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Abstract
With the development of modern internet tech-
niques, Cross-Domain Recommendation (CDR)
systems have been widely exploited for tackling
the data-sparsity problem. Meanwhile most cur-
rent CDR models assume that user-item interac-
tions are accessible across different domains. How-
ever, such knowledge sharing process will break the
privacy protection policy. In this paper, we focus on
the Privacy-Preserving Multi-Domain Recommen-
dation problem (PPMDR). The problem is chal-
lenging since different domains are sparse and het-
erogeneous with the privacy protection. To tackle
the above issues, we propose Federated Probabilis-
tic Preference Distribution Modelling (FPPDM).
FPPDM includes two main components, i.e., local
domain modelling component and global server ag-
gregation component with federated learning strat-
egy. The local domain modelling component aims
to exploit user/item preference distributions using
the rating information in the corresponding do-
main. The global server aggregation component
is set to combine user characteristics across do-
mains. To better extract semantic neighbors in-
formation among the users, we further provide
compactness co-clustering strategy in FPPDM++ to
cluster the users with similar characteristics. Our
empirical studies on benchmark datasets demon-
strate that FPPDM/FPPDM++ significantly outper-
forms the state-of-the-art models.

1 Introduction
Cross-domain recommendation (CDR) systems have shown
great success in alleviating the serious data sparsity prob-
lem [Guo et al., 2021; Li et al., 2022; Zang et al., 2021a;
Zheng et al., 2022]. It is well acknowledged that CDR mod-
els always share the user-item rating information across do-
mains for joint collaborative filtering. Such methods can pro-
vide better performance on both source and target domains.
However, with the increasing law on privacy protection, the

∗Chaochao Chen is the corresponding author.

user-item rating information are not accessible among differ-
ent domains [Chen and et al, 2022]. How to provide high-
quality cross- and multi-domain recommendations under the
demand of privacy protection has become an urgent problem.

In this paper, we focus on a more general problem
of Privacy-Preserving Multi-Domain Recommendation (PP-
MDR). That is, user-item rating interactions are regarded as
private information and other domains (participants) cannot
directly obtain them. Such demand makes it difficult for
knowledge transfer across domains to extract users’ domain-
invariant preferences. Meanwhile, these multiple domains
all suffer from the data sparsity problem. It further hurdles
the model to learning reliable representations and limits the
model’s performance.

Existing research on CDR cannot solve the PPMDR prob-
lem well. Firstly, most conventional CDR models need to
access the whole user-item rating interactions among dif-
ferent domains for modelling [Hu et al., 2018; Chen et al.,
2020]. While it is not suitable under the settings of PPMDR,
since the user-item ratings should be protected in each do-
main. Recently, FedMF [Chai et al., 2020] first adopts fed-
erated learning strategy for ensuring data privacy protection.
However, FedMF only adopted a shallow model and thus
cannot depict the complex user-item relationship well. Sec-
ondly, most of current CDR models only utilize embeddings
rather than distributions to represent users and items, which
leads to an inaccurate understanding of user preference, es-
pecially under the data sparsity scenario [Jiang et al., 2020;
Ma and et al, 2020]. Specifically, we provide an example in
Fig.1(a)-(b) where the user Mary prefers romantic and his-
torical items while dislikes horror items. If we only con-
sider the user/item embeddings, the horror items Suspect X
or Kill Game will be recommended to Mary since they are
closer than Woman in Love or Flipped. While when we model
the users/items with Gaussian distributions, the users/items
can represent more richer meanings. As depicted in Fig.1(a),
Mary’s distribution overlaps her prefer books (e.g., Woman in
Love and Global History) rather than horror items to avoid
inaccurate results. While only using single domain infor-
mation cannot better model users’ preference distribution,
as shown in Fig.1(b), Mary’s local distribution with dashed
eclipse does not overlap with the romantic movie Titanic that
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Figure 1: The illustrations of probabilistic preference distribution modelling with compactness co-clustering.

she likes. Then we should adopt the global server to aggre-
gate the user distributions for knowledge sharing in Fig.1(c).
Meanwhile, different domains are always heterogeneous with
diverse kinds of items. Hence, it could be rather difficult to
directly apply the commonly-used federated learning meth-
ods for information gathering. What is more, most of the
CDR models only concentrate on user-item interactions and
neglect potential semantic relations. As shown in Fig.1(d)-
(e), the user preference distributions are scattered and users
with different tastes still have overlapped space. In conclu-
sion, how to properly model and aggregate the user/item pref-
erence distribution is still a challenging problem.

To address the aforementioned issues, in this paper, we pro-
pose Federated Probabilistic Preference Distribution Mod-
elling (FPPDM) for solving the PPMDR problem. FPPDM in-
volves two main components, i.e., local domain modelling
component and global server aggregation component where
user-item rating interactions are stored in the local domain
due to the demand for privacy protection. We further pro-
pose neural networks to capture user/item preference distri-
bution via modelling the corresponding mean and covariance
in the local domain modelling component. Then we aggre-
gate these users’ preference distributions in the global server
aggregation component and send them back to local domains.
To further leverage the user similarity relationship, we pro-
pose a compactness co-clustering method in FPPDM++. The
compactness co-clustering method can gather users based on
their tastes or characteristics to provide more satisfactory re-
sults. We summarize our main contributions as follows: (1)
We propose a novel federal learning framework, i.e., FPPDM,
for solving the PPMDR problem and protecting the privacy of
user-item rating information. FPPDM involves multiple local
domains and a global server to model and aggregate user/item
preference distributions. (2) To achieve better results, we fur-
ther propose a compactness co-clustering method to leverage
similar users’ information in FPPDM++. (3) Extensive empir-
ical studies on Douban and Amazon datasets demonstrate that
both FPPDM and FPPDM++ significantly improve the state-
of-the-art models, especially under the PPMDR setting.

2 Related Work
Cross- and Multi-Domain Recommendation. The existing
CDR models have two main types, i.e., single-target CDR
models and dual-target CDR models [Zang et al., 2021b;

Zhu et al., 2021; Zhang et al., 2022b; Yuan et al., 2019;
Wang and et al, 2022; Sun and et al, 2022]. Single-target
CDR models leverage the information from the relevant
source domain with rich data to the sparse target domain.
Conventional single-target CDR models aims to adopt ma-
trix factorization mechanism for collaborative filtering on
overlapped users/items [Lian et al., 2017]. More recently,
some single-target CDR models also adopt the deep neural
networks to users/items preferences [Elkahky et al., 2015;
Hu et al., 2018]. Latest PriCDR [Chen and et al, 2022] further
considers the privacy protection when distilling the informa-
tion from rich to sparse domains. Dual-target CDR models
aims to simultaneously share and transfer information when
both source and target domains are sparse. DOML [Li and
Tuzhilin, 2021] first tried attempt to share dual knowledge
transfer based on orthogonal mapping. Recently, researchers
also utilized graph-based approaches [Zhao et al., 2019;
Liu et al., 2020; Cao et al., 2022] for solving dual-target CDR
problem. Zhao et.al. [Zhao et al., 2022] further enhanced the
method with gate mechanism into multi-domain recommen-
dation. While the above methods should distribute the local
user-item ratings across different domains which could raise
the concern on privacy protection. Hence they cannot be suit-
able for solving the PPMDR problem.

Federated Learning. With the increasing emphasis on pro-
tecting personal privacy, federated learning is widely used
in diverse applications [Zhang et al., 2022a; Meihan et al.,
2022]. FedAvg [McMahan et al., 2017] was first be proposed
for protecting the clients’ privacy in distributed learning. To
better satisfy the non-identical independent fashion, proximal
regularization term [T Dinh et al., 2020] or primal-dual al-
gorithm [Zhang et al., 2021; Acar et al., 2021] have been
added in the local clients. Furthermore, shared representa-
tions have been exploited [Pillutla et al., 2022] to provide
personal solutions. Meanwhile knowledge distill method [Lin
et al., 2020] and prototype alignment [Tan and et al, 2021;
Dong et al., 2022] have been proposed with the considera-
tion of heterogeneous data distribution or network architec-
ture. More recently, FedMF [Chai et al., 2020] successfully
adopted the federated learning into the field of cross domain
recommendation. Latest FedCDR [Meihan et al., 2022] also
adopted federated learning into solving cold-start CDR prob-
lem. However, FedMF only adopted shallow model which
cannot capture and depict the complex and complicate user-
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item relations. While FedCDR separated the rating prediction
stage and transfer stage which limits the model performance.
As a comparison, in this paper, we extend the federated learn-
ing with PPMDR problem by adopting distribution aggrega-
tion method with compactness co-clustering strategy.

3 Methodology
First, we describe notations. We assume there are K (K ≥
2) domains (clients) as {D(1),D(2), · · · ,D(K)} where D(i)

denotes as the i-th domain (client). We assume each domain
share the same set of NU users. Meanwhile each domain
has N

(i)
V different types of items. Let R(i) ∈ RNU×N

(i)
V be

the observed rating matrices in i-th domain D(i) and users in
different domains are overlapped. To simplify the problem, in
this paper, we assume both domains have no other auxiliary
information. Meanwhile, the rating matrix R(i) is the private
data which cannot be directly shared in the public space.

Then, we introduce the overview of our proposed
FPPDM framework, as is illustrated in Fig. 2. FPPDM mainly
involves two components, i.e., local domain modelling com-
ponent and global server aggregation component. The i-th
local domain stores the user-item rating R(i) in i-th domain
D(i). The local domain aims to model user/item probabilis-
tic preference distribution based on the rating interactions.
The global server aggregation component aims to gather
the overlapped user information for knowledge sharing. To
achieve more better recommendation results, we further pro-
vide FPPDM++ with compactness co-clustering method. This
method tends to exploit and cluster users with similar tastes
and characteristics.

3.1 The Framework of FPPDM
Local Domain Modelling Component
Firstly, we provide the details of the local domain module
in FPPDM. For the i-th user and the j-th item in the D(k)

domain, we define their corresponding one-hot ID vectors
as X

U(k)

i and X
V(k)

j , respectively. We adopt a trainable
lookup table to exploit the user/item one-hot ID embedding
as E

U(k)

i = LookUp(X
U(k)

i ) and E
V(k)

j = LookUp(X
V(k)

j )
respectively. To better aggregate useful information among
the user-item interactions, we further adopt the commonly-
used graph neural network in modelling. Then we first build
up the corresponding interaction A(k) graph among users and

items as A(k) =

[
0 R(k)

(R(k))⊤ 0

]
. Then we can conduct

the graph convolution neural network for modelling user/item
preference distribution:

[µ
U(k) ,µ

V(k) ] = GCN(· · ·GCN(E(k),A(k)|W (k)
µ ) · · · ),

[(σ
U(k) )2, (σ

V(k) )2] = GCN(· · ·GCN(E(k),A(k)|W (k)
σ ) · · · ),

(1)

where E(k) = {EU(k) ,EV(k)} denotes the set of users and
items in D(k). The W

(k)
µ and W

(k)
σ denote the trainable

weights. GCN(·) denotes the graph convolution network op-
eration which can be computed as:

GCN(E(k),A(k)|W (k)) = (D̃(k))−
1
2 Ã(k)(D̃(k))−

1
2 E(k)W (k),

(2)

where D̃(k) = diag(Ã(k)1) denotes the degree matrix for
the graph Ã(k) and Ã(k) = A(k) + I . Specifically, we adopt
ℓ-th layers of graph convolution network layers to achieve the
users/items’ mean µ and covariance σ2 of their embeddings
distribution as follows:

P(U (k)) = N (µ
U(k) , (σ

U(k) )2), P(V (k)) = N (µ
V(k) , (σ

V(k) )2),

(3)
where P(U (k)) and P(V (k)) denote the local user and item
distributions respectively. Since using the single user or item
embeddings cannot precisely depict user-item relationship,
we adopt the Gaussian distribution to parameterize user and
item distribution. Specifically, the Gaussian distribution can
capture the complex and complicated user/item preference
via measuring the covariance. After that we should train the
model to fit the observed user-item ratings. To better achieve
this goal, we propose the distribution-based metric learning
loss as given below:

ℓ
(k)
R = −

∑
(U

(k)
i

,V
(k)
j

)∈O(k)

log
e
−D(P(U(k)

i
),P(V (k)

j
))

∑
V

(k)
neg,(i)

e
−D(P(U(k)

i
),P(V (k)

neg,(i)
))

,

(4)

where O(k) denotes the positive user-item pairs. V (k)
neg,(i) de-

notes the negative items for the i-th user. The D(·) denotes
Wasserstein distance among different Gaussian distributions
which can be calculated as:

D(P(U (k)
i ),P(V (k)

j )) = ||µU(k)

i − µ
V(k)

j ||22 + ||σU(k)

i − σ
V(k)

j ||22.

After adopting the metric-based rating prediction loss, we can
pull the positive user-item pairs while push away the negative
user-item pairs. Meanwhile, the local and global overlapped
user distributions should be consistent for knowledge shar-
ing. To this end, we propose a regularization term to reduce
the distance among these corresponding local and global user
distributions as follows:

ℓ
(k)
P = ΣN

i=1[||µ
U(k)

i − µ̂i||22 + ||σ
U(k)

i − σ̂i||22], (5)

where N denotes as the batchsize. P(Ûi) = N (µ̂i, σ̂
2
i ) de-

notes the i-th global user distribution. By combining the rat-
ing prediction loss L(k)

R with the regularization term L
(k)
P , we

can obtain the total loss in local domain modelling compo-
nent:

min ℓFPPDM = ℓ
(k)
R + λP ℓ

(k)
P , (6)

where λP denotes as the balanced hyper parameter. After
the training in local domains, we can obtain the local user
distribution P(U (k)) and send them to the global server.

Global Server Aggregation Component
Since the global server have received the local user distri-
butions from multiple different domains, the global server
should aggregate and update the global user distributions
P(Û). This process is important since the data sparsity prob-
lem will deteriorate the user-item modelling in local domain.
As an example in Fig.1(b), the local user distribution of Mary
will not fully cover her interests since it still away from the ro-
mantic movie Titanic. Then we adopt the server aggregation
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Figure 2: The model framework of FPPDM with includes the multiple local domains and global server.

to obtain the global user preference distribution in Fig.1(c)
and after that it will enhance the model performance in the
local movie domain in Fig.1(b). To fulfill this task, we tend to
exploit the new global user distributions P(Û) which has the
smaller Wasserstein distance among these local user distribu-
tions as [minP(Û)

1
K

∑N
i=1

∑K
k=1D(P(Ûi),P(U (k)

i ))]. By
taking the differentiation w.r.t. on µ̂i and σ̂i, we can easily
obtain the optimal results as:

µ̂i =
ΣK

k=1µ
U(k)

i

K
, σ̂i =

ΣK
k=1σ

U(k)

i

K
. (7)

After we achieve the aggregated global user distributions, we
further send them back to the local domains. Meanwhile only
mean and covariance of user preference distributions will
be transmitted to the global server which makes it different
from conventional federated learning methods (e.g., FedAvg
[McMahan et al., 2017]). Note that it is difficult to recon-
struct the raw user-item rating interactions from user pref-
erence distributions. Furthermore, one can even adopt en-
cryption transportation method (e.g., homomorphic encryp-
tion [Gentry, 2009; Aono et al., 2017]) on mean and covari-
ance to strengthen security level.

3.2 The Framework of FPPDM++
Although FPPDM can share and transfer useful knowledge
via the overlapped users across domains, the user prefer-
ence distributions will become scattered in the latent space
as shown in Fig.1(d). Specifically, the purple and green
dots represent the users with different types of preferences
in Fig.1(d). Some users (e.g., purple #7 and green #2) with
different preferences still have overlapped distributions. The
scattered latent distributions will hurdle the model perfor-
mance by providing inaccurate results. The main reason be-
hind is FPPDM cannot fully exploit and incorporate the se-
mantic neighbors to enhance the model performance. That is,
the users with similar tastes or preferences are their seman-
tic neighbors who should be clustered. Meanwhile utilizing
the co-clustering strategy can even filter out inherit data noise
to further reduce data sparsity problem [Lin et al., 2022b;
Lin et al., 2022a]. However, previous methods mainly focus
on the simple embedding situation and they cannot be directly
applied for distribution clustering. To resolve this issue, we
first propose compactness co-clustering method in FPPDM++
to enhance the model performance by extracting useful se-
mantic information among these preference distributions.

Algorithm 1 FPPDM / FPPDM++
1: Server executes:
2: Initialize global user distribution as P(Û).
3: for round = 1 to T do
4: for each domain = k to K in parallel do
5: Obtain P(U (k)

i )← LocalUpdate(i,P(Û))
6: end for
7: Update P(Û) via Eq.(7) and send to local domain.
8: end for
9: LocalUpdate(i,P(Û)):

10: for epoch = 1 to t do
11: Calculate the rating prediction loss in Eq.(4).
12: Calculate the regularization loss in Eq.(5).
13: if The model is FPPDM++ then
14: Optimize the compactness similarity in Eq.(8).
15: Optimize the assign indication in Eq.(10).
16: Calculate compactness co-clustering loss in Eq.(11).
17: end if
18: Update the local model.
19: end for
20: Return: Well-trained local model.

Then we introduce the details of our proposed compact-
ness co-clustering method. To start with, we tend to figure
out the similarity s

(k)
ij between the i-th and j-th users in the

D(k) domain. Meanwhile we suppose to cluster the users
into M groups to achieve more compact user representations.
Specifically, we present the compactness similarity optimiza-
tion problem as follows:

min
s(k)

N∑
i,j=1

[s
(k)
ij D(P(U (k)

i ),P(U (k)
j )) + ϵs

(k)
ij log s

(k)
ij ]

s.t.

N∑
j=1

s
(k)
ij = 1, s

(k)
ij ≥ 0, rank(L(k)) = N −M,

(8)

where L(k) = diag(S(k)1) − S(k) denotes the Laplacian
similarity matrix. ϵ denotes the hyper parameter to balance
the similarity matching and the entropy regularization term
s
(k)
ij log s

(k)
ij . Meanwhile the entropy regularization term is

set to obtain the nonnegative and nontrivial solution [Bai
and Liang, 2020; Nie et al., 2014]. Furthermore, we add
the rank constraint, i.e., rank(L(k)) = N − M , on Lapla-
cian similarity matrix L(k) to obtain more compact results
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by avoiding the situation that most users clustered in one
group. However, it is difficult to directly optimize the rank
constraint. Here, we make the approximation by calculat-
ing the minimal eigenvalues of L(k) to replace the rank con-
straint. In other words, rank(L(k)) = N−M is equivalent to∑M

m=1 ϕm(L(k)) where ϕm(L(k)) denotes the m-th smallest
eigenvalue of L(k). According to the Ky Fan’s theorem [Fan,
1949], ϕm(L(k)) can be calculated as:

M∑
m=1

ϕm(L(k)) = min
(F (k))⊤F (k)=I

Tr((F (k))⊤L(k)F (k)), (9)

where F (k) ∈ RN×M is the indicator matrix. We provide the
Lagrange multipliers for the original problem as follows:

min
S(k),F (k)

J(k) =

N∑
i,j=1

[s
(k)
ij D(P(U (k)

i ),P(U (k)
j )) + ϵs

(k)
ij log s

(k)
ij ]

+ η

N∑
i,j=1

s
(k)
ij ||f (k)

i − f
(k)
j ||22 +

N∑
i=1

γ
(k)
i

(
N∑

j=1

s
(k)
ij − 1

)
,

where η is the hyper parameter and γ
(k)
i is the multiplier.

We further make simplification for rank constraint since∑N
i=1

∑N
j=1 s

(k)
ij ||f

(k)
i − f

(k)
j ||22 = 2Tr((F (k))⊤L(k)F (k)).

We first fix and F (k) and update the S(k) as:

s
(k)
ij =

exp(−(D(P(U (k)
i ),P(U (k)

j )) + η||f (k)
i − f

(k)
j ||22)/ϵ)

N∑
l=1

exp(−(D(P(U (k)
i ),P(U (k)

l )) + η||f (k)
i − f

(k)
l ||22)/ϵ)

.

Then we fix S(k) and update F (k). The optimal solution F (k)

can be obtained by the M eigenvectors of L(k) corresponding
to the M smallest eigenvalues. We can alternatively update
S(k) and F (k) to achieve the optimal solution.

Once we obtain the indicator matrix F (k), we tend to figure
out the relationship between each data and the corresponding
clusters. To achieve this goal, we propose entropy-based K-
Means method as follows:

min
ζ(k)1=1,Z(k)

N∑
i=1

M∑
j=1

[ζ
(k)
ij ||f (k)

i − z
(k)
j ||22 + ϵζ

(k)
ij log ζ

(k)
ij ], (10)

where Z(k) denotes the cluster centers of assign indicator ma-
trix F (k). That problem can be solved via iteratively optimize
ζ(k) and Z(k). Due to space limits, please kindly refer to [Bai
and Liang, 2020; Liu and et al, 2023] for more details on the
optimization process. After we obtain the optimal solution of
ζ(k), we can further calculate the results of the corresponding
cluster distribution P(C(k)

j ) = N (µ̃
(k)
j , (σ̃

(k)
j )2) as:

µ̃
(k)
j =

∑N
i=1 ζ

(k)
ij µ

U(k)

j∑N
i=1 ζ

(k)
ij

, σ̃
(k)
j =

∑N
i=1 ζ

(k)
ij σ

U(k)

j∑N
i=1 ζ

(k)
ij

.

After we obtain these results, we tend to narrow the distance
between the local user distribution and these cluster distri-
butions. Therefore, we further provide the compactness co-
clustering loss as follows:

ℓ
(k)
C =

N∑
i=1

M∑
j=1

ζ
(k)
ij · D(P(U (k)

i ),P(C(k)
j )). (11)

Datasets Users Items Ratings Density

Douban Movie 800 154,886 93,074 0.075%
Douban Book 800 165,461 29,781 0.022%
Douban Music 800 166,447 30,487 0.023%

Amazon Phone 16,337 9,481 148,271 0.096 %
Amazon Electronics 16,337 40,460 821,301 0.124 %

Amazon Sport 7,857 12,655 163,291 0.164 %
Amazon Cloth 7,857 17,943 187,880 0.133 %
Amazon Game 1,730 12,319 25,036 0.117 %
Amazon Video 1,730 8,751 16,091 0.106 %

Table 1: The statistics information of Douban and Amazon datasets.

Using the compactness co-clustering, the users with similar
tastes or preferences will have more compact representations
as shown in Fig.1(e). Finally, we can combine the rating
prediction loss ℓ(k)R , local-global regularization loss ℓ(k)P , and
compactness co-clustering loss ℓ

(k)
C for the total loss of pro-

posed FPPDM++:

min ℓFPPDM++ = ℓ
(k)
R + λP ℓ

(k)
P + λCℓ

(k)
C , (12)

where λP and λC denote the balance hyper parameters. Note
that the FPPDM and FPPDM++ have the same global server
aggregation component during training process. The training
algorithm details have been provided in Algo.1.

4 Experiments
4.1 Experimental Setup
Datasets. We conduct experiments on two popuarly used
real-world datasets, i.e., Douban and Amazon. First, the
Douban dataset [Zhu et al., 2019; Zhu and et al, 2021] has
three domains, i.e., Book, Music, and Movie. Second, the
Amazon dataset [Zhao et al., 2020; Ni et al., 2019] has six
domains, i.e., Phone, Electronics (Elec), Cloth, Sport, Game,
and Video. The detailed statistics of these datasets are given
in Table 1. For each dataset, we binarize the ratings higher
or equal to 4 as positive. We also filter the users and items
with less than 5 interactions, following existing research [Zhu
et al., 2019; Liu and et al, 2022]. We conduct three cross-
domain recommendation tasks in Amazon when only two
domains (clients) involve (K = 2), i.e., Phone and Elec,
Cloth and Sport, and Game and Video. Meanwhile we con-
duct multi-domain recommendation on the whole Douban
datasets (K = 3). We assume that users in different do-
mains are overlapped in the same task, and there are two/three
clients involves in Amazon/Douban tasks respectively.
Baseline. We compare our proposed FPPDM with the follow-
ing state-of-the-art models. (1) NeuMF [He et al., 2017] first
adopts deep neural network for collaborative filtering in sin-
gle domain. (2) PMLAM [Ma and et al, 2020] first adopts
probabilistic user/item modelling with metric-based loss in
single domain. (3) LightGCN [He et al., 2020] adopts the
graph neural network to model user/item interactions in sin-
gle domain. (4) FedMF [Chai et al., 2020] is the first at-
tempt to adopt federal learning framework across domains.
(5) FedGNN [Wu et al., 2021] further adopts the graph neural
network into federated recommendation. (6) PriCDR [Chen
and et al, 2022] is the single-target CDR model while sharing
the information from the rich domain to the sparse domain.
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(Amazon) Phone & Elec on Phone (Amazon) Phone & Elec on Elec (Amazon) Cloth & Sport on Cloth

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

NeuMF 8.28 5.21 13.63 6.89 11.02 6.91 17.85 8.70 5.74 2.66 9.57 5.12
PMLAM 9.65 6.06 15.33 7.97 12.10 7.89 18.44 9.56 6.82 3.39 10.38 5.56

LightGCN 10.23 6.88 16.06 8.55 12.67 8.85 19.30 9.94 7.29 3.81 11.05 6.01

FedMF 9.34 5.93 14.78 8.02 11.91 7.60 17.97 9.33 6.63 3.07 10.22 5.49
FedGNN 10.10 6.76 16.97 8.61 13.28 8.63 19.05 10.12 7.02 3.84 11.26 6.32
PriCDR 11.40 7.61 18.21 9.84 14.05 9.82 20.37 11.24 7.99 5.12 11.67 6.50

DOML 10.59 7.03 17.43 9.15 13.46 8.87 19.62 10.58 7.24 4.56 10.83 6.04
ETL 11.07 7.34 17.95 9.50 13.73 9.43 20.14 11.05 7.87 4.92 11.38 6.26

CDRIB 12.35 8.19 18.87 10.29 14.64 10.04 21.21 12.15 8.30 5.55 12.19 6.81
MSCDR 12.83 8.55 19.10 10.42 14.54 10.23 21.39 11.97 8.58 5.76 11.81 6.93

FPPDM 14.41 9.45 20.82 11.03 15.75 11.18 22.72 12.80 9.47 6.80 13.36 8.13
FPPDM++ 15.02 9.96 21.44 11.50 16.31 11.37 23.53 13.26 10.05 7.38 14.14 8.42

(Amazon) Game & Video on Game (Amazon) Game & Video on Video (Amazon) Cloth & Sport on Sport

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

NeuMF 3.25 2.16 6.33 2.64 5.47 2.92 10.54 4.09 5.86 2.93 9.30 4.18
PMLAM 4.07 2.74 6.89 3.17 6.01 3.48 11.30 4.65 6.23 3.32 9.91 4.73

LightGCN 4.62 3.29 7.08 3.45 6.54 3.77 11.86 5.32 6.72 3.71 10.77 5.17

FedMF 3.84 2.52 6.96 2.98 5.70 3.13 11.09 4.81 6.35 3.23 9.84 4.41
FedGNN 4.40 3.13 7.64 3.82 6.59 3.68 11.95 5.47 6.84 3.69 10.08 4.75
PriCDR 5.13 3.38 8.50 4.49 7.22 4.25 12.71 6.28 7.73 4.54 11.20 5.59

DOML 4.56 3.05 7.89 4.01 6.73 3.97 12.24 6.03 7.26 4.11 10.65 5.06
ETL 4.91 3.20 8.17 4.23 7.04 4.32 12.43 5.95 7.55 4.46 11.48 5.80

CDRIB 5.44 3.61 8.51 4.58 7.41 4.65 13.17 6.49 7.90 4.89 12.04 6.22
MSCDR 5.89 3.67 8.78 4.70 7.68 4.80 13.54 6.76 8.13 5.05 11.87 5.97

FPPDM 6.65 4.73 10.05 5.68 9.19 5.76 14.22 7.54 9.31 5.80 12.95 6.78
FPPDM++ 7.53 5.20 10.87 6.05 9.92 6.44 14.76 8.11 10.02 6.58 13.60 7.49

(Douban) Movie (Douban) Book (Douban) Music

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

NeuMF 25.36 16.42 45.52 25.23 17.57 10.30 36.43 24.55 26.31 14.58 37.97 22.52
PMLAM 25.80 16.96 46.07 25.76 18.13 10.78 36.95 25.01 26.94 15.29 38.62 23.23

LightGCN 26.47 17.51 46.49 26.68 18.75 11.24 37.46 25.68 27.32 15.73 38.94 23.65

FedMF 26.18 17.10 45.84 26.29 18.02 10.63 36.71 24.82 26.73 14.96 38.35 23.17
FedGNN 26.52 17.43 46.21 26.74 18.60 11.06 37.38 25.14 27.29 15.15 38.70 23.82
PriCDR 27.29 18.23 47.18 27.37 19.36 12.14 38.52 25.90 28.56 16.48 39.53 25.05

DOML 26.84 17.78 46.60 27.12 19.19 11.45 37.96 25.51 27.67 15.63 39.12 24.39
ETL 27.01 18.05 46.94 27.40 19.42 11.91 38.39 25.98 28.10 16.05 39.55 24.71

CDRIB 27.60 18.31 47.37 27.65 19.79 12.53 38.94 26.38 28.82 16.70 40.06 25.24
MSCDR 27.97 18.54 48.09 28.11 20.35 12.80 39.28 26.56 28.75 16.64 40.19 25.40

FPPDM 29.15 19.64 48.86 28.73 21.17 13.58 40.20 27.39 29.43 17.21 40.78 26.02
FPPDM++ 29.79 20.07 49.32 29.28 21.56 13.91 40.75 27.65 30.10 17.53 41.24 26.48

Table 2: Experimental results (%) on Douban and Amazon datasets.

HR@5 NDCG@5 HR@10 NDCG@10

ETL 24.84 15.40 41.63 26.03
ETL-F 25.79 15.89 42.46 26.51

ETL-FC 26.03 16.22 42.97 26.82

Table 3: Method extension results (%) on Douban datasets.

(7) DOML [Li and Tuzhilin, 2021] adopts the dual deep
transfer module with orthogonal constraints across domains.
(8) ETL [Chen et al., 2020] utilizes equivalent transformation
with autoencoder framework for cross-domain modelling. (9)
CDRIB [Cao et al., 2022] is the state-of-the-art graph-based
cross domain model with information bottleneck theorem.
(10) MSCDR [Zhao et al., 2022] is the state-of-the-art graph-
based multi domain model with attention mechanism. We
adopt the same user-item ratings without other auxiliary in-
formation for our propose methods and these baselines.
Implemented details. We set batch size N = 256 and em-
bedding dimension as D = 128 across different domains.
We set the hyper parameter λP = 0.05 for local client mod-
elling component in both FPPDM and FPPDM++. The num-
ber of graph encoder layer is set to 3 in each clients, follow-
ing [He et al., 2020; Wang et al., 2019b]. Meanwhile set the
hyper parameter λC = 0.07 and the number of clusters as
M = 15 for compactness co-clustering loss in FPPDM++.
Besides, we set the balance hyper parameter ϵ = 0.05 and

HR@5 NDCG@5 HR@10 NDCG@10

M = 5 26.64 16.85 43.39 27.44
M = 10 26.83 17.02 43.56 27.62
M = 15 27.15 17.17 43.77 27.80
M = 20 27.20 17.19 43.82 27.86

Table 4: The results (%) of tuning M on Douban datasets.

η = 0.1. We conduct training for FedCDR, FPPDM and
FPPDM++ with 5 local epochs per round until converge. We
choose Adam [Kingma and Ba, 2014] as optimizer, and adopt
HR and NDCG [Wang et al., 2019a] as the evaluation metrics.
For all the experiments, we perform five random experiments
and report the average results. We report the results mea-
sured by the commonly used metrics as Top@5 and Top@10
in Douban and Amazon datasets, respectively.

4.2 Recommendation Performance
The comparison results on Douban and Amazon datasets are
shown in Table 2. Note that conventional CDR models (e.g.,
DARec, DOML, and CDRIB) cannot directly adjust to the
multi-domain recommendation in Douban. Therefore, we
set Douban Movie as the source domain and Douban Book,
Douban Music as the target domain for dealing with these
CDR models. From that we can conclude: (1) Modelling the
user preference distribution can achieve much better results
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by comparing PMLAM with NeuMF. However, single do-
main methods cannot fully utilize the knowledge across do-
mains which make them hard to tackle the sparsity problem.
(2) Combining multiple domains information can enhance
the model performance by comparing NeuMF with DOML.
Meanwhile, recent models (e.g., CDRIB) which adopt graph-
based framework even achieve much more promising re-
sults than single domain graph-based model (e.g., Light-
GCN). (3) The federal learning framework (e.g., FedMF)
can even exceed the performance than single domain meth-
ods (e.g., NeuMF) by combing knowledge and protecting
privacy. Nevertheless, the non-deep-learning based FedMF
cannot handle the complex and complicated user-item rela-
tionship. Meanwhile, single-target based PriCDR simply
transferred knowledge from rich to the sparse domain. Thus it
cannot better handle the situation when different domains are
both sparse. Latest FedCDR model also separates the train-
ing and mapping process limits the model performance. (4)
Although latent models (e.g., MetaDPA and MSCDR) reach
better performance, they still only extract user/item embed-
dings which limit their model potentials. These determinis-
tic manner cannot capture and depict complicated user-item
relationships. (5) Our proposed FPPDM achieves much satis-
fied results which indicates the efficacy of FPPDM by integrat-
ing preference distribution across different domains. Further-
more, FPPDM++ via compactness co-clustering can gather
users with similar characteristics which improve the model
performance. Hence FPPDM++ even achieve much better re-
sults than proposed FPPDM.

Figure 3: The ablation results (HR and NDCG) on FPPDM++.

4.3 Analysis
Ablation. We compare FPPDM/FPPDM++ with its several
variants, including FPPDM++(B) and FPPDM++(P) to study
how does each component of FPPDM++ contribute to the fi-
nal performance. FPPDM++(B) and FPPDM++(P) both adopt
the deterministic training manners without estimating the
user covariance. While FPPDM++(B) excludes compact-
ness co-clustering module and set λC = 0. We conduct
the FPPDM++(B) and FPPDM++(P) on Amazon Phone and
Elec and report the results (HR and NDCG) in Fig. 3. By
comparing the FPPDM and FPPDM++(B) we can conclude
that modelling user preference distribution can better cap-
ture diverse and complex relationships. However, they can-
not gather similar users in the latent space limits the models’
accuracy. We can further observe that FPPDM++(P) exceeds
the FPPDM++(B) which indicates that clustering users sim-
ilar tastes or characteristics will boost the model potentials.

Moreover, combing distribution modelling and compactness
clustering can greatest improve the model performance.

Figure 4: The effect of λP and λC on FPPDM++.

Method Extension. We further analyse the general exten-
sion of our proposed federated framework. To validate this,
we apply our proposed FPPDM and FPPDM++ into the MLP-
based dual autoencoder model ETL as ETL-F and ETL-FC
on conducting the experiments on Douban datasets respec-
tively. We report the results HR and NDCG on Table 3. From
that we can conclude our proposed federated framework is
model-agnostic. That is it can be applied in both graph-based
or MLP-based recommendation approaches. Meanwhile uti-
lizing the federated learning strategy by safely sharing knowl-
edge can even enhance the model performance.
Effect of hyper-parameters. We finally study the effects of
hyper-parameters on model performance. We first conduct
experiments to study the effects of λP by varying them in
{0.01, 0.02, 0.05, 0.07, 0.1, 0.5} for FPPDM++ on Amazon
Cloth and Sport and report the results in Fig.4. It is diffi-
cult to apply local-global regularization alignment for knowl-
edge sharing on each clients when λP is too small. While
when λP is too large, it will slightly hurdle the rating pre-
diction modelling. Therefore we set λP = 0.05 empirically.
We further vary λC in {0.01, 0.02, 0.05, 0.07, 0.1, 0.5} and
report the results in Fig.4. Similarly, the bell-shaped curve of
λC indicated that too large or too small value of λC will not
suitable in training the model and we set λC = 0.07. Finally,
we conduct the experiments on varying the number of cluster
M in {5, 10, 15, 20} and report the results on Table 4. When
M is smaller, it cannot better depict the users with similar
tastes. By comparing M = 20 and M = 15, the performance
improvement is rather marginal by consuming more time and
space. Hence we set M = 15 empirically.

5 Conclusion
In this paper, we investigate the Privacy-Preserving Multi-
Domain Recommendation (PPMDR) problem. To tackle this
problem, we first propose Probabilistic Preference Distribu-
tion Modelling (FPPDM), which includes the local domain
modelling component and global server aggregation compo-
nent. FPPDM can model and share user/item preference distri-
bution across different domains with federated learning strat-
egy. To better exploit useful semantic information by clus-
tering users with similar characteristics, we further propose
FPPDM++ with compactness co-clustering method. We also
conduct extensive experiments to demonstrate the superior
performance of our proposed FPPDM models.
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