviour, and illustrate how an embedding-
based dynamical model fails these tests, and anal-
yse the causes, particularly through the lens of
topological conjugacy. In doing so, we show that
the difficulties can be avoided by not using embed-
ding. We propose a simple embedding-free alter-
native based on parametrising two additive vector-
field components. Through extensive experiments,
we verify that the proposed model can reliably re-
cover a broad class of dynamics on different net-
work topologies from time series data.

1 Introduction
In deep learning, architectural design patterns proven suc-
cessful for one task are often transplanted to tackle related
tasks. One such design pattern is an encoder-decoder struc-
ture found in almost every competitive model, be it a trans-
former [Vaswani et al., 2017] or a graph neural network [Kipf
and Welling, 2016]. With recent dramatic progress in neu-
ral dynamical model [Chen et al., 2018; Chamberlain et al.,
2021], one would naturally assume that an encoder-decoder
structure in such models is also helpful and necessary.

We challenge this assumption in the context of recon-
structing network dynamics from observation time series.
Many natural and social phenomena can be modelled as
dynamical processes on complex networks, such as gene
regulatory networks, social networks, and ecological net-
works [Newman, 2018]. Recovering the governing mech-
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anism of such dynamical systems from observations is the
first step towards understanding the global dynamical prop-
erties and eventually implementing interventions and con-
trols. In a typical problem setup, a multivariate time series
x(t1),x(t2), . . . ,x(tN ) is observed from a network dynam-
ical system. From it, we aim to inductively infer a coupled
dynamical system to model x(t). When the observations are
evenly spaced, various solutions exist (e.g., [Takens, 1981;
Brunton et al., 2016]). But as many complex systems gen-
erate unevenly spaced observations, recovering the dynamic
remains a challenge.

Many researchers exploited an encoder-decoder structure
to recover coupled flows from time series data [Zang and
Wang, 2020; Yan et al., 2021; Wang et al., 2022; Guo et al.,
2022; Hwang et al., 2021]. Among these, the most represen-
tative model is NDCN [Zang and Wang, 2020]. As shown in
Fig 1, instead of estimating a flow Φ from the original ob-
servations x, NDCN seeks to simultaneously estimate an en-
coder fe and a conjugate flow Φ′ such that Φ′(ti, fe(x0)) ≃
(fe ◦ Φ)(ti,x0). As the new flow Φ′ now lives in a higher-
dimensional latent space, it potentially has a simpler form
than Φ, in the same way that kernel methods allow linear al-
gorithms to be used for nonlinear problems [Hofmann et al.,
2008]. However, this seemingly innocent use of an encoder
can result in an incorrect dynamical model, in the sense de-
fined by Section 3.1. In particular, we observe that a flow
estimated by NDCN is often dynamically unstable (with the
largest Lyapunov exponent being positive), even when the
time series originates from a stable flow. We analyse the
potential causes. By concluding that an encoder is unneces-
sary, we show that it is possible and more desirable to directly
model the dynamics in its original state space, by proposing
an effective and versatile embedding-free architecture.

In this paper, we make the following contributions.

• We expose a severe limitation of encoder-decoder-based
models for neural dynamics on networks: superfluous
latent dimensions induce incorrect flows. In particular,
we show that some widely used models do not even pro-
duce a valid dynamical system. We demonstrate this
phenomenon on various dynamics and networks.

• We propose an encoder-free architecture Dy-Net Neu-
ral Dynamics (DNND) to learn network dynamics from
time series data. DNND goes beyond mere observation
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Figure 1: Embedding-based neural dynamical model NDCN [Zang and Wang, 2020] (a) and our proposed Dy-Net Neural Dynamics (DNND)
architecture (b). (a) NDCN simultaneously learns an encoder, a decoder, and the evolution rule. The encoder embeds an original variable
x into a high-dimensional latent space. The evolution rule uses a predetermined linear coupling mechanism (the graph Laplacian) to ap-
proximate the unknown dynamical interactions among vertices. NDCN suffers from several problems, including poor generalisation beyond
the training data (shown as the x-t curves diverging from the ground-truth curves from t > 5). (b) In contrast, DNND directly models the
network dynamic on the original phase space. DNND uses two neural networks Fθ and Gθ to separately model the self-dynamic on nodes
and the coupling along edges, explicitly allowing nonlinear coupling.

fitting and can reliably learn a model of the correct dy-
namical behaviours.

• We propose a loss warm-up procedure to address the nu-
merical instability in training neural ODE on irregular
time series data.

• We improve the existing evaluation protocol for neural
dynamic models by including metrics aligned with com-
mon objectives of analysing nonlinear complex systems,
including stability and limiting behaviours.

2 Background

2.1 Dynamics on Complex Networks
Consider an undirected network with n vertices. We repre-
sent the network with a symmetric adjacency matrix A. An
element Aij in A is defined as

Aij =

{
1, if vertices i and j share an edge,
0, otherwise.

(1)

In this paper, we assume that the network contains no self-
loop. Hence Aii = 0 for any i.

Let T ≜ R+ (or more generally a monoid). We assume
that each vertex i defines a continuous-time real-value state
variable xi : T → R. And we consider a dynamical system
defined by ordinary differential equations together with initial
conditions:

ẋi(t) = Ψi(x1(t), x2(t), . . . , xn(t)) (2)
xi(0) = bi, (3)

where t ∈ T and 1 ≤ i ≤ n. In this paper, we use ẋ to denote
d
dtx (i.e., the velocity) and call Ψi : Rn → R a velocity
operator. We assume that each velocity operator is smooth
and globally Lipschitz. Also, we restrict Ψi to be autonomous
(time-invariant).

Let x denote (x1, x2, . . . , xn)
⊤. Then the evolution oper-

ators Ψi induce a flow Φ : T × Rn → Rn as

Φ(t,x(0)) = x(t) (4)

=

∫ t

0

(Ψ1(x(τ)), . . . ,Ψn(x(τ)))
⊤
dτ (5)

The problem that concerns us in this paper is to recover Ψi

from a multivariate time series:

x(t1),x(t2), . . . ,x(tN ), (6)

where 0 ≤ t1 < t2 < · · · < tN . Note that we do not assume
that the time series is regularly spaced.

Clearly, in its most general form (2), it is an ill-defined
problem to recover Φ from a single time series. If we review
∆ti ≜ ti+1 − ti as the value of a roof function r(x(ti)), then
Φ is a special flow [Fisher and Hasselblatt, 2019], and there
are infinitely many valid special flows under time changes.
Therefore, we need to introduce an additional inductive bias.
Following [Zang and Wang, 2020], we assume a single oper-
ator Ψ : R×XA → R shared by all state variables:

ẋi(t) = Ψ(xi(t), {xj(t) : Aij = 1}), (7)

where XA ⊂ 2R. In other words, xi(t) depends on itself
and its neighbouring state variables, and Ψ is invariant to the
permutation of the neighbouring vertices.

2.2 Encoder-Decoder Based Neural Dynamical
Models

How do you model the operator Ψ in Eq (7)? Many neu-
ral dynamical models for complex networks (e.g., [Zang and
Wang, 2020]) follow a common encoder-decoder architecture
in graph neural networks [Kipf and Welling, 2016] and also
in general neural ODEs [Lee and Parish, 2021]. In NDCN
[Zang and Wang, 2020] (see Fig 1.(a)), the authors defined
an encoder fE : R → Rd and a decoder fD : Rd → R,
where d ∈ Z+ is the embedding dimension, so that each ini-
tial value xi(0) is encoded jointly as d state variables in the
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Figure 2: Trajectories of 10 vertices following the heat diffusion dynamics. (a) The ground-truth trajectories converge to the mean temper-
ature. (b) An NDCN model was trained using 80 observations to the left of the dashed line (at times shown in the rug plot). The estimated
trajectories fitted the training data well. But the trajectories diverge quickly outside the region with training observations. The trajectories
certainly are inconsistent with how heat diffusion works.

vector hi(0) = fE(x(0)). Then they define

Ḣ(t) = fθ(LH(t)), (8)

where L is the graph Laplacian, H(t) is
(h1(t),h2(t), . . . ,hn(t))

⊤, and fθ : Rd → Rd is a
vector-valued function. Clearly, the use of graph Laplacian
for aggregation is a convenient choice. It restricts the type of
dynamical coupling among neighbouring vertices.

Training an NDCN model involves jointly fitting fE , fθ,
fD to minimise the empirical risk on the observations. It is
not different from a standard supervised training setup. In
particular, no explicit requirement is imposed on the dynami-
cal behaviours of the fitted flow.

3 Issues with Encoder-Decoder Based Neural
Dynamical Models

In this section, we show that encoding the scalar state variable
x(t) as a latent vector h(t) leads to overfitting and spurious
evolution operators. We use a simulated example to demon-
strate the problems and then analyse potential causes in Sec-
tion 3.3. Later in Section 4, we will propose a simple yet
effective solution to address these problems.

3.1 Three Tests for Neural Dynamical Models
The universal approximation theorem [Hornik et al., 1989] al-
lows us to fit a neural network to approximate any time series.
In NDCN, if we keep increasing the embedding dimension d,
we can always fit a given observation time series. But for any
fitted neural dynamical model to be useful, we expect the in-
duced flow to have the correct dynamical properties, which
we aim to capture with the following three tests.
Extrapolation beyond training data. To fit a neural dy-
namical model, we rely on observations at finite time points
t1, t2, . . . , tN . These observations are often collected during
a short-term transient period close to an initial condition. In
many studies of NODEs, a test sample from a time period
overlapping or close to the training period is used. This is
consistent with the standard supervised setting, where data is
assumed to be independent and identically distributed (iid) or
nearly iid. However, in dynamical modelling, more important
is the long-term behaviour of the fitted model. Therefore, the
model needs to make accurate predictions on long-term hori-
zons. So our first test is whether the estimated model can

make accurate long-term predictions beyond the observation
period of the training data.
Same fixed points or invariant sets. One may argue that
in dynamic system modelling, what matters is the correct fi-
nal state, instead of accurate predictions of intermediate state
values. Related to the previous test is whether the fitted model
needs to have the same collection of fixed points (or invariant
sets) as the true model. If the answer is yes, two correspond-
ing fixed points need to have the same dynamical stability.
In this paper, we check the stability of a flow by the largest
Lyapunov exponent [Wolf et al., 1985].
Neural network as a legal flow. The final test is the most
important but is often overlooked: whether the fitted neural
dynamical model induces a legal vector field for a flow. In
particular, the model should induce a state transition function
that is a monoid action. This means that if Φ is a flow, then

Φ(0,x) = x (9)
Φ (t2,Φ (t1,x)) = Φ (t2 + t1,x) , (10)

for any t1, t2 ∈ T . In other words, the trajectory x(t) cannot
branch out at any time t.

3.2 How NDCN Fares in These Tests
We demonstrate the problems with embedding-based neural
dynamical models using an example from [Zang and Wang,
2020]. In this example, NDCN is shown to outperform
various RNN+GNN baselines, in short-horizon extrapolation
tasks (see Table 3 of [Zang and Wang, 2020]).
Heat diffusion on a frid network. Following [Zang and
Wang, 2020], we simulate a vector time series using a heat
equation defined on a grid network. We consider a net-
work with 400 vertices arranged in a square 2d lattice. Let
{v(k, l) : 1 ≤ k, l ≤ 20} be the vertices. Two vertices v(k, l)
and v(k′, l′) are connected if and only if |k − k′| ≤ 1 and
|l − l′| ≤ 1. In other words, this is a modified version of the
8-regular graph with 2d boundaries. On this network, a flow
is defined by the heat equation. For each node i, we have:

ẋi(t) = −
N∑
j=1

Aijα(xi − xj), (11)

where α is a diffusive constant. Also xi(0) is set with a
random value from [0, 25]. Note that in theory, the above
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Figure 3: NDCN does not define a proper dynamical system as
Φ(t2,Φ(t1,x)) ̸= Φ(t2 + t1,x), violating the monoid-action re-
quirement. This is shown as one trajectory branching into two tra-
jectories (dashed vs solid).

coupling operator can be perfectly modelled by the graph
Laplacian. From the above flow, we created 80 irregularly
spaced samples with t ∈ [0, 5], and fitted an NDCN model
using the code provided by the authors on Git Hub (https:
//github.com/calvin-zcx/ndcn).

Failing to extrapolate. Fig 2 shows the true trajectories of
10 vertices and the corresponding trajectories recovered from
the NDCN model. The NDCN model performed well in the
neighbourhood of the training observations (to the left of the
dashed line). But it has almost poor generalisation capacity
outside that region. Fig 2(c) shows that the prediction error
grows as we move away from the training data.

Missing the fixed point. The heat flow has a simple fixed
point: eventually, every xi converges to the average tempera-
ture of the network. Fig 2b shows that the NDCN model fails
to capture this very stable fixed point, as all state variables ac-
tually diverge over time in the fitted model. We measured the
largest Lyapunov exponent of the true flow and the estimated
flow. While the true value is −35.83, indicating a stable flow,
the value of the estimated flow is 9.36, a positive value that
implies instability. The same contradiction can be revealed by
a 2D visualisation of a vertex-wise phase plot. Fig 8 shows
that the estimated flow initially approached the average tem-
perature but eventually diverged from the correct fixed point.

Failing to produce a flow. From the estimated flow Φ̂, we
produce two time series. One from t = 0 with the initial con-
dition xi(0) and another from t = 5 with the initial condition
Φ̂(5, xi(0)). If Φ̂ is a legal flow, then these two time series
should coincide from t ≥ 5. Figure 3 shows the time series
for two vertices. Clearly resetting the initial condition led to
a completely different time series.

3.3 What Went Wrong?
The above example shows that a neural dynamical model can
fit an observation time series well in the embedding space,
but at the same time fails to produce the correct flow. Em-
bedding has been used to reconstruct flows from regularly
spaced time series [Takens, 1981]. Also, it has been shown
that any homeomorphism h : X → X ,X ⊂ Rp in a p-
dimensional Euclidean space can be approximated by a Neu-
ral ODE Φ̂ : T × R2p → R2p operating on a 2p-dimensional

Figure 4: Additional embedding dimensions reduce the influence of
observation data on the model fit. Increased hypothesis space leads
to overly complex and unstable models, as suggested by Occam’s
razor [Blumer et al., 1987].

Euclidean space [Zhang et al., 2020]. But then why did the
embedding-based model fail to recover the heat dynamics?

Encoder/Decoder or Homeomorphism?
First, we limit our definition of a correct flow. Following
[Fisher and Hasselblatt, 2019], a flow Φ = {ϕ(t, x)} on X
and another flow Ψ = {ψ(t, y)} on Y are topological equiv-
alent if there is a homeomorphism h : X → Y such that

h(ϕ(t, x)) = ψ(t, h(x)). (12)

If we accept the notion of “correctness”, then in Fig 1(a) the
encoder function fE and the decoder function fD have to sat-
isfy some conditions.

First, fE and fD need to be inverse to each other, as they
represent h and h−1. This implies that fE and fD should not
be implemented using two independent neural networks. Sec-
ondly, both fE and fD must be one-to-one functions (injec-
tions). This implies that the encoder/decoder neural network
has to be reversible. In particular, it cannot contain pooling
layers or a RELU activation function. However, the encoders
and decoders used in most neural dynamical models do not
meet these two conditions. In [Zang and Wang, 2020], fD
and fE are parametrised using two separate neural networks,
just as in a standard GNN.

Curse or Blessing of Dimensionality?
Another problem with embedding is the increased dimension-
ality of an inverse problem. As in NDCN, the encoder maps
a scalar value to a vector of dimension d. So instead of fit-
ting a shared scalar field as in Eq (7), we need to learn the
d-dimension vector field. At the same time, we have only one
time series of dimension n as the training data. When d is
too large relative to n, overfitting is likely to occur. This is
illustrated in Fig 4.

One may argue that embedding is routinely used by neu-
ral ODEs in classification/regression tasks [Chen et al., 2018;
Chamberlain et al., 2021], and there appear to be no issues. In
classification/regression tasks, neural ODEs produce a flow Φ
and a return time T such that Φ(T, ·) serves as an approxima-
tor of the homeomorphism between inputs and label encod-
ing. In such a scenario, it is well established that lifting the
dimension of the input features enlarges the set of valid evo-
lution functions, making a “difficult” homeomorphism easier
to fit [Dupont et al., 2019]. However, it is unnecessary to
consider whether the flow Φ itself is “correct” or not. With
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that said, superfluous dimensions may still lead to unstable
fit [Massaroli et al., 2020].

In NDCN, the additional embedding dimension does pro-
vide additional expressive power that compensates for the
limitation of the graph Laplacian aggregation function. But
we argue that if the graph Laplacian is too restrictive for the
task, we should use a more general aggregation function.

4 Dy-Net Neural Dynamics
In the previous section, we have seen that an embedding-
based neural dynamical model can learn a spurious flow that
fits the training data well, but is qualitatively different from
the true dynamic in terms of long-term properties.

If it is so difficult to learn an encoder/decoder pair that
guarantees topological conjugacy, do we need latent embed-
ding in the first place? In this section, we show the possibility
of constructing neural networks that directly model the flow
in its original state space.

4.1 Replacing Graph Laplacian with Permutation
Invariance Aggregation

If we build a neural network to work directly on the origi-
nal state space, one challenge is the limited expressive power
of the graph Laplacian. The graph Laplacian and its vari-
ants play a central role in graph convolution and graph neural
networks [Kipf and Welling, 2016; Veličković et al., 2017].
However, the graph Laplacian is a linear aggregation operator
that cannot handle potentially nonlinear coupling in network
dynamics. In other words, to avoid encoders and decoders,
we also have to abandon the graph Laplacian and seek a more
general aggregation scheme. We propose a model based on
the separation of self-dynamic and coupling operators.

4.2 Dy-Net Neural Dynamics
Our first approximation is to replace Ψ(xi(t), {xj(t) : Aij =
1}) with the sum of a node operator and an edge operator:

ẋi(t) = ΨN (xi(t)) + ΨE({xj(t) : Aij = 1}). (13)

By Theorem 2 in [Zaheer et al., 2017], ΨE({xj(t) : Aij =

1} can be represented as ρ
(∑

j:Aij=1 ϕ(xj)
)

, where ρ and ϕ
are two scalar transformations.

Inspired by the pairwise coupling feature in [Chen et al.,
2014], we further assume that ρ is additive and that each xj
can have a non-linear coupling effect on xi governed by a
shared term Ψe(xi(t), xj(t)). This leads to the following sum
decomposition of the operator Ψ:

ẋi(t) = ΨN (xi(t)) +
∑

Aij=1

Ψe(xi(t), xj(t))). (14)

This turns out to be the same vector-field structure that ap-
pears in [Barzel and Barabási, 2013; Barzel et al., 2015;
Gao et al., 2016].

Note that Eq (14) is more general than the graph Laplacian
aggregation in Eq (11). It is also more general than the three-
term structure in [Barzel et al., 2015]:

ẋi(t) =M0(xi(t)) +
∑

Aij=1

M1(xi(t))M2(xj(t))). (15)
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Figure 5: Loss warm-up schedule for learning F and G. (a) At
the early stage of the training process, the contribution of the data
points far away from the initial time (t being large) are dampened to
stabilise the training. (b) A temperature variable τ controls how the
dampening is relaxed with the number of epochs. The temperature
increases every 400 epochs.

Eq (14) suggests that we can use two separate neural net-
works Fθ andGθ to parametrise ΨN and Ψe (see Fig. 1). This
is in contrast to the single-neural-network solution in NDCN.
Compared with an encoder-decoder-based model, a model
specified by Eq (14) offers important benefits: The neural net-
works for ΨN and Ψe are independent of A. That means that
these two neural networks Fθ, Gθ can be trained even when
the adjacency matrix A changes within a time series. Dynam-
ical network rewiring is common in many applications, such
as biological and social systems. Because of this decoupling
of Ψe from A, we call our two-neural-network model Dy-Net
Neural Dynamics (DNND).

Fig 1(b) shows the architecture of DNND, which renders
the following flow on networks:

ẋi(t) = Fθ (xi(t)) +

N∑
j=1

AijGθ (xi(t), xj(t)) , (16)

for all 1 ≤ i ≤ n. Clearly xi(t) is always a flow by definition.
Affine regularisation. It is well known that neural ODE
training can be numerically challenging due to approxima-
tion errors in numerical integration procedures and stiffness
in the system [Kim et al., 2021]. To alleviate the challenge of
unstable model training, we model Fθ and Gθ as

Fθ(x) = cf0 + cf1 · x+ fθ(x) (17)
Gθ(x1, x2) = cg0 + cg11 · x1 + cg12 · x2 + gθ(x1, x2)

(18)

where cf0, cf1, cg0, cg11, cg12 are scalar parameters to cap-
ture the dominating linear terms, and fθ and gθ are MLPs to
capture higher-order nonlinear terms. This is similar to the
set-up of LassoNet [Lemhadri et al., 2021]. It introduces the
inductive bias of preferring affine mappings. It allows us to
regularise fθ and gθ to promote sparse and interpretable mod-
els. Note that the graph Laplacian is now a special case with
only two nonzero terms cg11 = 1 and cg12 = −1.

4.3 Robust Fitting of Two Neural Networks
Given a time series D = x(t1),x(t2), . . . ,x(tN ), the learn-
ing problem is to find Fθ : R → R and Gθ : R2 → R that
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dynamic evolution rule for xi
Heat ẋi = −0.1

∑
j Aij(xi − xj)

Biochemical ẋi = 1− 0.1xi − 0.01
∑

j Aijxixj
BirthDeath ẋi = −0.1x2i + 0.2

∑
j Aijxj

Table 1: Dynamical systems for generating observation time-series.
More background on these formulas can be found in [Barzel and
Barabási, 2013].

minimise the following loss:

L = R(x̂(t), D). (19)

To reduce the impact of numerical error accumulation from
long-range integration [Milani and Nobili, 1987], we devise a
warm-up schedule to adapt the loss function dynamically. At
the early stage of training, the model parameters are strongly
affected by time-series data points closer to the initial value,
which results in smaller integration errors. More specifically,
we adopt a weighting schedule for the loss function with
evolving weight function wk at epoch k as follows:

wk(t) = e−t/τk , (20)

where τk monotonically increases with the number of training
epochs k. So the loss function evolves as follows:

Lk =
∑
yt∈D

R(x̂(t), yt) · wk(t) (21)

5 Experiments
We use several approaches to recover evolution operators
from time series and then compare the quality of the recov-
ered models. We closely follow [Zang and Wang, 2020] to
set up the ground-truth models and to simulate the observa-
tion data. In this setup, a ground-truth model is a coupled
system of ODEs defined on a random network. From initial
conditions, we simulate a time series as the observation data.
Our goal is to recover a neural-network model for the evolu-
tion operators in the ground-truth ODE system.

5.1 Ground-truth Dynamical Models and
Observation Data

We considered an extensive set of linear and nonlinear ODEs
(Table 1) on different complex networks, including a fixed
grid network from [Zang and Wang, 2020] and random net-
works based on the Erdós and Rényi (ER) model [Gilbert,
1959], the Albert-Barabási (BA) model [Barabási and Albert,
1999], the Watts-Strogatz (WS) model [Watts and Strogatz,
1998], and the LFR model [Fortunato, 2010; Lancichinetti et
al., 2008].

Training Time Series. We follow the setup in [Zang and
Wang, 2020] and randomly sample 80 (irregularly spaced)
times 0 ≤ t1 < t2 < · · · < t80 ≤ 5 for train-
ing. The initial conditions x(0) of the dynamical variables
on vertices are set with random values from [0, 25]. We
use the Runge–Kutta–Fehlberg (RKF45) solver to generate
x(t1),x(t2), . . . ,x(t80) as the training time series.

dynamics time NDCN DNND

heat
0-5 1.3±0.4 0.3±0.10.3±0.10.3±0.1
5-6 1.5±0.4 0.5±0.30.5±0.30.5±0.3

40-50 322.4±148.0 11.9±1.811.9±1.811.9±1.8

biochemical
0-5 6.2±0.8 1.3±0.21.3±0.21.3±0.2
5-6 12.5±1.8 1.0±0.11.0±0.11.0±0.1

40-50 27142.4±29581.0 46.0±11.946.0±11.946.0±11.9

birthdeath
0-5 1.4±0.3 0.7±0.30.7±0.30.7±0.3
5-6 1.5±0.2 0.3±0.10.3±0.10.3±0.1

40-50 1673.4±900.8 0.4±0.10.4±0.10.4±0.1

Table 2: Forecast MAPE (%) on the grid network. Models are
trained on 80 observations from [0, 5] and evaluated at random times
in three periods: interpolation [0-5], short-term [5-6], and long-term
[40-50].

5.2 Generalisation beyond the Training Data
Table 2 compares the prediction performance from the short-
term prediction to the long-term prediction. One can see that
NDCN performs reasonably well near the training data, but
its long-term prediction is unreliable, with the mean absolute
percentage error (MAPE) even exceeding 100%. In contrast,
DNND produces accurate predictions, even well beyond the
region of training data. The pattern persists on other network
topologies (see more results in the supplementary material).

Fig. 7 shows time series on 50 vertices. NDCN produces
time series with values far exceeding the physically reason-
able values.

5.3 Recovery of Dynamic
The overfitting of NDCN is also revealed in the largest Lya-
punov exponent of the fitting model. Table 3 shows that all
dynamics are stable with the grid network, with the negative
Lyapunov exponents. The DNND estimates are similar to the
true values. In contrast, NDCN produces positive Lyapunov
exponents, suggesting unstable dynamics.

we can also see the fixed point, if any, of the fitted model
using a projection into the 2D space spanned by xi and ẋi.
Fig. 8 shows that DNND converges to the correct fixed point.
In contrast, NDCN does not converge at all.

Recovering Governing Evolution Function. As shown in
[Murphy et al., 2022], predictability and reconstructability
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Figure 6: Time series estimated by DNND and the estimation error
on the same dataset in Fig 2. The estimation error is bounded. (Note
that the y axis here has a different range.)
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Figure 7: Predicted time series on 50 vertices. NDCN predictions
are completely wrong in the long term while DNND predictions are
consistent with the ground truth. Note in (b) the vertical axis has a
wider range. (d) Time series for node x1; symmetric log plot [Danz
et al., 2021] was used due to the large difference in scales.

dynamics true value NDCN DNND

Heat −35.83 9.36 −34.97
Biochemical −9.34 18.94 −10.23
Birthdeath −92.07 15.70 −87.52

Table 3: The largest Lyapunov exponent of the ground-truth models
and the estimated models. Positive values indicate unstable (poten-
tially chaotic) dynamics.

are independent and sometimes incompatible problem prop-
erties. A time series with less variability is easier to pre-
dict but provides less information for recovering the evolu-
tion function. Fig. 9 shows that from the two subnetworks in
DNND, we can reasonably recover the vector field in terms
of self-dynamic and coupling effect: ΨN and Ψe in Eq. (14).

Note that NDCN’s vector field is defined in a latent space
and it is impossible to recover the evolution function in terms
of the original state variables. Unlike NDCN, which models
the governing function on latent variables, DNND directly
captures the governing function of the dynamic in terms of the
original physical measurements. From the Fθ-network and
Gθ-network, we can recover the input-output dependency. It
is another advantage of our embedding-free approach.

Furthermore, if ΨN and Ψe have analytical forms in terms
of basis functions, then symbolic regression can potentially
be applied to recover the exact algebraic forms of the two
functions. We show some results in the Appendix.

(a) ground truth (b) NDCN (c) DNND

Figure 8: 2D projection of trajectories from 9 random nodes in the
grid network. The dynamic is the heat flow. The ground-truth trajec-
tories converge to the only fixed point of the system, with every node
having the average heat. (b) NDCN trajectories are not converging
to a fixed point.
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Figure 9: Functions recovered by DNND. (a) true and estimated
graphs of Fθ (b) heatmaps for the value of Gθ(xi, xj), with the true
one on the left and the estimated one on the right. The true dynamic
is the biochemical dynamic in Table 1.

6 Conclusion
We show that blindly applying an encoder-decoder structure,
without a sound principle such as topological conjugacy, is
harmful to correct recovery of a dynamic flow from obser-
vations. Through our proposed Dy-Net Neural Dynamics
(DNND) model, we show that state embedding is unneces-
sary for a broad class of flow-recovery problems. Empirically,
DNND reliably recovers a wide range of dynamical systems
on different network topologies.

As DNND models the vector field in the original state
space, the fitted model can serve as a basis for discover-
ing analytical, hence interpretable, differential equations us-
ing techniques such as symbolic regression [Brunton et al.,
2016]. We presented some early results in the Appendix.

Theoretically, it would be interesting to characterise the
learnability of dynamical flows, up to topological equiva-
lence, from irregularly spaced observations. This is related
to finding a suspension flow under a roof function [Fisher
and Hasselblatt, 2019]. But as we have access to only sam-
ples of the homeomorphism, it is a machine learning problem.
One particularly interesting question worth exploring is how
to parametrise time changes ( ∂

∂t ) given a finite sample from
an unknown roof function.
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