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Abstract

While massive valuable deep models trained on
large-scale data have been released to facilitate
the artificial intelligence community, they may en-
counter attacks in deployment which leads to pri-
vacy leakage of training data. In this work, we
propose a learning approach termed differentially
private data-free distillation (DPDFD) for model
conversion that can convert a pretrained model
(teacher) into its privacy-preserving counterpart
(student) via an intermediate generator without ac-
cess to training data. The learning collaborates
three parties in a unified way. First, massive syn-
thetic data are generated with the generator. Then,
they are fed into the teacher and student to com-
pute differentially private gradients by normaliz-
ing the gradients and adding noise before perform-
ing descent. Finally, the student is updated with
these differentially private gradients and the gen-
erator is updated by taking the student as a fixed
discriminator in an alternate manner. In addition
to a privacy-preserving student, the generator can
generate synthetic data in a differentially private
way for other downstream tasks. We theoretically
prove that our approach can guarantee differential
privacy and well convergence. Extensive experi-
ments clearly demonstrate that our approach signif-
icantly outperform other differentially private gen-
erative approaches.

1 Introduction

The success of deep neural networks in a wide array of ap-
plications [Jia et al., 2019a; Jia et al., 2019b; Ye et al.,
2020] greatly owes to the open source of massive models.
However, a major problem is that the training data of these
models often contain a large amount of sensitive informa-
tion that can be easily recovered with a few access to the
models [Fredrikson er al., 2015; Yang er al., 2019]. How
to protect such private information while maintaining the
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model performance has attracted a lot of attentions. Dif-
ferential privacy (DP) [Dwork et al., 2006] is a common
technique for protecting privacy. [Abadi et al., 2016] guar-
anteed that the model was differentially private regarding
the training data by clipping gradients and adding Gaus-
sian noise to gradients. However, the model accuracy de-
creases severely when the privacy requirements increase so
that the model can’t be applied directly to the case where
only the pretrained models are given. [Papernot et al., 2017,
Papernot et al., 2018] proposed a semi-supervised learning
framework called PATE to reduce the impact of the DP noise
by leveraging the noisy aggregation of multiple teacher mod-
els trained directly on the private data. It is possible to train
a privacy-preserving student model using PATE framework
given only sensitive teacher models, but it is difficult to find a
suitable unlabeled public dataset for the distillation process.

In the meantime, an independent line of research concern-
ing model compression shows that some data-free knowl-
edge distillation approaches (DFKD) [Chen et al., 2019;
Zhu et al., 2021; Choi et al., 2020] could achieve similar
performance by vanilla training with only a teacher model.
The data used for the distillation process is generated by a
generator, which could potentially be a remedy for the above
problem of the suitable public dataset. The generators of such
methods mainly learn the data distribution rather than the im-
age details, which intuitively also provides a degree of pro-
tection of privacy. [Ge et al., 2023] has showed that: It is
possible to leverage the power of data-free knowledge distil-
lation to train a privacy-preserving student model that is not
necessary to access to the original dataset. But there is still a
long way to take advantage of this intuition.

Inspired by the above observations, in this paper we pro-
pose a model conversion approach with Differentially Private
Data-Free Distillation (DPDFD) to facilitate the model re-
leasing by distilling a pretrained model as teacher into a dif-
ferentially private student. Specifically, our DPDFD com-
bines DFKD and DP, which applies DFKD to distill pri-
vate knowledge and a DP mechanism A¢ , to guarantee pri-
vacy. The objective is to enable an effective conversion that
achieves strong privacy protection with minimum accuracy
loss when only private models (teachers) are given. As shown
in Fig. 1, we first generate massive synthetic data with a
generator. Then, we feed the synthetic data into the teacher
model and student model to compute the loss. Differentially
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private gradients are calculated by applying DP mechanism
Ac . Finally, we update the student with these gradients and
update the generator by taking the student as a fixed discrimi-
nator. In particular, we achieve DP by performing normaliza-
tion on the gradients of student outputs and adding Gaussian
noise to gradients during student learning. The reason for
performing normalization instead of clipping is that it will re-
tain the relative size information of the gradients and achieve
better performance with a smaller norm bound. The reason
for adding Gaussian noise to the gradients of student out-
puts is that it has a lower dimension compared to other gra-
dients. Both smaller norm bound and lower dimension gra-
dients make it easier to balance the performance and privacy.
In addition, the DP mechanism Ac , also ensures differen-
tially private training of the generator according to the post-
processing mechanism. We can use the generator to generate
data for other down stream tasks if needed. We also provide
privacy and convergence analysis for our DPDFD in theory.
Furthermore, DPDFD can be extended to multi-model case,
which aggregates multiple sensitive teachers into a privacy-
preserving student model.

In summary, our DPDFD can effectively convert a sensitive
teacher model to a privacy-preserving student model through
three key components. First, performing normalization in-
stead of clipping which is usually used in other approaches re-
tains information about the relative size of the gradients. Sec-
ond, achieving DP by adding noise on the gradients of lower
dimensional outputs makes it easier to balance performance
and privacy. Third, synthetic data generated by the genera-
tor has a similar distribution with the training data of teacher
model. In this way, we can convert the sensitive model to a
privacy-preserving student with minimum accuracy loss.

Our major contributions are three folds: 1) we propose a
model conversion approach to convert a pretrained sensitive
model into a privacy-preserving model for secure releasing;
2) we provide privacy analysis and convergence analysis for
our approach in theory; 3) we conduct extensive experiments
and analysis to demonstrate the scalability and effectiveness
of our approach.

2 Related Works

The approach we proposed in this paper aims to train privacy-
preserving student models by distilling knowledge from given
sensitive model(s) via a differentially private data-free distil-
lation. Therefore, we briefly review the related works for two
inspects, including differentially private learning and data-
free knowledge distillation.

2.1 Differentially Private Learning

Differentially private learning aims to ensure the learning
model is differentially private regarding the private data.
[Abadi er al., 2016] proposed a differentially private stochas-
tic gradient descent (DPSGD) algorithm which achieved DP
by clipping and adding noise to the gradients of all parame-
ters during the training process. However, the model perfor-
mance degrades severely with strong privacy requirements.
[Papernot et al., 2017] later proposed PATE which used semi-
supervised learning to transfer the knowledge of the teacher
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ensemble to the student by using a noisy aggregation. It can
reduce the impact of noise on performance by increasing the
number of teacher models. However, it is difficult to find an
unlabeled public dataset that has similar distribution to the
training data of teachers. Some works want to train differen-
tially private generators to generate data that has similar dis-
tribution to private data while preserving privacy. [Xie er al.,
2018] applied DPSGD to the training process of Generative
Adversarial Networks (GAN) [Goodfellow et al., 2014] to
get a differentially private generator. [Chen et al., 2020] sug-
gested that it is not necessary to clip and add noise to all gra-
dients, but only needs to achieve DP in the back propagation
process from discriminator to generator. [Cao et al., 2021]
applied differentially private optimal transmission theory to
train generators. [Chen et al., 2022] proposed an energy-
guided network trained on sanitized data to indicate the direc-
tion of the true data distribution via Langevin Markov Chain
Monte Carlo sampling method. In this paper, we make a
better balance between performance and privacy by applying
normalization instead of clipping and post-processing of DP.

2.2 Data-Free Knowledge Distillation

Data-free knowledge distillation is a class of approaches that
aims to train a student model with a pretrained teacher model
without access to original training data. It uses the informa-
tion extracted from the teacher model to synthesize data used
in the distillation process. [Srinivas and Babu, 2015] pro-
posed to directly merge similar neurons in fully-connected
layers, which cannot be applied to convolutional layers and
networks because the detailed architectures and parameters
information is unknown. [Lopes et al., 2017] first proposed
data-free knowledge distillation, using the distribution infor-
mation of the original data to reconstruct the synthetic data
used in the distillation process. [Deng and Zhang, 2021] used
this approach to generate synthetic graph data for data-free
knowledge distillation for graph classification tasks. [Zhu et
al., 2021] modified and applied it to federated settings. [Chen
et al., 2019] proposed a novel framework named DAFL for
training the student model by exploiting GAN. It uses the
teacher model as the discriminator to train a generator. [Choi
et al., 2020] proposed matching statistics from the batch nor-
malization layers for generated data and the original data in
the teacher. It can make the generated data closer to the orig-
inal data. [Fang ef al., 2022] proposed FastDFKD that ap-
plied the idea of meta-learning to the training process to ac-
celerate the efficiency of data synthesis. Inspired by these
approaches, it is possible to convert a sensitive model into a
privacy-preserving model without access to the original data.

3 Preliminaries

Here we will first provide some background knowledge about
differential privacy. We then draw connections between the
definitions and theorems we introduced here and our DP anal-
ysis on DPDFD later. The following definition explains how
DP provides rigorous privacy guarantees clearly.

Definition 1 (Differential Privacy). A randomized mecha-
nism A with domain R is (g, 0)-differential privacy, if for all
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Figure 1: Overview of our differentially private data-free distillation approach. The approach learns to convert a pretrained model ¢; into a
privacy-preserving student ¢, via an intermediate generator ¢4. The learning is performed to collaborate three parties in a unified way. First,
the generator generates massive data. Then, these data are fed into the teacher and student models to calculate the gradients gs; Finally, the
student and generator are updated with differentially private gradients §,, which are computed by applying DP mechanism Ac,» to gs. Here,
C'is the norm bound and N (0, o%) is Gaussian noise with mean 0 and variance o2.

O C R and any adjacent datasets D and D’ :
PrlA(D) € O] < e - Pr[A(D') € O] + 4, 1)

where adjacent datasets D and D’ differ from each other with
only one training example. ¢ is the privacy budget and the
smaller it is the better, and ¢ is the failure probability.
[Mironov, 2017] proposed a variant Rényi differential pri-
vacy (RDP), which computes privacy with Rényi divergence.
We review the definition of RDP and its connection to DP.

Definition 2 (Rényi Differential Privacy). A randomized
mechanism A is (\,&)-RDP with A\ > 1 if for any adjacent

datasets D and D’ :
Dy(A(D)||A(D")) =
PrlA(D) = 2]\
(Pr[A(D/) - x]> ] =
)

Different from DP, RDP has a more friendly composition
theorem and can be applied to both data-independent and
data-dependent settings. It supports a tighter composition
of privacy budget which can be described as follows: For
a sequence of mechanisms A, ..., A;, ..., Ax, where A; is
(X, £;)-RDP, the composition of them A; o ... A;... o Ay is
(A, D=, €i)-RDP. A; represents one query to the teacher model
in our case. Moreover, the connection between RDP and DP
can be described as follows:

Theorem 1 (Convert RDP to DP). A (X, €)-RDP mechanism
. A—1 log §+log A
A also satisfies (€ + log 2= — 2851282 §)-DP.
To provide DP guarantees, we exploit the post-
processing [Dwork and Roth, 2014] described as follows:

Theorem 2 (Post-processing). If mechanism A satisfies
(e,8)-DP, the composition of a data-independent function F
with A'is also (e, )-DP.

1
11 log E(z~(D))

4 Proposed Approach

4.1 Problem Formulation

Given a sensitive teacher model ¢; with parameters 6;, the
objective is converting it into a privacy-preserving student
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model ¢ with parameters 6 that does not reveal data privacy
and has the ability to perform similarly to the teacher model.
To achieve that, we introduce a differentially private data-free
distillation approach. We first sample a batch of noise vectors
z = {2} | and feed them into the generator ¢, with pa-
rameters 6, to generate massive synthetic data D = {di}f;l.
Enter them into the teacher model and student model to cal-
culate the loss L7(¢p:(6:; D), ¢s(0s; D)) and then calculate
updated outputs of student y to achieve DP with a differen-
tially private mechanism A¢ . Finally update the student by
the loss Ls(¢s(0s; D), ys) . Thus, the converting process can
be formulated by minimizing an energy function E:

E(Qs; et) = E(d)s(es; D)a ys)
=E ((rbs(as; D)a ¢s(es; D) -7 AC,U(Q)) )

oL T(<z>ta(zz;(l;3;%;)(95;D)) and 7 is the learning rate.

We suppress the risk of privacy leakage with DP mechanism
Ac - which normalizes the gradients with norm bound C' and
adds Gaussian noise with variance o2. We will introduce how
the differentially private mechanism A¢ , protects privacy in
detail in the following.

4.2 Our Solution: DPDFD

Student model distilled from a sensitive teacher model di-
rectly may lead to privacy leakage and another main problem
is that we don’t have access to the original dataset. Thus,
we aim to convert the sensitive teacher model to a privacy-
preserving student model while having similar performance
to the sensitive model in a data-free manner.

Unlike [Abadi et al., 2016] which requires clipping and
adding Gaussian noise to gradients of all parameters, due to
the post-processing of DP, we only need to perform normal-
ization and add noise to the gradients of student’s outputs
to calculate new differentially private outputs. As shown in
Fig. 1 and Alg. 1, we first sample a batch of noise vectors
z = {2;}2 | and feed them into the generator ¢, with param-
eter 0, to obtain massive synthetic data D = ¢4(z). Then
enter the synthetic data D into the teacher and student to com-
pute the loss L7 (¢+(04; D), ¢5(6s; D)). To get better results,

3)

where g =
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Algorithm 1 DPDFD

Input: Training iterations 7', loss function Lr,Lg, Lq,
noise scale o, sample size B, learning rate v, s, 74, gradient
norm bound C, a positive stability constant e

1: fort € [T] do

2:  Sample B noise samples z = {2, }2

3:  Generate B synthetic samples D = {¢,(0,;2:)}2 4
4:  for each synthetic data d; = ¢4(6y; z;) do

5: Compute loss L7(¢¢(0;d;), ¢s(6s;d;))

6: Compute the gradient g; = %

7

8

9

Normalize the gradient §; = m
end for

(Z gi + N(0,0°C?I))

10:  Compute dlfferentlally private outputs of student y, =

¢s(0s;D) —v-§
11:  Compute loss Ls(¢s(0s; D), ys)

. 1_ oL
12 Update student L1 = 9% — ~, - ot
13:  Compute loss L (¢s(0s; D))

14:  Update generator 0! = 6! — ~, -

15: end for
16: return 6, and 0,

Add noise g =

A(Ls+La)
00},

we treat argmax (¢ (0;; D)) as the target labels and then cal-
culate the distillation loss £ same as [Zhao et al., 2022].
After that we achieve DP by the mechanism A¢ , which can
be described as follows:

XB: C-gi
lollz+e ©
and generate new differentially private outputs ys. Compared
with clipping, normalization can achieve higher accuracy at
smaller norm bound C. This is because when C is small,
clipping makes the gradients lose their variability but nor-
malization retains the relative size relationship of gradients.
Another important point is that the smaller the C, the smaller
the privacy budget consumed by each query to the teacher
model, which is exactly what we want. So we choose a
smaller C' and normalization operation to get a lower privacy
budget and better performance. Finally, we compute the loss
Ls(¢s(0s; D), ys) and update the student model with it. This
loss function can take many forms, and we use cross-entropy
loss in our experiments. In order to make the distribution of
the synthetic data closer to the private data and balance the
classes of the synthetic data, we add an additional loss Lg
when updating the generator. It can be formulated as:

L (¢s(0s; D)) =L(¢s(0s; D), argmax(¢s(0s; D)))
+ags(0s; D) log(¢s(0s; D)) %)
+Bl6s(65; D)ll2,

where o and f3 are the tuning parameters to balance the effect
of three terms, and we set both of them to 1. The first term
£(-) is a cross entropy function that measures the one-hot clas-

Ac.o N(0,0%C?I)), (4)
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sification loss, which enforces the synthetic data having sim-
ilar distribution as the private data. The second term is the
information entropy loss to measure the class balance of gen-
erated data. The third term uses l-norm || * ||2 to measure the
activation loss, since the features that are extracted by the stu-
dent and correspond to the output before the fully-connected
layer tend to receive higher activation value if input data are
real rather than some random vectors, where 8, C 6, is the
student’s backbone parameters. We update the student and
generator alternately in our experiments. In the nutshell, the
trained student and generator satisfy DP because the training
process can be seen as post-processing, given that y, is dif-
ferentially private results. Overall, DPDFD can be formally
proved DP in Theorem. 3.

Theorem 3. DPDFD guatantees (wzg‘# + log 2L —
bg‘;\%, 0)-DP forall A\ > 1 and § € (0,1).

4.3 Convergence Analysis

To analyze the convergence of our DPDFD, we follow the
standard assumptions in the SGD literature [Allen-Zhu, 2017,
Bottou et al., 2018; Ghadimi and Lan, 2013], with an addi-
tional assumption on the gradient noise. We assume that Lp
has a lower bound L, and L7 is k-smoothness, which can be
described as follows: Vz, y, there is an non-negative constant
rsuch that L7 (z) —Lr(y) < VLr(z) T (z—y)+£||z—yl[%
The additional assumption is that (g, — g) ~ N (0, (?), where
gr is the ideal gradients of L7 and g is the gradient we com-
pute as an unbiased estimate of g,.. Then according to [Bu er
al., 2022], in our case we have:

2(Lo — L)+ 2Tky2C?(1 4 02d)
(6)

E (||¢¢]]), d is a constant number, L is the

where Y is mm
<t<

initial loss and F ( ) results only from the normalization oper-
ation same as [Bu et al., 2022] and it won’t affect the mono-
tonicity of input variables. We simply set the learning rate
¥ X ﬁ and the gradients will gradually tend to O as 7 in-
creases.

4.4 Discussion

Extension to Multi-Model Ensemble. Our DPDFD can be
extended to the case of multiple sensitive models. Differ-
ent from the case of a single teacher that reduces the im-
pact of DP noise by averaging a batch of gradients, the case
of multi-model achieves it by averaging the gradients from
given sensitive models. In particular, given multiple teacher
models {gbj i—1, we first sample noise vectors and generate
massive synthetlc data same as the case of a single teacher.
For each data d;, we enter it into multiple teacher mod-

els {4 (67 d i)}j—, and student model ¢ (6s;d;) and com-
di), ¢s(0s; d;))}7—;. Then, we com-

pute losses { L (¢ (67;

7 (09 d. -d. n

pute gradients g;; = {aﬁT(¢té‘;t ’(dé').’j.s) (957d1))} with the
s\Usiaq i—1

]_
losses. After that, we normalize them with norm bound C
and add noise to them to get differentially private gradients
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Dataset |Teacher| ¢ DP-GAN PATE-GAN G-PATE GS-WGAN DP-MERF P3GM DataLens DPSH DPGEN DPDFD
MNIST | 0.9921 1] 0.4036 04168  0.5810  0.1432 0.6367 0.7369 0.7123 N/A 0.9046 | 0.9512
10/ 0.8011 0.6667  0.8092  0.8075 0.6738 0.7981 0.8066 0.8320 0.9357 | 0.9751
FMNIST | 0.9102 1| 0.1053 04222 05567 0.1661 0.5862 0.7223 0.6478 N/A 0.8283 | 0.8386
10| 0.6098 0.6218  0.6934  0.6579 0.6162 0.7480 0.7061 0.7110 0.8784 | 0.8988
CelebA-G| 0.9353 1] 0.5330 0.6068  0.6702  0.5901 0.5936 0.5673 0.7058 N/A 0.6999 | 0.7237
10| 0.5211 0.6535  0.6897  0.6136 0.6082 0.5884 0.7287 0.7630 0.8835 | 0.8992
CelebA-H| 0.8868 1] 0.3447 0.3789  0.4985  0.4203 0.4413 0.4532 0.6061 N/A 0.6614 | 0.7839
10] 0.3920 0.3900  0.6217  0.5225 0.4489 0.4858 0.6224 N/A 0.8147 | 0.8235

Table 1: Accuracy comparisons with 9 explicit approaches under different privacy budget e (§ = 10~°).

n
gi =12 HS"‘ZL + N (0,02C?I)). Next we can compute
=1

an updated output of student ¢’ = ¢4(0s; d;) — - ;. Finally,
we update the student and generator same as Alg. 1. In this
way, we can aggregate multiple sensitive teacher models into
a privacy-preserving student model.

Direct Training on Private Data. The proposed DP mech-
anism Ac , is a key building block of DPDFD, and can also
be applied to situations where private data is available. Given
a private dataset {x,y}, we input the data x into the model
and calculate the cross-entroy loss £(¢(0;x),y). After that,
we run the same procedures to achieve DP and update the
model as Alg. 1 except we don’t need to update the genera-
tor. In this way, we can train a privacy-preserving model with
direct access to private data.

S Experiments

In this section, we present the experimental evaluation of
DPDFD for converting the sensitive model to a differentially
private model with high performance.

5.1 Experimental Setup

Datasets. We conduct our experiments on 7 image
datasets, including MNIST [LeCun ef al., 1998], FashionM-
NIST(FMNIST) [Xiao et al., 2017], CIFAR10 [Krizhevsky,
2009], CelebA [Liu et al., 2015], PathMNIST [Yang et
al., 2021], COVIDx and ImageNet [Deng et al., 2009].
We created CelebA-H and CelebA-G based on CelebA.
CelebA-H and CelebA-G are classification datasets with hair
color (black/blonde/brown) and gender as the label, respec-
tively. COVIDx is a classification dataset for COVID.

Baselines. We perform compartments with 14 state-of-the-
art benchmarks, including 9 explicit approaches that training
classifiers with generative data (DP-GAN [Xie er al., 2018],
GS-WGAN [Chen et al., 2020], PATE-GAN [Jordon et al.,
2019], DP-MERF [Harder et al., 2021], P3GM [Takagi et
al., 2021], DataLens [Wang et al., 2021], G-PATE [Long
et al., 2021], DPSH [Cao et al., 2021], DPGEN [Chen et
al., 2022]) and 5 implicit approaches that training classifiers
with differentially private learning (DPSGD [Abadi er al.,
2016], TSADP [Papernot et al., 20211, TOPAGG [Wang et
al., 2021], GM-DP [McMahan et al., 20181, DGD [Ge et al.,
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2023]). To make the comparisons fair, we take the results
from original papers or run the official codes.

Networks. We adopt several popular network architec-
tures as our teacher models, including AlexNet [Krizhevsky
et al., 2012], VGGNet [Simonyan and Zisserman, 2015],
ResNet [He et al., 2016], WideResnet [Zagoruyko and
Komodakis, 2017], DenseNet [Huang er al., 2016], Mo-
bileNet [Howard et al.,, 2017], ShuffleNet [Zhang er al.,
2018], GoogleNet [Szegedy et al., 2015] and ViT [Dosovit-
skiy et al., 2020]. For VGGNet, we use 19-layer net with BN.
For ResNet, we use 50-layer networks for ImageNet and 34-
layer networks for others. For WideResnet, we use 50-layer
networks as teacher. For DenseNet, we use 161-layer net-
works with growth rate equals 24. For ViT, we use the same
architecture as [Dosovitskiy er al., 2020]. For student model,
we use 34-layer ResNet for ImageNet and the same network
as Datalens for others.

5.2 [Experimental Results

In this section, we compare DPDFD with 14 baselines and
evaluate it on different networks to verify its effectiveness.
We first compare the model performance of DPDFD and
other state-of-the-art approaches. Then, we conduct experi-
ments on ImageNet with different networks under different
privacy budget. We show that our DPDFD is scalable and
outperforms all baselines.

Comparisons with 9 Explicit Baselines. To demonstrate
the effectiveness of our DPDFD, we conduct comparisons
with 9 baselines under different privacy budget and report
the results in Tab. 1. All approaches are under a low failure
probability § = 10~°. We can see that our DPDFD achieves
the highest performance under the same condition of privacy
budget. In particular, when ¢ = 1, our DPDFD achieves
an accuracy of 0.9512 on MNIST and 0.8386 on FMNIST,
which remarkably reduces the accuracy drop by 0.0409 and
0.0716 respectively, while most of the other approaches fail
to achieve an accuracy of 0.8000. It shows that our approach
has the best privacy-preserving ability and minimal accuracy
drop. Even for high dimensional datasets like CelebA whose
dimensionality is about 16 times larger than MNIST, all ap-
proaches suffer from accuracy drop with respect to their coun-
terparts under high privacy budget while our DPDFD still de-
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Approach| ¢ |MNIST | ¢ | CIFAR10
DPSGD |2.0] 0.9500 [2.0| 0.6623
TSADP |1.0| 0.7991 |7.5| 0.6620
TOPAGG |1.0| 0.9465 |2.0| 0.8518
GM-DP |1.0| 0.9508 [2.0| 0.8597
DGD 1.0| 0.7360 (3.0 0.7365
DPDFD |1.0| 0.9512 |2.0| 0.8601

Table 2: Accuracy comparisons with 5 implicit approaches under
different privacy budget €.

Networks Teacher °
1 2 5

AlexNet 0.5655 [0.2756 0.5124 0.5218
VGGNet 0.7423 [0.3419 0.6381 0.6602
ResNet 0.7602 |0.3823 0.6499 0.6781
WideResNet | 0.7848 |0.2982 0.5997 0.7117
DenseNet 0.7765 |0.4552 0.6612 0.7029
MobileNet | 0.7186 |0.3830 0.6203 0.6424
ShuffleNet | 0.6953 |0.4964 0.6313 0.6652
GoogleNet | 0.6246 |0.2987 0.5717 0.5858
ViT 0.8140 [0.3142 0.6880 0.7240

Table 3: Accuracy on ImageNet with different networks under dif-
ferent privacy budget £ (6 = 107°).

livers the highest test accuracy. This demonstrates that our
approach is also effective for high-dimensional datasets.

Comparisons with 5 Implicit Baselines. In addition, we
conduct experimental comparisons with 5 implicit baselines
on MNIST and CIFAR10. The results are shown in Tab. 2,
where our DPDFD achieves the highest accuracy of 0.9512
and 0.8601 under the lowest privacy budget of 1.0 and 2.0.
The main reason comes from that we use normalization in-
stead of traditional clipping. In this way, the differentially
private gradients obtained after .A¢ , retain more informa-
tion (relative size between gradients).

Evaluation on Open Source Networks. To demonstrate
the scalability of our DPDFD, we apply it to convert sev-
eral popular networks pretrained on ImageNet under differ-
ent privacy budget €. These teacher models are taken di-
rectly from the PyTorch model zoo. The results are shown
in Tab. 3. We find that the effect of network architectures
is sometimes greater than the effect of public teacher model
accuracy when ¢ is small. In particular, when ¢ = 1, the
student model reaches the highest accuracy of 0.4964 when
the teacher model is ShuffleNet, but the accuracy of teacher
model is 0.1187 lower than the highest ViT. We guess this
is because the simpler the teacher model is, the easier it is
for the generator to learn the distribution of its training data,
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Dataset | ¢ |[DPSGD|TOPAGG |GM-DP DPDFD
0.5| 0.8103 | 0.9235 | 0.9331 | 0.9377
MNIST [0.7]| 0.8932 | 0.9382 | 0.9438 | 0.9447
1.0| 0.9247 | 0.9465 | 0.9508 | 0.9762
2.0| 0.6623 | 0.8518 | 0.8597 | 0.8652
CIFAR10|4.0| 0.6884 | 0.8540 | 0.8663 | 0.8708
8.0] 0.7159 | 0.8562 | 0.8705 | 0.8973

Table 4: Accuracy comparisons with 3 DPSGD mechanisms on
MNIST and CIFAR10 under different privacy budget €.

resulting in faster convergence of the student model. As ¢
increases, the student model can learn more and more fully
from the teacher model, so the effect of teacher performance
dominates. The more complex the teacher model, the more
information about the training data it contains. The student
model learns more accurate predictions from the teacher and
the generator learns a more similar data distribution, both of
which lead to higher accuracy of the student model. We can
see that at e = 5, the accuracy of the student is positively
correlated with the accuracy of teacher model and it has ap-
proached that of the teachers, which proves that our DPDFD
is not only scalable but also effective to a variety of popular
network architectures.

Evalution of Training Directly with Private Data. In this
section, we conduct experiments to evaluate the application of
our DP mechanism A¢ , to the case where private data can
be accessed. We compare 3 state-of-the-art approaches which
trained directly with private data (based on DPSGD mech-
nism): DPSGD, TOPAGG and GM-DP on MNIST and CI-
FARI10 under the same settings except for the DP mechanism.
The results are shown in Tab. 4. We can see that our approach
achieves the best performance on both the low-dimensional
MNIST dataset and the high-dimensional CIFAR10 dataset.
These results depend on two aspects. On one hand, we only
need to compute a new differentially private output in the first
step of backpropagation instead of adding noise to each gra-
dient like other approaches. On the other hand, we use nor-
malization instead of clipping, which retains more gradient
information in the case of small norm bound C. So our ap-
proach can achieve better results.

5.3 Ablation Studies

After the promising performance is achieved, we further an-
alyze the impact of each component in our approach, includ-
ing normalization vs. clipping, norm bound, noise scale, and
composition of loss function.

Normalization vs. Clipping. To study the effect of differ-
ent operations on the gradients, we conduct experiments with
34-layer ResNet pretrained on MNIST and FMNIST as teach-
ers and report the results in Fig. 2. Performing normalization
is significantly better than clipping when C' is small, and even
clipping makes the student not converge. The advantage of
normalization gradually decreases as C' increases, and when
it increases to a certain level (about 102 as Fig. 2 shows),
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Figure 2: Student accuracy under different norm bound C' and dif-
ferent operations on gradients (‘-C’ or ‘-N’) in the case ¢ = 0.6 and
§ = 1075 (*-C’: Clipping, -N’: Normalization)

Dataset g
20 50 100 200 500
MNIST [0.4159 0.8314 0.9822 0.9815 0.9751

FMNIST | 0.5193 0.6578 0.8386 0.8053 0.8142

Table 5: Student accuracy under different noise scale o

clipping will be superior to normalization. This is because
normalization retains the relative size information of the gra-
dients while clipping retains the absolute size information.

Norm Bound. Norm bound is an important hyper-
parameter of our DP mechanism Ac ,. We conduct exper-
iments to investigate how norm bound C' affects the perfor-
mance of student model. The results are shown as the red and
green lines in Fig. 2. As we see, the student performs better
when C'is small. This is because normalization preserves in-
formation about the relative size of the gradients. Although
smaller C' will be more affected by DP noise, it will allow
more training epochs. So the student performs better when C'
is small.

Noise Scale. Like norm bound, noise scale is also an impor-
tant hyper-parameter of our DP mechanism Ac . To study
the effect of it, we conduct experiments and the results are
shown in Tab. 5. We observe that the model performance gets
better as noise scale ¢ increases from 20 to 100. This is be-
cause a larger noise scale consumes a smaller privacy budget
per epoch, which allows the student model to learn more fully
with a limited privacy budget. However, we find that there is
a slightly worse decrease in model performance as noise scale
increases from 100 to 500. This is because the gradients will
be more broken with a larger noise scale, thus leading to a
slightly worse performance. In practical applications, a trade-
off should be made based on the actual situation.

Composition of Loss Functions. To check the effect of
loss terms in the training generator, we investigate how each
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Dataset

@)
=
ol
=

Norm | Accuracy
v 0.9751
0.9691
0.5463
0.9496
0.8988
0.7649
0.5463
0.8806

MNIST

FMNIST

NS N %NS N XN
N X NN X% NS

*x N N[N [ > NS

Table 6: Impact of each term in L. The test accuracy of student
models trained on synthetic data under €=10 is reported. CE: Cross
Entropy; IE: Information Entropy; Norm: /2-Normalization.

component of loss function contributes to the performance of
student with 34-layer ResNet as the teacher model. We eval-
uate how they impact the performance by adding or removing
each component and the results are shown in Tab. 6. We note
that the information entropy loss term is the most important
component based on the results. This is because removing
it will result in an imbalance in the classes of the synthetic
data. Cross entropy loss contributes differently for different
datasets, with 1% improvement on the MNIST dataset and
13% improvement on the FMNIST dataset. [5- normalization
is also a useful term though less critical, contributing to the
2%-3% of the performance improvement as shown in Tab. 6.
In summary, all three compositions have a positive effect on
the performance of the converted model.

6 Conclusion

Public pretrained models in model zoos may pose the risk
of privacy leakage. To facilitate model deployment, we pro-
posed a differentially private data-free distillation approach
to convert sensitive teacher models into privacy-preserving
student models. We train a generator for approximating the
private dataset without the training data and student networks
can be learned effectively through the knowledge distillation
scheme. In addition, we perform normalization on the gra-
dients of student outputs and add Gaussian noise to them
to guarantee privacy. We also provide privacy analysis and
convergence analysis for DPDFD. Extensive experiments are
conducted to show the effectiveness of our approach. In the
future, we will explore the approach in more real-world ap-
plications like federated learning on medical images.
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