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Abstract

Graph-level contrastive learning, aiming to learn
the representations for each graph by contrasting
two augmented graphs, has attracted considerable
attention. Previous studies usually simply assume
that a graph and its augmented graph as a positive
pair, otherwise as a negative pair. However, it is
well known that graph structure is always complex
and multi-scale, which gives rise to a fundamental
question: after graph augmentation, will the previ-
ous assumption still hold in reality? By an experi-
mental analysis, we discover the semantic informa-
tion of an augmented graph structure may be not
consistent as original graph structure, and whether
two augmented graphs are positive or negative pairs
is highly related with the multi-scale structures.
Based on this finding, we propose a multi-scale
subgraph contrastive learning method which is able
to characterize the fine-grained semantic informa-
tion. Specifically, we generate global and local
views at different scales based on subgraph sam-
pling, and construct multiple contrastive relation-
ships according to their semantic associations to
provide richer self-supervised signals. Extensive
experiments and parametric analysis on eight graph
classification real-world datasets well demonstrate
the effectiveness of the proposed method.

1 Introduction
Recently, graph neural networks (GNNs) have become a
primary representation learning technique for dealing with
many kinds of complex systems, ranging from the Inter-
net and transportation graphs to biochemical interactions and
social networks [Kavun et al., 2012; Zhou et al., 2020;
Tang and Liu, 2010]. Many real world applications usu-
ally require the graph-level representations, such as predict-
ing molecular properties in drugs [Chen et al., 2019a], fore-
casting protein functions in biological networks [Jiang et al.,
2017], and predicting properties of circuits in circuit design
[Zhang et al., 2019]. Therefore, GNNs, which are able to
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learn the graph-level representations, play an important role
in these real applications.

Most existing GNNs belong to the supervised learning
paradigm, which requires a lot of labeled graphs. How-
ever, in many practical applications, collecting a large amount
of labeled graph needs to consume a lot of resources. For
example, in the field of chemistry, properties of chemical
molecules are often obtained through density functional the-
ory calculations, which require expensive computational re-
sources [Jain et al., 2016]. Therefore, Graph Contrastive
Learning (GCL), one typical self-supervised paradigm, at-
tracts considerable attention. The general framework for
GCL is to maximize the consistency of augmented views
from the same anchor graph (positive pair), while minimizing
the consistency of views from different anchor graphs (nega-
tive pair) [You et al., 2020; Suresh et al., 2021]. Therefore,
the key to graph contrastive learning is to ensure the seman-
tic information matching between different augmented views,
that is, views with similar semantics have similar representa-
tions.

There have been proposed many different graph augmen-
tation strategies for GCL, e.g., node dropping [You et al.,
2020], edge perturbation [Suresh et al., 2021], attribute mask-
ing [Jin et al., 2021], subgraph sampling [You et al., 2020].
However, one fundamental question is that will the seman-
tics of two augmented graphs still match in practice once the
graph structure changes? It is well known that the graph
structure is very complex, and different substructures may
have their functional implications [Newman, 2013]. For ex-
ample, in a social network, different communities may in-
dicate factions, interest groups; communities in a metabolic
network might correspond to functional units, cycles, or cir-
cuits. Since the graph augmentation strategies essentially
change the graph structures, it is hard to ensure the seman-
tic information of different graph augmentations is matched.

Here, to provide more evidence for the above analysis, we
perform an experiment to closely check the semantic rela-
tionship between different graph structures. Specifically, we
select different substructures with different sizes on four real-
world data, and then examine their semantic similarities (de-
tails can be seen in Section 2). The results clearly show that
different graph structures have different semantics, and more
importantly, the complex semantic information is positively
related with the size of structure, i.e., larger subgraphs usually
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present larger semantic similarities. This well indicates that
we cannot simply assume the semantic information of aug-
mented structures are already matched, while more complex
relationships between different augmented structures need to
be carefully considered for an effective GCL, and forcibly re-
quiring two augmented graphs with different semantics to be
matched may largely mislead the GCL model.

In this paper, we propose a novel Multi-Scale Sub-
Graph Contrastive Learning method, which models the multi-
scale semantic information in different augmented subgraphs.
First, our experiment in Section 2 reveals that despite the
graph structure is complex and different subgraphs have dif-
ferent semantics, their relationships can be generally divided
into two facts: larger subgraphs, representing global view,
usually have larger similarities, while smaller subgraphs, rep-
resenting local view, usually have smaller similarities. These
findings motivate us to employ different learning strategies
based on the two facts. Specifically, we employ subgraph
sampling to generate global and local views. We expect to
pull the global representations of same anchor graph close to
each other, while also encouraging similarity between global
and local views. Meanwhile, we encourage the local repre-
sentations to maintain a certain distance in the feature space.
Finally, we introduce a regressor to measure the similarity
between local views to avoid the unreliability of traditional
distance measures in high-dimensional spaces.

Our contribution can be summarized as follows:
• We study the roles of multi-scale augmented graphs in

GCL and verify that the basic requirement on augmented
subgraphs of GCL may not always hold in practice,
i.e., not all the augmented subgraphs are semantically
matched.

• We propose a novel multi-scale subgraph contrastive
learning method for graph-level representation learning.
Our model is able to consider multi-scale information
of graph data and formulate different learning strategies
according to its semantic associations.

• We conduct comprehensive experiments on eight real-
world datasets, and show that the proposed method
achieves state-of-the-art performance on both unsuper-
vised and semi-supervised graph classification tasks.

2 An Experimental Investigation
In this section, we employ data augmentation to obtain infor-
mation at different scales in the graph dataset, and analyze
its semantic similarity, aiming to obtain the semantic associ-
ation between information at different scales. We take four
molecule graph dataset (MUTAG, NCI1, DD, PROTEINS)
in the TUDataset [Morris et al., 2020] as examples. First,
we trained a 5-layer graph isomorphic network [Xu et al.,
2019] with a hidden dimension of 32 on a single dataset via
the Adam [Kingma and Ba, 2014] optimizer in a supervised
training paradigm. Second, we augment the original graph
with a subgraph sampling strategy based on random walks,
and generate subgraphs at different scales by controlling the
number of nodes in the augmented view [You et al., 2020].
Since the starting point of the random walk is randomly se-
lected, the generated subgraph is not fixed. We generate two
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(b) NCI1
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(c) DD
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(d) PROTEINS

Figure 1: Semantic similarity of subgraphs of different sizes.

augmented views for each graph in the dataset, and treat the
augmented views from the same original graph as subgraph
pair. Then, we remove the classifier of the graph isomorphic
network, input subgraph pair generated by each graph into the
network to obtain its feature vectors, and calculate the cosine
similarity between the two feature vectors. We do the same
for every graph in the dataset. Finally, we take this similar-
ity as the semantic similarity between views and compute the
mean and variance of the semantic similarity between sub-
graph pairs generated from all original graphs in this dataset.

Figure 1 shows the semantic similarity between subgraph
pairs at different scales. It can be seen that, firstly, as the size
of subgraph increases, the mean value of the semantic sim-
ilarity between the generated subgraph pairs increases con-
tinuously, which means the content that the larger subgraph
describe is more similar on a semantic level. Secondly, the
variance of the semantic similarity between subgraph pairs
is decreasing, which means that the content changes of their
descriptions are also decreasing. The above phenomenon
implies that small-scale subgraphs always describe different
content in the graph and vary greatly, while large-scale sub-
graphs describe more similar content, so the semantic asso-
ciation between view pairs at different scales is not uniform.
Current GCL methods usually perform simple perturbations
on the graph structure to obtain augmented views and con-
sider them to have similar semantics. However, the semantic
information of augmented views at different scales is differ-
ent, which requires us to distinguish them at a finer granular-
ity.

3 Methodology
Problem definition. Given an undirected graph G =
{V, E} where V denotes the set of |V| nodes and E = eij ∈
R|V|×|V| indicates the adjacency matrix where each entry
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Figure 2: The overall architecture of MSSGCL (left). The original graph generates global views and local views pairs through random walks
with controlled number of nodes, which are then fed into the encoder to obtain global and local representations. We maximize the similarity
between global views and the similarity between global and local views by optimizing Lgg and Lgl. The dissimilarity between local views is
encouraged by optimizing the output of a learned similarity measure Lll. fθe is the GNN-based encoder, which includes a backbone network
followed by a multi-layer perceptron. fθd (right) is a learnable regressor to measure the similarity between local views.

eij is the linkage relation between nodes i and j. For self-
supervised graph representation learning, given a bunch of
unlabeled graphs G = {G1,G2, ...,GM}, our goal is to learn
a representation vector zi for each graph through supervisory
signals obtained from the data itself. The resulting represen-
tation vector zi can be used in different types of downstream
tasks, such as graph classification.
Overall framework. In this section, we will introduce our
multi-scale subgraph based graph contrastive learning frame-
work. As shown in Figure 2, it consists of three major compo-
nents, including generation of multi-scale subgraphs, graph-
level representation learning and multi-scale contrastive loss.
Given a G, we first apply graph augmentation techniques to
obtain two sets of subgraphs with different sizes, namely
global views and local views. Then, we utilize GNN-based
encoders to learn their representations zg and zl, respectively.
Subsequently, we perform the hierarchical local-global con-
trastive learning to optimize model parameters by the gradient
descent.

3.1 Generation of Multi-Scale Subgraphs
In this section, we focus on graph-level data augmenta-
tion to obtain multi-scale subgraphs. Given a graph G ∈
{Gm : m ∈M}, we define the augmented graph as Ĝ ∼
T
(
Ĝ |G

)
, where T (· |G ) is a predefined augmentation over

the original graph, representing the human prior knowledge
of graph data. Generally speaking, there are four com-
mon graph augmentation methods, namely node dropping,
attribute masking, edge perturbation and subgraph sampling.
Previous study [You et al., 2020] has shown that, compared
with attribute masking and edge perturbation, subgraph sam-
pling can benefit downstream tasks across different categories
of graph datasets. So we mainly employ subgraph sampling

as data augmentation strategy. As mentioned above, there are
large differences in semantic similarity between pairs of sub-
graphs with different scales. Large-scale subgraph pairs have
high semantic similarity and small variance, while small-
scale subgraph pairs have the opposite. Therefore, we can
form local and global subgraph sampling strategies Tl (· |G )
and Tg (· |G ) by limiting the scale of generated views. Then
we perform the two subgraph sampling strategies on the given

graph G, and obtain two global views
{
Ĝgi

}2

i=1
and two local

views
{
Ĝli
}2

i=1
for a single graph.

3.2 Graph-level Representation Learning
After acquiring the different scale augmentation views, we
further learn their latent representations. Here we employ
GNNs as the encoder to obtain node representations by iter-
atively aggregating neighbor information. Next, we will take
the global view Ĝgi as an example to illustrate the representa-
tion learning process, which is exactly the same for the local
view. Given an augmented graph Ĝgi with its feature matrix
X ∈ R|V|×N , where xn = X [n, :]

T is the N -dimensional
feature vector of node vn. In general, in a K-layer GNN, the
node representations of k-layer can be formalized as:

a(k)n = AGGREGATE(k)
({
h(k−1)
u : u ∈ N (n)

})
,

h(k)n = COMBINE(k)
(
h(k−1)
n , a(k)n

)
,

(1)

where h(k)n is the representation of node vn at k-th layer, with
h
(0)
n = xn. N (n) is the set of neighbors of node vn. The
AGGREGATION (k) (·) and COMBINE(k) (·) are im-
portant functional components of GNN. After the K-layer
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propagation, the READOUT function aggregates the fea-
ture vectors of all nodes to get the representations of the entire
graph which can be used for downstream tasks:

f
(
Ĝgi

)
= READOUT

({
h(K−1)
n : vn ∈ Vi

})
. (2)

Similar to contrastive learning in the computer visual do-
main [Chen et al., 2020], a non-linear transformation g (·) is
used to map graph-level representations into the latent space
to enhance the performance:

zgi = g
(
f
(
Ĝgi

))
. (3)

Through a similar procedure, we can obtain the represen-
tations of the local view as follows:

zli = g
(
f
(
Ĝli
))

. (4)

3.3 Multi-Scale Contrastive Loss
There are significant differences in the semantic similarity
between subgraph pairs at different scales. Existing meth-
ods may suffer from some drawbacks in applying contrastive
learning between subgraph pairs. For example, GraphCL di-
rectly pulls the representations distance between small-scale
subgraphs. Direct application of such existing contrastive
learning strategies creates noisy and potentially contradic-
tory constraints that complicate the learning process and af-
fect performance. To address this, we introduce two sub-
graph pairs of different sizes by limiting the number of nodes,
namely global view and local view. After that, we optimize
the global-to-global, local-to-global and local-to-local rela-
tionships, respectively. In the following, we denote ls as a
general contrastive loss, which is introducted as the noise-
contrastive estimation loss [Oord et al., 2018], and we take
the global representation as an example to illustrate its opti-
mization process:

ls (z
g
1 , z

g
2) = − log

exp (zg1 · z
g
2/τ)

exp (zg1 · z
g
2/τ) +

∑
exp

(
zg1 · z

g
−/τ

) ,
(5)

where zg1 and zg2 are global representations from the same
graph, zg− denotes the negative samples, which can be seen as
global representations from other graphs in our architecture
and τ is a temperature hyperparameter.

Global-to-global. Since the global view pair contains most
of the content of the original graph, it owns similar seman-
tic information. Our goal is to maximize the similarity of the
global representations from the same original graph and min-
imize the similarity of the global representations from differ-
ent original graphs. The global-to-global loss can be written
as follows:

Lgg = Ep(zg) [ls (z
g
1 , z

g
2)] , (6)

where p (zg) is the distribution of zg .

Global-to-local. The global view owns a subgraph with
large size, so it contains the content of the local view to a large
extent, which ensures that the global view can share some se-
mantic information with the local view. Therefore, we define
a loss function that pulls to narrow the distance between local

Algorithm 1 The training process of the MSSGCL

Input: Training set D = {Gi}Mi=1, batch size P , training
epochs T , a GNN based encoder f , global and local augmen-
tation distributions Tg and Tl
Output:The pre-trained GNN encoder fθe

Initialize GNN encoder and regressor parameters
while t < T do

Sample graph minibatch BG from D
BĜg ∼ Tg

(
BĜg |BG

)
, BĜl ∼ Tl

(
BĜl |BG

)
zg, zl ← Eqs. (1, 2, 3, 4)
for all i ∈ {1, ..., P} do

Get positive local view pair zl1, z
l
2

Randomly choose a local view zl−
end for
Update θd to maximize the ψ

(
zl1, z

l
2

)
via Eq.(9)

for all i ∈ {1, ..., P} do
Calculate similarity loss of global views
Calculate similarity loss of global and local views
Calculate similarity loss of local views

end for
Update fθe to minimize the total loss by Eq.(11)

end while

Dataset Category Graph Node Edge

MUTAG Molecules 188 17.93 19.79
NCI1 Molecules 4110 29.87 32.30

PROTEINS Molecules 1113 39.06 72.82
DD Molecules 1178 284.32 715.66

IMDB-B Social Network 1000 19.77 95.63
COLLAB Social Network 5000 74.49 2457.78

RDT-B Social Network 2000 429.63 497.75
RDT-M5K Social Network 5000 508.52 594.87

Table 1: Statistics of datasets.

and global representations in the latent space and establish
the connection between the local and global representations,
which can be written as follows:

Lgl = Ep(zg,zl)

[
2∑

i=1

(
ls
(
zgi , z

l
1

)
+ ls

(
zgi , z

l
2

))]
, (7)

where p
(
zg, zl

)
is the joint distribution of zg and zl.

Local-to-local. Two local views from the same original
graph usually describe different contents with low semantic
similarity. Thus, instead of similarity of local representa-
tions as most existing studies have done, we encourage their
dissimilarity, making them farther apart in the representation
space. Given a measure function ld, we express maximizing
the dissimilarity between local views as minimizing the loss:

Lll = Ep(zl)

[
ld
(
zl1, z

l
2

)]
. (8)

In principle, we can choose any similarity measurement
method, such as cosine similarity, but the high dimension of
feature space may lead to the learning of meaningless repre-
sentations [Aggarwal et al., 2001], and the semantic relation-
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Method NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG.

WL 80.01±0.50 72.92±0.56 74.02±2.28 80.72±3.00 60.30±3.44 68.82±0.41 46.06±0.21 72.30±3.44 70.52
DGK 80.31±0.46 73.30±0.82 74.85±0.74 87.44±2.72 64.66±0.50 78.04±0.39 41.27±0.18 66.96±0.56 70.85

sub2vec 52.84±1.47 53.03±5.55 54.33 ±2.44 61.05±15.80 55.26±1.54 71.48±0.41 36.68±0.42 55.26±1.54 55.04
node2vec 54.89±1.61 57.49±3.57 74.77±0.51 72.63±10.20 54.57±0.37 72.76±0.92 31.09±0.14 38.60±2.30 57.10
graph2vec 73.22±1.81 73.30±2.05 70.32±2.32 83.15±9.25 71.10±0.54 75.48±1.03 47.86±0.26 71.10±0.54 70.69

InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 74.02
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 75.41

JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 74.75
JOAO V2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 75.01

SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.72±0.82 89.51±0.89 55.91±0.34 71.30±0.77 76.17

MSSGCL 81.45 ± 0.48 75.49 ± 0.70 79.73 ± 0.44 89.68 ± 0.57 73.48 ± 0.83 91.08±0.78 56.17±0.18 73.14±0.38 77.52

Table 2: Comparison of classification accuracy with other baselines in unsupervised setting. AVG. denotes the average accuracy.

ship between different local view pairs varies greatly. There-
fore, instead of using a traditional metric to push local views
away from each other, we measure the similarity of local view
pairs through a regressor with learnable parameters.

Specifically, we exploit the intuition that although local
views from different graphs may contain the same semantic
content, in general we still expect local views from the same
graph to be more closely related to each other than that from
different graphs. To implement this expectation, we utilize
a learnable regressor fθd := Rn × Rn → R+ that gives a
similarity measure between local views. The parameters of
the regressor θd can be trained in conjunction with the pa-
rameters of the encoder. Therefore, we train the regressor by
maximizing the cost function:
ψ
(
zl1, z

l
2

)
= Ep(zl

1,z
l
2)
[
fθd

(
zl1, z

l
2

)]
−Ep(zl

1⊗zl
−)

[
fθd

(
zl1, z

l
−
)]
,

(9)
where zl− is the negative sample of zl1, i.e., the local repre-
sentations from different graphs, which can be obtained by
random sampling from the same batch. And p

(
zl1 ⊗ zl−

)
is

the product of two marginal distributions. After that, we take
the trained regressor as our metric function:

ℓd = fθ′
d
, s.t. θ

′

d = argmax
θd

ψ
(
zl1, z

l
2

)
. (10)

In general, we use the regressor to make local representa-
tions from the same graph more similar than those from dif-
ferent graphs. Then, we train the encoder to minimize the
metric value between local representation pairs from the same
graph to account for their low semantic similarity.

In summary, our model can be summarized as a bi-level
iterative optimization problem and the final loss function can
be written as follows:

minLgg + λ1Lgl + λ2Lll, (11)
where λ1 and λ2 are hyper-parameters to balance different
loss terms. The implementation details of our framework are
provided in Algorithm 1.

4 Experiment
In this section, we compare the proposed method with other
advanced models in unsupervised and semi-supervised learn-
ing settings to evaluate its performance. Furthermore, we per-
form ablation experiments to demonstrate the effectiveness of
various components of the proposed method.

4.1 Setup
Datasets. We adopt the TUDataset benchmark [Morris et
al., 2020], which contains different types of graphs, i.e.,
molecules and social networks, whose details can be shown
in Table 1.

Implementation details. In our framework, we set the
global view size to be 80% of the whole and the local view
size to be 20% of the whole for molecular graphs, and 90% of
the global view size and 10% of the local view size for social
networks. The measurement function between local views is
composed of a 5-layer MLPs with batch normalization and
RELU activation functions. Its output is fed into a Sigmoid
function, which outputs a scalar to indicate the similarity be-
tween two local views.

4.2 Unsupervised Representation Learning
Experiments setting. We follow the work [Sun et al.,
2020] to evaluate the performance of the proposed method
on unsupervised graph representation learning, where the
model learns graph-level representations only through the su-
pervision signals provided by the data itself without rely-
ing on labels. After that, a SVM classifier is used to eval-
uate the quality of the representations. In addition to the
SOTA graph kernel based methods, WL [Shervashidze et al.,
2011], DGK [Yanardag and Vishwanathan, 2015], for exam-
ple, we also compare the proposed method with other eight
advanced graph self-supervised learning methods, including
node2vec [Grover and Leskovec, 2016], sub2vec [Adhikari
et al., 2018], graph2vec [Narayanan et al., 2017], Infograph
[Sun et al., 2020], GraphCL [You et al., 2020], JOAO [You et
al., 2021] and SimGRACE [Xia et al., 2022]. For our model,
we adopt GIN as the encoder, and a sum pooling is used as the
readout function. We use 10-fold cross validation accuracy to
report classification performance. Experiments are repeated
5 times.

Results analysis. The results of the downstream graph clas-
sification task are shown in Table 2. Although graph kernel-
based methods can perform well on a single dataset, they
cannot be extended to all datasets. Similar to our method,
GraphCL constructs comparison paths between small-scale
subgraph pairs, but it ignores rich global information and
cannot achieve better performance. However, MSSGCL can
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LR. Method NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K AVG.

1%

No-pretrain 60.72 ± 0.45 - - 57.46 ± 0.25 - - 59.09
Augmentations 60.49 ± 0.46 - - 58.40 ± 0.97 - - 59.45

GAE 61.63 ± 0.84 - - 63.20 ± 0.67 - - 62.42
Infomax 62.72 ± 0.65 - - 61.70 ± 0.77 - - 62.21

ContextPred 61.21 ± 0.77 - - 57.60 ± 2.07 - - 59.41
GraphCL 62.55 ± 0.86 - - 64.57 ± 1.15 - - 63.56

JOAO 61.97 ± 0.72 - - 63.71 ± 0.84 - - 62.84
JOAO V2 62.52 ± 1.16 - - 64.51 ± 2.21 - - 63.52

SimGRACE 64.21 ± 0.65 - - 64.28 ± 0.98 - - 64.25

MSSGCL 64.73 ± 0.75 - - 65.02 ± 0.78 - - 64.88

10%

No-pretrain 73.72 ± 0.24 70.40 ± 1.54 73.56 ± 0.41 73.71 ± 0.27 86.83 ± 0.27 51.33 ± 0.44 71.56
Augmentations 73.59 ± 0.32 70.29 ± 0.64 74.30 ± 0.81 74.19 ± 0.13 87.74 ± 0.39 52.01 ± 0.20 72.02

GAE 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 33.58 ± 0.13 69.30
Infomax 74.86 ± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31 73.16

ContextPred 73.00 ± 0.30 70.23 ± 0.63 74.66 ± 0.51 73.69 ± 0.37 84.76 ± 0.52 51.23 ± 0.84 71.26
GraphCL 73.63 ± 0.25 74.17 ± 0.34 76.17 ± 1.37 74.23 ± 0.21 89.11 ± 0.19 52.55 ± 0.45 73.48

JOAO 74.48 ± 0.27 72.13 ± 0.92 75.69 ± 0.67 75.30 ± 0.32 88.14 ± 0.25 52.83 ± 0.54 73.10
JOAO V2 74.86 ± 0.39 73.31 ± 0.48 75.81 ± 0.73 75.53 ± 0.18 88.79 ± 0.65 52.71 ± 0.28 73.50

SimGRACE 74.60 ± 0.41 74.03 ± 0.51 76.48 ± 0.52 74.74 ± 0.28 88.96 ± 0.62 53.94 ± 0.64 73.78

MSSGCL 74.77 ± 0.31 75.86 ± 0.52 78.99 ± 0.18 76.12 ± 0.13 90.58 ± 0.34 54.36 ± 0.24 75.11

Table 3: Comparison of classification accuracy with other baselines in semi-supervised setting. AVG. denotes the average accuracy.

Method NCI1 DD COLLAB RDT-B

MSSGCL 81.45±0.48 79.73±0.44 73.40±0.72 91.08±0.78
w/o global-global 80.27±0.51 78.62±0.49 71.92±1.10 88.87±2.42
w/o global-local 80.70±0.40 79.37±1.18 73.08±0.71 89.75±1.00
w/o local-local 80.74±0.51 79.45±0.40 72.86±0.54 89.83±1.41

Table 4: Ablation study on four benchmark datasets.

achieve good performance on all datasets, outperforming all
other baseline models. This can be attributed to the fact
that our method considers multi-scale views of the graph and
combines multi-scale features according to the semantic rela-
tionships between views to form a favorable feature space.

4.3 Semi-supervised Representation Learning

Experiments setting. For semi-supervised setting, we pre-
train a GNN in an unsupervised manner with all data, and
then fine-tune the GNN with a certain percentage of labels on
the same datasets. Since the pre-training and fine-tuning of
graph-level tasks in semi-supervised learning are less stud-
ied in the past, we additionally introduce several network
embedding methods: GAE [Kipf and Welling, 2016], local
global representation consistency enforcement [Velickovic et
al., 2019] and ContextPred [Hu et al., 2020]. The rest of the
baselines also include SOTA graph self-supervised learning
methods, such as GraphCL [You et al., 2020], JOAO [You
et al., 2021] and SimGRACE [Xia et al., 2022]. Following
the settings in GraphCL, we employ 5-layer Residual Graph
Convolutional Network (ResGCN) [Chen et al., 2019b] with
128 hidden dimensions as our backbone network, and adopt
10-fold cross validation. Experiments are repeated 5 times.
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Figure 3: Classification accuracies of MSSGCL on NCI1 under dif-
ferent hyper-parameters.

Results analysis. For the semi-supervised graph classifica-
tion task, results are shown in Tabel 3, where two subtasks are
reported with label rates of 1% and 10%, respectively. For 1%
label rate setting, MSSGCL outperforms all the baseline mod-
els. For 10% label rate setting, MSSGCL greatly outperforms
the previous baselines and achieves the optimal performance
on 6 out of 7 datasets. Compared with GraphCL, which only
considers single size subgraph, MSSGCL achieves an aver-
age 2% improvement.
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4.4 Ablation Study
In this section, we will study three contrastive relations, i.e.,
global-global, global-local, and local-local. We construct dif-
ferent variants by removing different loss terms to verify their
effectiveness.

As can be seen from results in Table 4, when the model
removes the global-global term, the performance drops sig-
nificantly because the term contains rich global information.
When the local-local contrastive relationship is added to the
loss term, the model performance can be improved to a cer-
tain extent, which clearly shows that our regressor is effec-
tive. And when the model considers three contrast relation-
ships at the same time, the model performance can reach the
optimum.

4.5 Hyper-parameters Study
Balance factor for the loss. In this section, we investigate
the sensitivity of hyper-parameters λ1 and λ2. Figure 3(a)
shows the classification accuracy of MSSGCL with different
values. With the increase of λ1, the performance of the model
has been continuously improved, but it tends to be saturated
after a certain level, which shows that establishing the con-
nection between local and global can help the model learn
better representations. On the other hand, properly encourag-
ing the dissimilarity of local representations can promote the
performance of the model, but when λ2 is too large, the per-
formance of the model will decrease. We believe that this is
because there is still a low semantic similarity between local
view pairs, excessive dissimilarity can impair the quality of
learned representations.

Batch size, hidden size and epochs. Figure 3(b) and Fig-
ure 3(c) show the performance of MSSGCL at different batch
sizes and epochs. From results of two figures, it can be seen
that larger batch size and training epochs lead to better per-
formance, which is consistent with the findings of the work
[Chen et al., 2020]. The possible reason is that larger batch
size provides more samples for comparison. Similarly, train-
ing longer time will generate more negative samples. Fig-
ure 3(d) shows the sensitivity of the hidden size. We can see
that with the increasing of hidden dimension from 32 to 128,
the performance gradually improves. As the hidden dimen-
sion continues to increase, the performance begins to degrade,
which may be caused by the model overfitting.

5 Related Work
5.1 Graph Neural Network
In recent years, graph neural networks have emerged as a
promising method for analyzing graph due to their power-
ful expressive power. They mainly follow the mechanism of
message passing (or neighborhood aggregation) [Gilmer et
al., 2017]. Each node captures the attribute and structural
information of neighbor nodes through message passing to
update its own node representations, and then a shared linear
transform is used to map the representations of nodes into a
new feature space. After the iteration of k-layer, the represen-
tation vectors of nodes can capture the information of k-hop
neighbors. Graph Convolutional Network (GCN) [Welling

and Kipf, 2017] adopts the information of 1-hop neighbors to
update node features, where the weight of each neighbors de-
pends on the node degree. Graph Attention Network (GAT)
[Veličković et al., 2018] considers the weight difference of
neighbors through attention mechanism. Graph Isomorphic
Networks (GIN) [Xu et al., 2019], inspired by the Weisfeiler-
Lehman (WL) kernel, use simple summation operations and
multilayer perceptrons (MLPs) to achieve the most powerful
discriminative capabilities. These methods mainly focus on
supervised learning, which means that a large amount of la-
beled graph is required. However, obtaining manually an-
notated labels is expensive in terms of time and labor, so
our method mainly focuses on unsupervised/self-supervised
learning.

5.2 Graph Contrastive Learning

Contrastive learning has been widely used in the field of com-
puter vision with promising results. Affected by this, some
recent studies have begun to introduce contrastive learning
into the field of graph learning. The basic idea is to pro-
mote the embedding of augmentation views generated from
the same instance to be closer, while those from different in-
stances are opposite. Encoders trained in this way can be
used for downstream tasks. DGI [Velickovic et al., 2019]
opens a precedent for graph contrastive learning, which treats
node and graph-level representations as postive pairs and
maximize their mutual information. MVGRL [Hassani and
Khasahmadi, 2020] further improves model performance by
extending DGI to multiple views and cross-contrasting be-
tween them through graph diffusion. Sub-Con [Jiao et al.,
2020] learns node representations by sampling the subgraph
and taking the central node and subgraph as a postive sam-
ple pair. GraphCL[You et al., 2020] proposes four data aug-
mentation methods for graphs, and proves subgraph sampling
is an augmentation method beneficial to different types of
datasets. Cuco [Chu et al., 2021] combines curriculum learn-
ing with contrastive learning, and proposes a scoring and
a pacing functions to automatically select negative samples
during training. Although the above methods have made good
progress in GCL, they ignore the semantic association be-
tween augmented views, while our method can adopt differ-
ent learning strategies according to the semantic information
of views at different scales.

6 Conclusion
In this paper, we investigate the semantic association among
subgraphs at different scales, and propose a novel multi-scale
subgraph contrastive learning method. Based on the seman-
tic association, we define two different types of subgraph,
i.e., global view and local view. We construct a variety
of contrastive relations between views, and implement dif-
ferent learning strategies to achieve mutual matching of se-
mantic information between augmented views. We conduct
graph classification experiments on eight real-world datasets,
and the experimental results demonstrate that the proposed
method can outperform the state-of-the-arts in unsupervised
and semi-supervised learning.
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