
Gapformer: Graph Transformer with Graph Pooling for Node Classification
Chuang Liu1∗ , Yibing Zhan2 , Xueqi Ma3 , Liang Ding2 ,

Dapeng Tao4,5 , Jia Wu6 and Wenbin Hu1†

1School of Computer Science, Wuhan University, Wuhan, China
2JD Explore Academy, JD.com, China

3School of Computing and Information Systems, The University of Melbourne, Melbourne, Australia
4School of Computer Science, Yunnan University, Kunming, China
5Yunnan Key Laboratory of Media Convergence, Kunming, China
6School of Computing, Macquarie University, Sydney, Australia

{chuangliu, hwb}@whu.edu.cn, zhanyibing@jd.com, xueqim@student.unimelb.edu.au,
liangding.liam@gmail.com, dptao@ynu.edu.cn, jia.wu@mq.edu.au

Abstract
Graph Transformers (GTs) have proved their ad-
vantage in graph-level tasks. However, existing
GTs still perform unsatisfactorily on the node clas-
sification task due to 1) the overwhelming unre-
lated information obtained from a vast number of
irrelevant distant nodes and 2) the quadratic com-
plexity regarding the number of nodes via the fully
connected attention mechanism. In this paper, we
present Gapformer, a method for node classifica-
tion that deeply incorporates Graph Transformer
with Graph Pooling. More specifically, Gapformer
coarsens the large-scale nodes of a graph into a
smaller number of pooling nodes via local or global
graph pooling methods, and then computes the at-
tention solely with the pooling nodes rather than all
other nodes. In such a manner, the negative influ-
ence of the overwhelming unrelated nodes is mit-
igated while maintaining the long-range informa-
tion, and the quadratic complexity is reduced to lin-
ear complexity with respect to the fixed number of
pooling nodes. Extensive experiments on 13 node
classification datasets, including homophilic and
heterophilic graph datasets, demonstrate the com-
petitive performance of Gapformer over existing
Graph Neural Networks and GTs.

1 Introduction
Graph Neural Networks (GNNs), which are based on local
message-passing [Kipf and Welling, 2017], have achieved
notable success in a variety of applications, including biol-
ogy [Xu et al., 2019b] and recommendation [Zhang et al.,
2019]. In contrast to GNNs, Graph Transformers (GTs) al-
low each node in a graph to directly attend to all other nodes,
which enables the aggregation of information from arbitrary

∗This work was done when Chuang Liu worked as an intern at
JD Explore Academy.

†Corresponding Author

7

98

6 5

11

10

4

3

2

12

1

13

1
2
3

4
5
6
7
8

9
10

11

12
13

1
2
3
4
5
6
7
8
9
10

11

12

13

1
2
3

4
5
6
7
8
9
10

11

12

13

1
2
3

4
5
6
7
8
9
10

11

12

13

1
2
3
4
5
6

7
8
9

10

11

12

13

1
2
3
4
5

6
7
8
9
10

11

12

13

1
2
3

4
5
6
7
8
9
10

11

12

13

1
2
3
4
5
6

7
8
9
10

11

12

13

1-layer2-layer3-layer

Vanilla Graph Transformer
Complexity:
RF:

 GAT
Complexity:
RF:

1
2
3

4
5
6
7
8
9

10

11

12

13

1
2
3
4

5
6

7
8
9

10
11

12

13

1
2
3
4
5

6
7
8

9
10

11

12

13

1
2
3

4
5
6
7
8
9
10

11

12

13

 Gapformer
Complexity:
RF:

Input Graph

1-layer2-layer3-layer 1-layer2-layer3-layer

Figure 1: Complexity and receptive fields (RF) in Vanilla Graph
Transformer (GT), GAT, and our Gapformer. Here, n denotes the
number of nodes in the original graph, |E| denotes the number of
edges, and n′ denotes the number of pooling nodes, which is con-
stant and significantly smaller than n. r(l) denotes the number of
the l-hop neighboring nodes, where l is the number of layers. The
vanilla GT has the maximum receptive field, which comes with a
quadratic complexity. In comparison, our Gapformer is computa-
tionally efficient, meanwhile maintaining a large receptive field size.

nodes. Along with normalization and residual connection,
GTs overcome the deficiencies of GNNs in dealing with over-
smoothing [Rong et al., 2020b], over-squashing [Alon and
Yahav, 2021], heterophily [Zhu et al., 2020], and long-range
dependencies [Zhang et al., 2022].

However, existing GTs [Dwivedi and Bresson, 2021;
Kreuzer et al., 2021; Ying et al., 2021] are exploited pri-
marily for graph-level tasks (e.g., graph classification) with
a small number of nodes in a graph. Developing GTs for
node classification, where the number of nodes in a graph is
relatively large (up to around one million), remains a chal-
lenging proposition for the following two reasons. First, the
quadratic computational complexity O(n2) of self-attention
in vanilla GTs, in regards to the number of nodes, inhibits
their application to node classification in real-world scenar-
ios. Second, vanilla GTs calculate the full connected atten-
tion and aggregate messages from arbitrary nodes, including
numerous irrelevant nodes; this results in ambiguous atten-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2196

tion weights and the aggregation of noise information from
incorrectly correlated nodes.

Only a few existing works have attempted to consider GTs
for node classification. GT-sparse [Dwivedi and Bresson,
2021] and SAN [Kreuzer et al., 2021] confine the receptive
field of each node to its 1-hop neighboring nodes; as a result,
expressiveness is sacrificed when important interactions are
multiple hops away, especially in the large-scale graph corre-
spondingly requiring a large receptive field. LiteGT [Chen
et al., 2021a], DGT [Park et al., 2022], and DET [Guo
et al., 2022] propose selecting important nodes for atten-
tion using certain specific, fixed node sampling strategies,
which may result in the selection of uninformative nodes.
GraphGPS [Rampasek et al., 2022] and TokenGT [Kim et al.,
2022] directly adopt efficient approximations [Choromanski
et al., 2021; Beltagy et al., 2020] in Transformers [Vaswani
et al., 2017] to improve the efficiency of vanilla GTs; never-
theless, they neglect unique characteristics of graph data and
tend to yield dense attention, causing an enormous amount of
noise messages to be aggregated from irrelevant nodes.

In light of the above analysis, we propose Gapformer,
which combines Graph Transformer with Graph Pooling, to
capture long-range dependencies and improve the efficiency
of vanilla GTs. In vanilla GTs, self-attention converts nodes
into queries and keys/values, after which each query attends
to all the keys. Specifically, self-attention involves computing
the inner product between the query and key vectors to gen-
erate attention scores. These scores are then used to perform
a weighted aggregation of value vectors. To reduce the com-
plexity of the dense inner product, Gapformer first utilizes
graph pooling to group key and value nodes into a smaller
number of pooling nodes. For graph pooling, we propose two
types of strategies to compress the original graph efficiently
and effectively: 1) global graph pooling, which condenses
the entire graph into several significant pooling nodes; 2)
local graph pooling, which compresses the k-hop neighbor-
ing nodes of each query node into the corresponding pooling
nodes. Subsequently, each query node interacts with pooling
keys (fewer in number) and generates representation with the
pooling values. In conclusion, our Gapformer transforms the
fully connected attention in vanilla GTs into a sparse atten-
tion schema by decreasing the number of attended tokens via
graph pooling.

As shown in Figure 1, Gapformer has the following ad-
vantages. 1) Gapformer enables a larger attention field per
node and thus allows to compute multi-hop correlations via
graph pooling between each node and its corresponding dis-
connected nodes. 2) Since the number of pooling nodes is
significantly smaller than that of nodes in the original graph,
the computational complexity of Gapformer only increases
linearly with the number of nodes in a graph, hence making
Gapformer suitable for processing large-scale datasets in the
node classification task.

Our main contributions are summarized as follows:

1. We propose Gapformer, a deeper combination of Trans-
former and Graph Neural Networks. Specifically, Gap-
former utilizes Graph Pooling to group the attended nodes
of each node into pooling nodes (fewer in number) and

computes its attention using only the pooling nodes. This
design mitigates the overwhelming unrelated informa-
tion and quadratic complexity issues associated with GTs
while preserving long-range interactions.

2. We conduct extensive experiments to compare Gapformer
with 20 GNN and GT baseline models in the node clas-
sification task on 13 real-world graph datasets, including
homophilic and heterphilic datasets. Experimental results
consistently validate the effectiveness and efficiency of our
proposed Gapformer.

2 Related Work

Graph Pooling. Graph Neural Networks (GNNs) [Kipf and
Welling, 2017; Hamilton et al., 2017] are networks that per-
form on graph domain. As an essential component of GNNs,
Graph Pooling condenses the input graph with node rep-
resentations into a smaller graph or a holistic graph-level
representation. There are two main types of designs pro-
posed for graph pooling: flat and hierarchical. Flat pool-
ing directly generates a graph-level representation in one
step, mostly by taking the average or sum over all node
embeddings as the graph representation [Duvenaud et al.,
2015]. On the other hand, hierarchical pooling gradually
coarsens a graph into a smaller one using either node clus-
tering pooling [Ying et al., 2018; Bianchi et al., 2020] or
node drop pooling [Gao and Ji, 2019; Lee et al., 2019;
Liu et al., 2023]. Node clustering requires significant com-
putational resources to cluster nodes into clusters, while node
drop selects a subset of nodes from the original graph to con-
struct a coarsened version that is more efficient and suitable
for large-scale graphs [Lee et al., 2019]. For further details,
please refer to [Liu et al., 2022b].

Graph Transformers. In recent years, many Transformer
variants have been successfully applied to graph model-
ing, displaying competitive or even superior performance on
many tasks when compared to GNNs. Dwivedi et al. [2021]
were the first to extend the transformer architecture to graphs
and propose position encoding [Ding et al., 2020] for nodes
in a graph. Subsequently, Kreuzer et al. [2021] enabled the
position encoding by making it learnable, and further divided
the fully connected edges into true edges and virtual edges.
There are many other existing GTs [Rong et al., 2020a;
Chen et al., 2021b; Wu et al., 2021; Hussain et al., 2022;
Chen et al., 2022; Nguyen et al., 2022] and the applications
of GTs [Xu et al., 2019a; Zhu et al., 2021; Zhu et al., 2022;
Cai et al., 2022], for a more detailed introduction, please refer
to the recent reviews of GTs [Rampasek et al., 2022; Min et
al., 2022]. However, the above methods are mostly designed
for graph-level tasks due to the time and memory constraints
imposed by the self-attention layer, which requires O(n2)
complexity. Therefore, several works [Zhao et al., 2021;
Choromanski et al., 2022; Guo et al., 2022; Park et al., 2022;
Wu et al., 2022] have been proposed to make graph trans-
formers more scalable and efficient, but they still suffer from
some issues such as long-range information loss or noise ag-
gregation.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2197

Vanila Attention

Query

Key

Pooling-enhanced
Attention

Query

Pooling

Key

(b)

Multi-Head
Attention

Add & Norm

FFN

Add & Norm

Q K V

Linear

Vanilla GT

Multi-Head
Attention

Add & Norm

FFN

Add & Norm

Q
K V

Linear

Pooling
K’ V’

Gapformer
H H

(a)

Figure 2: Comparison of Vanilla Graph Transformer (GT) and our Gapformer. (a) One core of GT models is the self-attention layer, which
computes the pairwise inner product between the input node tokens Q and K. (b) Before calculating self-attention, Gapformer utilizes the
graph pooling operation to coarsen the key (K) and value (V) vectors into the pooling key (K

′
) and value (V

′
) vectors, respectively, which

decreases the number of attended tokens (n → n′).

3 Methodology
3.1 Preliminaries
Notations. A graph G can be represented by an adjacency
matrix A ∈ {0, 1}n×n and a node feature matrix X ∈ Rn×d,
where n is the number of nodes, d is the dimension of the
node features, and A[i, j] = 1 if there exits an edge between
node vi and node vj , otherwise, A[i, j] = 0.
Graph Pooling. Let a graph pooling operator be defined as
any function Pooling that maps a graph G = (V , E) to a new
pooled graph G′ = (V ′, E ′) :

G′ = Pooling(G), (1)

where |V ′| < |V|. The main objective of graph pooling is to
decrease the number of nodes in a graph while maintaining
its semantic information.
Transformer. The vanilla Transformer [Vaswani et al.,
2017] consists of two essential parts: a multi-head self-
attention (MHA) module and a position-wise feed-forward
network (FFN). To build a deeper model, a residual connec-
tion [He et al., 2016] is employed to each module, followed
by a layer normalization (LN) [Ba et al., 2016]. The self-
attention mechanism calculates attention scores by taking the
inner product of query vectors (Q) and key vectors (K). It
then uses these scores to aggregate value vectors (V) in a
weighted manner, resulting in contextualized representations,
that is,

Q = HWQ,K = HWK ,V = HWV ; (2)

H′ = softmax

(
QK⊤
√
d′

)
V, (3)

where WQ ∈ Rd×d′
,WK ∈ Rd×d′

, and WV ∈ Rd×d′
are

projection matrices, H =
[
h⊤
1 , . . . ,h

⊤
n

]
∈ Rn×d denotes

the input matrix of node embeddings, H′ ∈ Rn×d′
is the out-

put matrix, and d′ is the output hidden dimension. Note that,

Equation (3) denotes the single-head self-attention module,
which can straightforwardly generalize to MHA.

3.2 Proposed Method: Gapformer
In this section, we present the model architecture of Gap-
former. First, we introduce the base architecture of Gap-
former and its core module; that is, the attention enhanced
with graph pooling (AGP). We then provide a comprehensive
description of AGP from both global and local perspectives.

Architecture
As shown in Figure 2 (a), self-attention in vanilla GT calcu-
lates the dot product between each pair of nodes after projec-
tion (QK⊤). Therefore, the computation of full self-attention
comes with potential noises from long-distance neighbors and
O(n2) complexity, limiting its capacity to analyze large-scale
graphs. Graph pooling manages to reduce the number of
graph nodes while maintaining semantic information. This
encourages our employment of graph pooling to overcome
the deficiencies of GTs. To our knowledge, no efforts have
been made to integrate GTs and graph pooling.

Attention Enhanced with Graph Pooling. In light of the
above analysis, Gapformer uses a sparse attention schema
based on graph pooling to replace the full self-attention mech-
anism. Specifically, as shown in Figure 2 (b), Gapformer first
produces query, key, and value matrices (Linear Module); that
is,

Q̃ = HWQ̃, K̃ = HWK̃ , Ṽ = HWṼ . (4)

We define the query vector of node vi as q̃i, while its corre-
sponding key and value matrices in the vanilla self-attention
are K̃ ∈ Rn×d′

and Ṽ ∈ Rn×d′
, respectively. Subsequently,

we apply graph pooling to compress K̃ and Ṽ, which is de-
fined as follows:

KS(i) = Pooling
(
K̃
)
; (5)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2198

Pooling

Pooling

Extract k-hop
Subgraphs

A

C

B

A

C

B

Pooling

Pooling

Local Graph
Pooling

Global Graph Pooling

Pooling
Set

Figure 3: Two types of graph pooling methods to enhance attention
in Gapformer. Here, qa is the query vector of node va, and N (a, k)
refers to the neighbor set within k hops of node va. Left: each node
in the original graph attends with all nodes in the pooling set (S).
Right: each node attends with nodes in its own pooling set, which is
generated from its k-hop neighbors.

VS(i) = Pooling
(
Ṽ
)
, (6)

where KS(i) ∈ Rn′×d′
and VS(i) ∈ Rn′×d′

are the com-
pressed key and value matrices of node vi respectively, and
the size of pooled node sets S (i) for node vi is n′, signif-
icantly smaller than n. Pooling(·) refers to graph pooling,
which is discussed in detail in the next section. The attention
enhanced with graph pooling is then calculated as:

hi = softmax
(
αq̃T

i KS(i)

)
V

T

S(i), (7)

where α is a constant scalar (α = 1√
d′).

Following [Guo et al., 2022; Zhao et al., 2021], we also
maintain the message-passing with the neighboring nodes.
The process is defined as follows:

zi = softmax
(
αq̃T

i K̃N (i)

)
ṼT

N (i), (8)

where K̃N (i) and ṼN (i) are the key and value matrices of
neighboring nodes, respectively. Therefore, the node vi’s fi-
nal output of single attention module (AGP) in Gapformer is
calculated as follows:

h′
i = hi + β ∗ zi, (9)

where β is a balanced hyper-parameter which controls the
combination for the attention enhanced with graph pooling
and the neighboring attention.
Other Modules. In addition to AGP, Gapformer also con-
tains layer normalization (LN(·)) applied after the multi-
head self-attention (MHA(·)) and the feed-forward blocks
(FFN(·)), as illustrated in Figure 2. We formalize the Gap-
former layer as below:

h′(l) = LN
(
MHA

(
h(l−1)

))
+ h(l−1); (10)

h(l) = LN
(
FNN

(
h′(l)

))
+ h′(l). (11)

As with most GT methods, our Gapformer also adopts
the positional encodings (PEs), i.e., Laplacian eigenvec-
tors encodings (LapPE) [Dwivedi and Bresson, 2021;
Kreuzer et al., 2021] and random-walk positional encodings
(RWPE) [Dwivedi et al., 2022].

100 500 1000 1500 2000 2500
Nodes

0.0

1.0

2.0

M
em

or
y

(M
ib

)

160MB

1e4
Vanilla GTs
Gapformer

100 500 1000 1500 2000 2500
Nodes

0

20

40

Ti
m

e
(s

ec
)

0.40s

Vanilla GTs
Gapformer

Figure 4: Running time and GPU memory of the full self-attention
in vanilla GTs and sparse self-attention in our proposed Gapformer.
We evaluate the performance of Gapformer on the synthetic datasets.
The time and memory usages of Gapformer scale linearly with the
number of nodes, unlike the full self-attention mechanism in vanilla
GTs whose values scale exponentially.

Two Types of Attention Enhanced with Graph Pooling
In this section, we discuss how to implement the attention
enhanced with graph pooling from the global and local views.

Attention Enhanced with Global Graph Pooling (AGP-
G). AGP-G reduces the number of attended nodes by com-
pressing the original nodes into new pooling nodes in smaller
sizes. Intuitively, all information in a graph is compressed
into the new pooling nodes. As shown in Figure 3, given
node features H ∈ Rn×d with their adjacency information
A ∈ {0, 1}n×n, we first construct new keys and values using
graph pooling operations, as follows:

K
Global

S = Pooling
(
HWK̃ ,A

)
; (12)

V
Global

S = Pooling
(
HWṼ ,A

)
. (13)

Then, as shown in the left part of Figure 3, each node (Q)
in the original graph attends to the pooling nodes (K

Global

S)
in the new sets S to generate attention scores. For the pooling
operation (Pooling(·)), we empirically explore several dif-
ferent pooling methods [Liu et al., 2022b] to perform com-
pressions, including flat pooling methods (e.g., the mean and
max pooling), and trainable pooling mechanisms (e.g., Set-
Pool [Vinyals et al., 2016] and SAGPool [Lee et al., 2019]).

Attention Enhanced with Local Graph Pooling (AGP-L).
Different from AGP-G, AGP-L works by compressing the
neighbor information of each node. Specifically, as shown
in the right part of Figure 3, for each node (i.e., each query
Qi), we execute graph pooling on its neighboring nodes ex-
tracted from its k-hop subgraphs. Formally, the new keys and
values for each node (i.e., node vi) are generated by

K
Local

S(i) = Pooling
(
K̃N (i,k)

)
; (14)

V
Local

S(i) = Pooling
(
ṼN (i,k)

)
, (15)

where N (i, k) refers to the neighbor set within k hops of
node vi. The nodes in a graph then perform attention with
those in the corresponding pooled sets. Formally, the output
of the AGP-L for node vi is calculated by Eq. (7). Note that
the operation of extracting k-hop subgraphs can be performed

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2199

Cora Citeseer Pubmed DBLP CS Physics Photo CoraFull ogbn-arxiv Cornell Texas Wisconsin Actor

Nodes 2,708 3,327 19,717 17,716 18,333 34,493 7,650 19,793 169,343 183 183 251 7,600
Edges 5,429 4,732 44,338 105,734 81,894 247,962 119,081 126,842 1,166,343 280 195 466 26,752
Homo. 0.83 0.72 0.79 0.70 0.83 0.91 0.85 0.57 0.63 0.30 0.11 0.21 0.22

Table 1: Statistics of benchmark datasets.

in the preprocessing stage without consuming additional re-
sources in the training stage. Finally, as with the global pool-
ing, we empirically explore several different pooling meth-
ods for use in performing compression (Pooling(·)), includ-
ing the flat pooling methods (e.g., the mean and max pooling)
and trainable pooling mechanisms (e.g., SetPool [Vinyals et
al., 2016] and SAGPool [Lee et al., 2019]).

3.3 Merits of Gapformer
Reducing Computational Complexity. We first analyze
the complexity of Gapformer. The computational complex-
ity of the attention enhanced with graph pooling (Eq. (7))
is O (n′n). Since n′ is a constant and usually much smaller
than n, the computational complexity can be simplified as
O(n). Moreover, the computational complexity of the neigh-
boring attention (Eq. (8)) is O (|E|). Therefore, the overall
complexity of Gapformer is O(n+ |E|). To illustrate the su-
periority of Gapformer, we conduct experiments on synthetic
datasets. The results in Figure 4 demonstrate that the time
and memory usages of Gapformer do indeed scale linearly
with the number of nodes, unlike the full self-attention mech-
anism that scales exponentially, which enables the application
of Gapformer to extremely large-scale datasets.
Reducing the Ratio of Noisy Connections. In most exist-
ing graph transformer models, each node aggregates infor-
mation from all nodes in a graph, which provides the global
receptive field. This approach may pose a challenge for node
classification tasks since the aggregated information could
potentially contain noise and irrelevant data that is not use-
ful for the target node. Consequently, this can hinder the
model’s ability to perform effectively. To address this is-
sue, our proposed Gapformer modifies the standard full self-
attention to a sparse schema, which helps greatly reduce the
ratio of noisy connections, thereby enhancing the capacity of
graph transformer-based models in node classification.
Handling Long-range Dependency. As shown in Figure 1,
the receptive field of Gapformer is flexible and ranges from
linear growth to exponential growth. Thus, it requires fewer
layers than traditional GNN models to capture long-distance
connections. This is a remarkable benefit for the case when
significant correlations are multiple hops away.

4 Experiments
4.1 Experimental Settings
Datasets. We employ a total of 13 real-world datasets,
including nine homophilic graph datasets (Cora, Citeseer,
Pubmed, DBLP, CoraFull, CS, Physics, Photo, and ogbn-
arxiv) and four heterophilic graph datasets (Cornell, Texas,
Wisconsin, and Actor), involving diverse domains (cita-
tion, co-authorship, co-purchase, and web pages) and sizes

(ogbn-arxiv is a large-scale dataset). The dataset statis-
tics are summarized in Table 1. Please note that in ref-
erence to [Zhu et al., 2020], Homo. refers to the ratio of
edges linking nodes with identical labels. We use differ-
ent training, validation, and test splits for various datasets.
Specifically, for Cora, Citeseer, and Pubmed datasets we
follow the (48%/32%/20%) split as proposed in [Pei et
al., 2020]. The same splits used by [Zhu et al., 2020]
and [Liu et al., 2022a] are adopted for the four heterophilic
graph datasets. For all other datasets, we randomly split
them into 60%/20%/20% training/validation/test sets follow-
ing [Zhang et al., 2022]. All the adopted graph datasets, ex-
cept ogbn-arxiv, can be downloaded from PyTorch Geomet-
ric (PyG) [Fey and Lenssen, 2019] 1, and obgn-arxiv can be
downloaded from Open Graph Benchmark (OGB) 2.

Baseline. To demonstrate the effectiveness of our pro-
posed method, we compare Gapformer with the follow-
ing 20 baselines: (I) 7 standard GCN-based models:
GCN [2017], GatedGCN [2016], APPNP [2019], GC-
NII [2020], GAT [2018], GATv2 [2022], and Super-
GAT [2021]; (II) 5 heterophilic-graph-oriented mod-
els: MLP [2015], MixHop [2019], FAGCN [2021],
H2GCN [2020], and GPRGNN [2021]; (III) 8 transformer-
based models for graphs: GT-sparse [Dwivedi and Bres-
son, 2021], SAN [2021], Graphormer [2021], UniMP [2021],
LiteGT [2021a], DET [2022], NAGformer [2023], and ANS-
GT [2022]. The last five transformer-based models are effi-
cient graph transformer models.

Implementation Details. We assess the effectiveness of
our proposed model by measuring its accuracy in node clas-
sification. To ensure reliability, we conduct 10 trials for each
model using random seeds. We utilize Adam optimizer for
GCN-based and heterophily-based methods, while Adamw
is adopted for all graph transformer-based models. Each
method and dataset are run for 200 epochs, with the test ac-
curacy reported based on the epoch that achieves the highest
validation accuracy. For ease of tuning work, we set some
hyperparameters: dropout at 0.5, weight decay at 5e−4, posi-
tion encoding dimension at 20, and hidden dimension within
{64, 128, 256}. Our implementation of Gapformer is devel-
oped using Python (3.7.0), Pytorch (1.11.0), and Pytorch Ge-
ometric (2.2.0). All experiments are conducted on a Linux
server with two NVIDIA A100s.

4.2 Overall Performance
We evaluate the effectiveness of the proposed model in terms
of accuracy. For each model and dataset, we conduct 10 tri-

1https://github.com/pyg-team/pytorch geometric
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2200

https://github.com/pyg-team/pytorch_geometric
 https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

Cora Citeseer Pubmed DBLP Photo Physics CS CoraFull ogbn-arxiv

GCN-based methods

GCN [Kipf and Welling, 2017] 86.92±1.33 76.13±1.51 87.01±0.62 85.13±0.44 85.94±1.18 95.38±0.20 89.11±0.70 24.49±0.47 70.40±0.10

GatedGCN [Li et al., 2016] 85.49±1.32 74.94±1.68 86.19±0.46 85.50±0.57 57.84±14.6 95.89±0.21 89.94±2.24 49.59±7.57 62.71±1.76

APPNP [Gasteiger et al., 2019] 87.75±1.30 76.53±1.61 86.52±0.61 85.22±0.56 84.71±1.25 95.04±0.31 87.49±0.48 20.61±0.78 70.20±0.16

GCNII [Chen et al., 2020] 86.08±2.18 74.75±1.76 85.98±0.61 83.26±0.49 67.06±1.74 94.88±0.32 84.23±0.78 9.10±0.62 69.78±0.16

GAT [Veličković et al., 2018] 87.34±1.14 75.75±1.86 85.37±0.56 83.86±0.44 87.13±1.00 95.14±0.28 88.53±0.54 25.32±1.43 67.56±0.12

GATv2 [Brody et al., 2022] 87.25±0.89 75.72±1.30 85.75±0.55 84.96±0.47 81.52±3.23 95.02±0.32 88.46±0.61 31.62±0.71 68.84±0.13

SuperGAT [Kim and Oh, 2021] 87.22±1.24 75.41±1.78 85.30±0.52 83.64±0.40 85.83±1.29 95.11±0.26 88.11±0.43 23.52±0.85 66.99±0.07

Heterophily-based methods

MLP [LeCun et al., 2015] 70.32±2.68 68.64±1.98 86.46±0.35 72.54±0.95 88.66±0.85 95.12±0.26 92.99±0.51 53.63±0.96 52.63±0.12

MixHop [Sami et al., 2019] 84.47±1.37 72.04±1.49 88.44±0.47 82.23±0.65 93.24±0.59 96.34±0.22 93.88±0.63 56.66±1.19 70.83±0.30

H2GCN [Zhu et al., 2020] 83.48±2.29 75.16±1.48 88.86±0.45 83.10±0.27 91.56±0.70 96.28±0.13 94.02±0.31 50.38±0.82 68.29±0.67

FAGCN [Bo et al., 2021] 85.17±1.08 75.60±2.37 87.71±0.44 83.80±0.47 87.53±0.75 95.86±0.12 91.82±0.54 30.14±0.45 66.12±0.02

GPRGNN [Chien et al., 2021] 86.82±1.15 75.45±1.40 86.83±0.48 84.97±0.64 92.27±0.44 96.06±0.21 93.60±0.36 64.11±0.80 68.28±0.21

Graph Transformer-based methods

SAN [Kreuzer et al., 2021] 81.91±3.42 69.63±3.76 81.79±0.98 – 94.17±0.65 96.83±0.18 94.16±0.36 45.61±5.25 69.17±0.15

Graphormer [Ying et al., 2021] 67.71±0.78 73.30±1.21 OOM OOM 85.20±4.12 OOM OOM OOM OOM
LiteGT [Chen et al., 2021a] 80.62±2.69 69.09±2.03 85.45±0.69 – – OOM 92.16±0.44 56.86±0.69 OOM
UniMP [Shi et al., 2021] 84.18±1.39 75.00±1.59 88.56±0.32 84.25±0.42 92.49±0.47 96.82±0.13 94.20±0.34 67.93±0.56 73.19±0.18

DET [Guo et al., 2022] 86.30±1.41 75.37±1.41 86.28±0.44 84.96±0.39 91.44±0.49 96.30±0.18 93.34±0.31 67.12±0.93 55.70±0.30

NAGphormer [Chen et al., 2023] 85.77±1.35 73.69±1.48 87.87±0.33 – 94.64±0.60 96.66±0.16 95.00±0.14 66.75±0.79 –
ANS-GT [Zhang et al., 2022] 86.71±1.45 74.57±1.51 89.76±0.46 85.19±0.47 94.41±0.62 96.22±0.15 94.64±0.24 61.66±1.85 –

Gapformer (w/o GP) 81.69±2.03 70.90±3.05 87.35±0.51 83.54±0.48 94.06±0.81 96.68±0.14 93.62±0.72 54.95±1.37 70.20±0.21

Gapformer (AGP-G) 87.37±0.76 76.21±1.47 88.98±0.46 85.50±0.43 94.81±0.45 97.10±0.12 95.13±0.40 68.22±0.70 71.90±0.19

Gapformer (AGP-L) 87.04±1.14 75.24±1.44 88.49±0.44 85.31±0.49 92.34±0.63 96.42±0.20 94.48±0.36 67.59±0.66 71.70±0.33

Notations: 1) Gapformer (w/o GP) refers to Gapformer without graph pooling, which is also the GT-sparse baseline model [Dwivedi and
Bresson, 2021]. 2) The results of Graphormer are taken from NAGphormer [2023] and Specformer [2023]. 3) The full-version of GT [2021]
and SAN [2021] is OOM even on the small-scale datasets. 4) Another recent graph Transformer, SAT [Chen et al., 2022], is not considered,
as it reports OOM even on the small-scale datasets.

Table 2: Experimental results for the node classification task on eight common datasets (mean accuracy (%) and standard deviation over 10
different runs). Red: the best performance per dataset. Blue: the second best performance per dataset. OOM denotes out-of-memory.

als with random seeds, and then take the mean accuracy and
standard deviation, which are reported in Tables 2 and 3.

Performance on Homophilic Graphs. From the results in
Table 2, we can observe: 1) Gapformer achieves the state-
of-the-art performance on five datasets and competitive per-
formance on three datasets, which demonstrates the effec-
tiveness of our proposed method. Gapformer has a signif-
icant advantage over its variant that does not include the
graph pooling module, referred to as Gapformer (w/o GP).
2) Compared with GCN-based methods, Gapformer performs
better on graphs with more nodes (e.g., Photo, Physics,
and CS). This is likely because local message-passing based
GCN methods neglect long-range dependencies, but our Gap-
former enables to learn more informative node representa-
tions from the multi-hop neighborhoods, which is a remark-
able benefit for the bigger graphs, where the required re-
ceptive field is large [Guo et al., 2022; Park et al., 2022;
Wu et al., 2022]. 3) The performance of Gapformer surpasses
that of graph transformer-based methods on the small-scale
datasets (e.g., Cora and Citeseer). The reason may be that

vanilla GTs with full connected attention (e.g., Graphormer)
and sampling-based GTs (e.g., LiteGT [Chen et al., 2021a]
and DET [Guo et al., 2022]) both introduce more noises from
massive unrelated nodes. However, GCN-based models per-
form better than GT-based methods on small-scale datasets.
This is likely because, on small-scale datasets, local infor-
mation is more important. Moreover, GTs, including our
Gapformer, have more parameters than GCN-based meth-
ods, meaning that they may suffer from over-fitting on small
datasets. 4) Our Gapformer can be applied to large-scale
graphs, such as ogbn-arxiv, while some other transformer-
based methods cannot be applied to such graphs due to their
poor scalability. We have noticed that Graphormer [Ying et
al., 2021] and LiteGT [Chen et al., 2021a] encounter out-
of-memory errors, even when processing small graphs. This
highlights the need for a graph Transformer that can scale ef-
fectively to handle large-scale graphs.

Performance on Heterophilic Graphs. Table 3 summa-
rizes the results of models on heterophilic graphs. From these
results, we can make the following observations: 1) GCN-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2201

Cornell Texas Wisconsin Actor

GCN-based methods

GCN [Kipf and Welling, 2017] 45.67±7.96 60.81±8.03 52.55±4.27 28.73±1.17

GatedGCN [Li et al., 2016] 72.70±5.33 75.40±4.26 81.37±3.31 35.13±1.10

APPNP [Gasteiger et al., 2019] 41.35±7.15 61.62±5.37 55.29±3.90 29.42±0.81

GCNII [Chen et al., 2020] 44.32±5.81 58.91±4.32 52.54±7.32 25.40±0.97

GAT [Veličković et al., 2018] 47.02±7.66 62.16±4.52 57.45±3.51 28.33±1.13

GATv2 [Brody et al., 2022] 50.27±8.97 60.54±4.55 52.74±3.96 28.79±1.47

SuperGAT [Kim and Oh, 2021] 43.51±6.55 59.99±4.64 53.52±4.64 28.08±1.03

Heterophily-based methods

MLP [LeCun et al., 2015] 71.62±5.57 77.83±5.24 82.15±6.93 33.26±0.91

MixHop [Sami et al., 2019] 76.48±2.97 83.24±4.48 85.48±3.06 34.92±0.91

H2GCN [Zhu et al., 2020] 75.40±4.09 79.73±3.25 77.57±4.11 36.18±0.45

FAGCN [Bo et al., 2021] 67.56±5.26 75.67±4.68 75.29±3.06 32.13±1.33

GPRGNN [Chien et al., 2021] 76.76±2.16 81.08±4.35 82.66±5.62 35.30±0.80

Graph Transformer-based methods

SAN [Kreuzer et al., 2021] 50.85±8.54 60.17±6.66 51.37±3.08 27.12±2.59

UniMP [Shi et al., 2021] 66.48±12.5 73.51±8.44 79.60±5.41 35.15±0.84

DET [Guo et al., 2022] 41.35±7.45 56.76±4.98 54.90±6.56 28.94±0.64

NAGphormer [Chen et al., 2023] 56.22±8.08 63.51±6.53 62.55±6.22 34.33±0.94

Gapformer (w/o GP) 61.89±5.85 70.54±4.75 75.29±5.12 33.86±0.79

Gapformer (AGP-G) 77.57±3.43 80.27±4.01 83.53±3.42 36.90±0.82

Gapformer (AGP-L) 76.22±2.65 79.73±5.16 82.15±2.22 36.47±1.02

Notations: 1) Gapformer (w/o GP) refers to Gapformer without
graph pooling, which is also the GT-sparse baseline model [Dwivedi
and Bresson, 2021]. 2) The official codes of LiteGT [Chen et
al., 2021a] and ANS-GT [2022] fail to handle the above four het-
erophilic datasets.

Table 3: Experimental results for the node classification task on
four heterophilic datasets (mean accuracy (%) and standard devia-
tion over 10 different runs). Red: the best performance per dataset.
Blue: the second best performance per dataset.

based models exhibit relatively inferior performance on het-
erophilic graphs. This is because most GCNs utilize directly
connected nodes for aggregation even in heterophilic graphs.
2) Surprisingly, transformer-based models show poor perfor-
mance, which implies that GTs fail to filter out irrelevant
messages. 3) Instead, our proposed Gapformer achieves su-
perior performance on heterophilic graph datasets. In partic-
ular, Gapformer significantly outperforms transformer-based
baselines. This phenomenon is probably because Gapformer
summarizes the graph structure or neighbor information from
a global view instead of a similarity view.

4.3 Further Discussions
Efficiency of Gapformer. To validate the efficiency of
Gapformer, we compare its training cost in terms of running
time (s) and GPU memory (MB) with such representative
methods as GT [Dwivedi and Bresson, 2021], SAN [Kreuzer
et al., 2021], and ANS-GT [Zhang et al., 2022]. The re-
sults are summarized in Table 4. From these results, we can
observe that Gapformer with AGP-G shows high efficiency
compared with all existing GTs, especially when dealing with
large-scale graphs. Moreover, Gapformer with AGP-L incurs
lower memory costs compared to vanilla GTs, although its
time cost is high, comparable to NAGphormer [Chen et al.,
2023] and ANS-GT [Zhang et al., 2022].

Cora Photo

Memory
(MB)

Training
Time (s)

Memory
(MB)

Training
Time (s)

GAT [Veličković et al., 2018] 1,672 2.64 2,189 17.27
GT-Full [Dwivedi and Bresson, 2021] 13,375 48.80 OOM OOM
SAN-Sparse [Kreuzer et al., 2021] 2,936 16.64 4,878 82.77
SAN-Full [Kreuzer et al., 2021] 13,410 372.94 OOM OOM
LiteGT [Chen et al., 2021a] 4,414 23.96 OOM OOM
UniMP [Shi et al., 2021] 1,861 4.85 2,437 20.88
DET [Guo et al., 2022] 1,961 11.93 4,827 222.73
NAGphormer [Chen et al., 2023] 1,879 12.02 1923 1,936.22
ANS-GT [Zhang et al., 2022] 1,909 805.89 1,883 19,709.21

Gapformer (w/o GP) 1,827 3.81 2,725 7.89
Gapformer (AGP-G) 1,829 5.56 2,727 9.40
Gapformer (AGP-L) 1,843 40.52 6,983 3,038.38

Table 4: Comparison of training time and GPU memory costs of
Gapformer to graph transformer-based models. GT-Full and SAN-
Full denote the dense self-attention versions of GT and SAN, re-
spectively. OOM denotes out-of-memory.

70

74
A

cc
 (%

) Citeseer

86

88

Pubmed

68

78

Texas
Base w/o FFN w/o Residual w/o LN

Figure 5: Ablation: Components of Graph Transformer architecture.

75

76

A
cc

 (%
) Citeseer

88.6

88.7
Pubmed

78

80
Texas

MeanPool MaxPool SetPool SAGPool

Figure 6: Performance of Gapformer with different pooling types.

Ablation on Transformer Components and Pooling Type.
We next study the effects of the three components of the trans-
former and different pooling types. We conduct experiments
with AGP-G on three graph datasets. Please note that, apart
from the selected components, all other parts remain identical
to the complete model. We can observe in Figure 5 that the
performance drops after the LayerNorm and Residual com-
ponents are removed. However, the performance increases
after removing the FFN module, which indicates that this
module may cause over-fitting. Moreover, from the results in
Figure 6, we can determine that SAGPool [Lee et al., 2019]
performs better than other simple pooling methods. This en-
courages our search for more effective and efficient pooling
methods to improve the performance of Gapformer.

Impact of Number of Layers and Balance Parameter.
We analyzed the effects of l and β using AGP-G on three

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2202

2 3 4 5 6 7 8 9 10
Layers

0.6

0.8

A
cc

ur
ac

y

0.01 0.1 1.0 10.0

0.6

0.8

Citeseer Pubmed Texas

Figure 7: Performance of Gapformer with different parameters.

graph datasets (Citeseer, Pubmed, and Texas) and presented
the results in Figure 7. Specifically, we investigated how the
number of layers impacts node classification performance.
Our findings indicate that as l increases from low to high val-
ues, test accuracy decreases due to over-fitting. Additionally,
when β is relatively small, our model’s accuracy curve re-
mains smooth indicating less sensitivity to hyper-parameters.

5 Conclusion
We propose Gapformer, which combines Graph Transform-
ers (GTs) with Graph Pooling for efficient node classification.
Our Gapformer addresses the two main issues of existing
GTs: potential noises from long-distance neighbors and the
quadratic computational complexity in regards to the number
of nodes. Extensive experiments on 13 graph datasets demon-
strate that Gapformer outperforms existing GTs and Graph
Neural Networks. Despite its competitive performance, Gap-
former still has room for improvement. For instance, 1) de-
vising an effective manner to combine the proposed local
pooling enhanced attention and global pooling enhanced at-
tention, and 2) incorporating useful techniques to further en-
hance the performance on large-scale graph datasets.

Acknowledgments
This work was supported in part by the Natural Sci-
ence Foundation of China (Nos. 61976162, 82174230,
62002090, 62172354), Artificial Intelligence Innovation
Project of Wuhan Science and Technology Bureau (No.
2022010702040070), and Science and Technology Major
Project of Hubei Province (Next Generation AI Technologies)
(No. 2019AEA170). Dr Wu is partially supported by ARC
Projects LP210301259 and DP230100899.

References
[Alon and Yahav, 2021] Uri Alon and Eran Yahav. On the

bottleneck of graph neural networks and its practical im-
plications. In ICLR, 2021.

[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Ge-
offrey E Hinton. Layer normalization. arXiv:1607.06450,
2016.

[Beltagy et al., 2020] Iz Beltagy, Matthew E. Peters, and Ar-
man Cohan. Longformer: The long-document trans-
former. arXiv:2004.05150, 2020.

[Bianchi et al., 2020] Filippo Maria Bianchi, Daniele Grat-
tarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In ICML, 2020.

[Bo et al., 2021] Deyu Bo, Xiao Wang, Chuan Shi, and
Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In AAAI, 2021.

[Bo et al., 2023] Deyu Bo, Chuan Shi, Lele Wang, and Ren-
jie Liao. Specformer: Spectral graph neural networks meet
transformers. In ICLR, 2023.

[Brody et al., 2022] Shaked Brody, Uri Alon, and Eran Ya-
hav. How attentive are graph attention networks? In ICLR,
2022.

[Cai et al., 2022] Weishan Cai, Wenjun Ma, Jieyu Zhan, and
Yuncheng Jiang. Entity alignment with reliable path
reasoning and relation-aware heterogeneous graph trans-
former. In IJCAI, 2022.

[Chen et al., 2020] Ming Chen, Zhewei Wei, Zengfeng
Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In ICML, 2020.

[Chen et al., 2021a] Cong Chen, Chaofan Tao, and Ngai
Wong. Litegt: Efficient and lightweight graph transform-
ers. In CIKM, 2021.

[Chen et al., 2021b] Jianwen Chen, Shuangjia Zheng, Ying
Song, Jiahua Rao, and Yuedong Yang. Learning attributed
graph representation with communicative message passing
transformer. In IJCAI, 2021.

[Chen et al., 2022] Dexiong Chen, Leslie O’Bray, and
Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In ICML, 2022.

[Chen et al., 2023] Jinsong Chen, Kaiyuan Gao, Gaichao Li,
and Kun He. NAGphormer: A tokenized graph trans-
former for node classification in large graphs. In ICLR,
2023.

[Chien et al., 2021] Eli Chien, Jianhao Peng, Pan Li, and Ol-
gica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021.

[Choromanski et al., 2021] Krzysztof Marcin Choromanski,
Valerii Likhosherstov, David Dohan, Xingyou Song, An-
dreea Gane, Tamas Sarlos, Peter Hawkins, et al. Rethink-
ing attention with performers. In ICLR, 2021.

[Choromanski et al., 2022] Krzysztof Choromanski, Han
Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Va-
lerii Likhosherstov, Jack Parker-Holder, Tamas Sarlos,
Adrian Weller, and Thomas Weingarten. From block-
toeplitz matrices to differential equations on graphs: to-
wards a general theory for scalable masked transformers.
In ICML, 2022.

[Ding et al., 2020] Liang Ding, Longyue Wang, and
Dacheng Tao. Self-attention with cross-lingual position
representation. In ACL, 2020.

[Duvenaud et al., 2015] David Duvenaud, Dougal Maclau-
rin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik,
and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NeurIPS, 2015.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2203

[Dwivedi and Bresson, 2021] Vijay Prakash Dwivedi and
Xavier Bresson. A generalization of transformer networks
to graphs. AAAI Workshop, 2021.

[Dwivedi et al., 2022] Vijay Prakash Dwivedi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bres-
son. Graph neural networks with learnable structural and
positional representations. In ICLR, 2022.

[Fey and Lenssen, 2019] Matthias Fey and Jan E. Lenssen.
Fast graph representation learning with PyTorch Geomet-
ric. In ICLR Workshop, 2019.

[Gao and Ji, 2019] Hongyang Gao and Shuiwang Ji. Graph
u-nets. In ICML, 2019.

[Gasteiger et al., 2019] Johannes Gasteiger, Aleksandar Bo-
jchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on
graphs. In ICLR, 2019.

[Guo et al., 2022] Lingbing Guo, Qiang Zhang, and Huajun
Chen. Unleashing the power of transformer for graphs.
arXiv:2202.10581, 2022.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

[Hussain et al., 2022] Md Shamim Hussain, Mohammed J.
Zaki, and Dharmashankar Subramanian. Global self-
attention as a replacement for graph convolution. In
SIGKDD, 2022.

[Kim and Oh, 2021] Dongkwan Kim and Alice Oh. How to
find your friendly neighborhood: Graph attention design
with self-supervision. In ICLR, 2021.

[Kim et al., 2022] Jinwoo Kim, Dat Tien Nguyen, Seonwoo
Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Se-
unghoon Hong. Pure transformers are powerful graph
learners. In NeurIPS, 2022.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Kreuzer et al., 2021] Devin Kreuzer, Dominique Beaini,
William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral at-
tention. In NeurIPS, 2021.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. Nature, pages 436–444,
2015.

[Lee et al., 2019] Junhyun Lee, Inyeop Lee, and Jaewoo
Kang. Self-attention graph pooling. In ICML, 2019.

[Li et al., 2016] Yujia Li, Richard Zemel, Marc
Brockschmidt, and Daniel Tarlow. Gated graph se-
quence neural networks. In ICLR, 2016.

[Liu et al., 2022a] Chuang Liu, Xueqi Ma, Yinbing Zhan,
Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo

Mandic. Comprehensive graph gradual pruning for sparse
training in graph neural networks. arXiv:2207.08629,
2022.

[Liu et al., 2022b] Chuang Liu, Yibing Zhan, Chang Li,
Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, and Dacheng
Tao. Graph pooling for graph neural networks: Progress,
challenges, and opportunities. arXiv:2204.07321, 2022.

[Liu et al., 2023] Chuang Liu, Yibing Zhan, Xueqi Ma,
Dapeng Tao, Bo Du, and Wenbin Hu. Masked graph
auto-encoder constrained graph pooling. In ECML PKDD,
2023.

[Min et al., 2022] Erxue Min, Runfa Chen, Yatao Bian,
Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong.
Transformer for graphs: An overview from architecture
perspective. arXiv:2202.08455, 2022.

[Nguyen et al., 2022] Dai Quoc Nguyen, Tu Dinh Nguyen,
and Dinh Phung. Universal graph transformer self-
attention networks. In WWW, 2022.

[Park et al., 2022] Jinyoung Park, Seongjun Yun, Hyeonjin
Park, Jaewoo Kang, Jisu Jeong, Kyung-Min Kim, Jung-
woo Ha, and Hyunwoo J Kim. Deformable graph trans-
former. arXiv:2206.14337, 2022.

[Pei et al., 2020] Hongbin Pei, Bingzhe Wei, Kevin Chen-
Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In ICLR, 2020.

[Rampasek et al., 2022] Ladislav Rampasek, Mikhail
Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. Recipe for a general,
powerful, scalable graph transformer. In NeurIPS, 2022.

[Rong et al., 2020a] Yu Rong, Yatao Bian, Tingyang Xu,
Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-scale
molecular data. In NeurIPS, 2020.

[Rong et al., 2020b] Yu Rong, Wenbing Huang, Tingyang
Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR,
2020.

[Sami et al., 2019] Sami, Bryan Perozzi, Amol Kapoor,
Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-
yan, Greg Ver Steeg, and Aram Galstyan. MixHop:
Higher-order graph convolutional architectures via sparsi-
fied neighborhood mixing. In ICML, 2019.

[Shi et al., 2021] Yunsheng Shi, Zhengjie Huang, Shikun
Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-
supervised classification. In IJCAI, 2021.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, 2017.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In ICLR, 2018.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2204

[Vinyals et al., 2016] Oriol Vinyals, Samy Bengio, and Man-
junath Kudlur. Order matters: Sequence to sequence for
sets. In ICLR, 2016.

[Wu et al., 2021] Zhanghao Wu, Paras Jain, Matthew
Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion
Stoica. Representing long-range context for graph neural
networks with global attention. In NeurIPS, 2021.

[Wu et al., 2022] Qitian Wu, Wentao Zhao, Zenan Li, David
Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In
NeurIPS, 2022.

[Xu et al., 2019a] Chengfeng Xu, Pengpeng Zhao, Yanchi
Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua
Fang, and Xiaofang Zhou. Graph contextualized self-
attention network for session-based recommendation. In
IJCAI, 2019.

[Xu et al., 2019b] Nuo Xu, Pinghui Wang, Long Chen, Jing
Tao, and Junzhou Zhao. Mr-gnn: Multi-resolution and
dual graph neural network for predicting structured entity
interactions. In IJCAI, 2019.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differen-
tiable pooling. In NeurIPS, 2018.

[Ying et al., 2021] Chengxuan Ying, Tianle Cai, Shengjie
Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly
for graph representation? In NeurIPS, 2021.

[Zhang et al., 2019] Jiani Zhang, Xingjian Shi, Shenglin
Zhao, and Irwin King. Star-gcn: Stacked and recon-
structed graph convolutional networks for recommender
systems. In IJCAI, 2019.

[Zhang et al., 2022] Zaixi Zhang, Qi Liu, Qingyong Hu, and
Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. In NeurIPS, 2022.

[Zhao et al., 2021] Jianan Zhao, Chaozhuo Li, Qianlong
Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node
classification. arXiv:2110.13094, 2021.

[Zhu et al., 2020] Jiong Zhu, Yujun Yan, Lingxiao Zhao,
Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limita-
tions and effective designs. In NeurIPS, 2020.

[Zhu et al., 2021] Yiran Zhu, Xing Xu, Fumin Shen, Yanli Ji,
Lianli Gao, and Heng Tao Shen. Posegtac: Graph trans-
former encoder-decoder with atrous convolution for 3d hu-
man pose estimation. In IJCAI, 2021.

[Zhu et al., 2022] Yangfu Zhu, Linmei Hu, Xinkai Ge, Wan-
rong Peng, and Bin Wu. Contrastive graph transformer
network for personality detection. In IJCAI, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2205

	Introduction
	Related Work
	Methodology
	Preliminaries
	Proposed Method: Gapformer
	Architecture
	Two Types of Attention Enhanced with Graph Pooling

	Merits of Gapformer

	Experiments
	Experimental Settings
	Overall Performance
	Further Discussions

	Conclusion

