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Abstract

Recently, group link prediction has received in-
creasing attention due to its important role in
analyzing relationships between individuals and
groups. However, most existing group link pre-
diction methods emphasize static settings or only
make cursory exploitation of historical informa-
tion, so they fail to obtain good performance in dy-
namic applications. To this end, we attempt to solve
the group link prediction problem in continuous-
time dynamic scenes with fine-grained temporal in-
formation. We propose a novel continuous-time
group link prediction method CTGLP to capture
the patterns of future link formation between in-
dividuals and groups. A new graph neural net-
work CTGNN is presented to learn the latent rep-
resentations of individuals by biasedly aggregat-
ing neighborhood information. Moreover, we de-
sign an importance-based group modeling func-
tion to model the embedding of a group based on
its known members. CTGLP eventually learns a
probability distribution and predicts the link target.
Experimental results on various datasets with and
without unseen nodes show that CTGLP outper-
forms the state-of-the-art methods by 13.4% and
13.2% on average.

1 Introduction
Link prediction, aiming to predict relationships between pairs
of entities, has received wide attention as the increasing im-
portance of network data [Lü and Zhou, 2011; Martı́nez et
al., 2016; Kumar et al., 2020]. Since it helps us under-
stand the inherent characteristics and evolutionary mecha-
nisms of real-world networks, link prediction has been widely
applied in many practical applications, such as knowledge
graph completion [Rossi et al., 2021], biochemical reaction
reconstruction [Nasiri et al., 2021] and content recommenda-
tion [Liu, 2022]. Almost all existing link prediction methods
focus only on relationships between pairs of entities [Zhou,
2021], but the analysis of relationships between individuals
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Figure 1: Difference between continuous-time link prediction and
continuous-time group link prediction. (1) As shown in left part,
in continuous-time link prediction, we predict the probability of an
edge existing between individual v1 and v3 at future time t8. (2)
As shown in right part, in continuous-time group link prediction, we
infer the possibility of generating a link between individual v4 and
group s2 at future time t10.

and groups (i.e., group link prediction) also deserves atten-
tion since the patterns of relationship formation are not ex-
clusively limited to a pair of entities [Stanhope et al., 2019;
Sha et al., 2021].

Nevertheless, in many real scenarios, our focus is on the
prediction of future relationships between individuals and
groups, such as organizers of hobby clubs expecting to in-
vite target participants to their future events. The task of pre-
dicting future relationships between individuals and groups
is known as continuous-time group link prediction. The dif-
ference between continuous-time group link prediction and
continuous-time link prediction is shown in Figure 1. De-
spite recent efforts, three deficiencies remain in addressing
continuous-time group link prediction problem with fine-
grained temporal information. First, previous methods rarely
discuss future links between individuals and groups, but tend
to mine missing ones. The assumption that all members
are connected to the group at the same time makes the fine-
grained raw temporal information missing. Second, individu-
als are assumed to be isolated from each other, which neglects
the neighborhood information that laterally depicts dynamic
link preferences. Third, equal treatment of all group mem-
bers leads to ignoring the diversity of members’ importance
in groups.

In this paper, we propose CTGLP, a novel continuous-time
group link prediction method, to infer future relationships
between individuals and groups in continuous-time dynamic
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networks with fine-grained temporal information. We first
present CTGNN, a new graph neural network (GNN) with a
continuous-time neighbor sampling strategy, to learn the em-
beddings of individuals, where a novel aggregation function
is designed to jointly capture neighborhood features and fine-
grained temporal information. Second, an importance-based
group modeling function is provided to model the latent rep-
resentation of a group based on the embeddings of existing
members. Finally, CTGLP outputs conditional probability
distributions by using the embeddings of groups and finds out
the link targets.

The contributions of this paper are summarized as follows.

• We propose a novel continuous-time group link pre-
diction method CTGLP, which learns the patterns
of link formation between individuals and groups in
continuous-time dynamic networks with fine-grained
temporal information and predicts the future links be-
tween individuals and groups.

• We propose a new graph neural network CTGNN to
learn the representations of individuals. A continuous-
time neighbor sampling strategy is designed to con-
trol the computational consumption, and an aggrega-
tion function CTAgg is presented to bias the aggregation
weights of the features of sampled neighbors.

• We propose an importance-based group modeling func-
tion that models the groups into the latent space by
measuring the importance of each member to the group
based on the time of link formation.

• Extensive experiments on various datasets with and
without unseen nodes are conducted to validate CTGLP
and the experimental results demonstrate that CTGLP
outperforms the baselines by a significant margin, with
average gains of 13.4% and 13.2%.

2 Related Work
Link prediction. Based on the network structural simi-
larity, heuristic link prediction methods, such as Common
Neighbors (CN) [Liben-Nowell and Kleinberg, 2007] and
Adamic-Adar (AA) [Adamic and Adar, 2003], assume that
edges are more likely to exist between nodes with higher
similarity scores. However, they only exploit shallow topo-
logical features of networks and lack general applicability.
Besides, embedding techniques have also shown great po-
tential in link prediction. Some embedding algorithms, such
as DeepWalk [Perozzi et al., 2014], node2vec [Grover and
Leskovec, 2016], HTNE [Zuo et al., 2018], etc., calculate
the possibility of generating links between nodes using the
embeddings. Nevertheless, some studies [Mara et al., 2020;
Ghasemian et al., 2020] have demonstrated that embedding
models may be inferior to well-designed mechanistic meth-
ods. Recently, some well-designed methods have shown
their superiority in link prediction. TDGNN [Qu et al.,
2020] leverages temporal information in dynamic networks
to achieve continuous-time link prediction. GNMFCA [Lv et
al., 2022] predicts future links using global and local infor-
mation of temporal networks. GC-LSTM [Chen et al., 2022]
applies an embedded Long Short-Term Memory (LSTM) of

Graph Convolutional Network to perform dynamic link pre-
diction. Dyngraph2vec [Goyal et al., 2020] integrates longer-
term temporal information to learn node embeddings and pre-
dict future links. LP-ROBIN [Barracchia et al., 2022] uti-
lizes incremental embedding to capture temporal dynamics
and predict new connections. Despite the great success of
link prediction, existing link prediction methods cannot be
directly applied to group link prediction focusing on the rela-
tionships between individuals and groups because they only
concentrate on the relationships between node pairs.

Group link prediction. Due to the inevitable limitations of
link prediction methods applied to group link prediction, re-
cent attempts have been made to solve the group link predic-
tion problem. An LSTM-based model [Stanhope et al., 2019]
is elaborately designed to address this problem. Feeding the
sum of random vectors of members in a series of groups into
LSTM, this model learns the embedding vectors of members
and trains a classifier to predict the target. Despite the input
of a series of group vectors, it ignores the neighborhood in-
formation that potentially expresses link preferences and may
introduce information noise. Subsequently, a CVAE-based
model [Sha et al., 2021] is proposed to estimate the probabil-
ity of link existence by tuning the model parameters in a su-
pervised manner. However, the absence of historical interac-
tion information between individuals and groups prevents the
model from addressing the problem of continuous-time group
link prediction well. To further leverage historical informa-
tion, CVAEH [Sha et al., 2021] additionally introduces a vec-
tor that encodes the previous groups. Nevertheless, the rough
encoding of historical group information is still not a good
solution. Summarizing existing group link prediction meth-
ods, they do not consider the fine-grained historical group in-
formation and fail to generalize to unseen data. Therefore,
how to infer the future relationships between individuals and
groups more effectively remains an open question.

3 Preliminaries
3.1 Definitions and Problem
Definition 1 (Continuous-time interaction network). A
continuous-time interaction network G = (V,ET , T ) con-
sists of node set V , edge setET and time set T , where vi ∈ V
denotes the node in the network. etij ∈ ET denotes the
edge/interaction between node vi and node vj at time t ∈ T .

Definition 2 (Group). Individuals jointly participating in
a certain event are denoted as a group, i.e., si =
{vt1i,1, v

t2
i,2, . . . , v

tk
i,k} ⊆ V , where i denotes the index of a

group. vtki,k denotes the k-th member node of group si, where
tk denotes the link time and k ≥ 2 indicates that the number
of members in a group should not be less than two. si ⊆ V
indicates that the members of group si are from node set V .

Problem 1 (Continuous-time group link prediction). Given a
continuous-time interaction network G = (V,ET , T ), there
is a node set V = {v1, v2, . . . , vN} with N nodes and a
group set S = {s1, s2, . . . , sM} with M groups. For a group
si = {vt1i,1, v

t2
i,2, . . . , v

tk
i,k} ⊆ V , max(t1, t2, . . . , tk) ≤ t

with k members observed at current time t, the purpose of
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Figure 2: A toy example of the construction of a continuous-time
interaction network.

continuous-time group link prediction is to predict the target
vt

′

i,k+1 ∈ V \si that is most likely to be linked to group si at
the future time t′(t′ > t) based on the k known members in
group si. Formally, it is defined as:

vt
′

i,k+1 = F(vt1i,1, v
t2
i,2, . . . , v

tk
i,k), (1)

where F is the continuous-time group link prediction func-
tion. {vt1i,1, v

t2
i,2, . . . , v

tk
i,k} denotes the k known members of

group si observed at current time t.

3.2 Construction of Continuous-Time Interaction
Network

The historical relationships between individuals and groups
can be represented as a continuous-time dynamic network
by decomposing the links between external individuals and
groups into multiple links between the external individu-
als and group members. Figure 2 shows how to build a
continuous-time interaction network. If individual v links to
group s at time t, individual v directly connects to the existing
members of group s and the timestamps of the edges are all
t, as v is the initiator of the link action. For example, user v4
links to group s3 containing members v1 and v5 at time t7, so
two directed edges with timestamps of t7 from v4 to v1 and v5
are generated. Specially, if individuals vi and vj are the earli-
est two members in the group and their appearance times are
ti and tj (ti < tj), a bidirectional edge with a timestamp tj
will be added between them, as the appearance of the first two
members indicates the formal formation of a group, and we
consider the earliest two members to be visible to each other.
For example, a bidirectional edge with a timestamp t4 exists
between v1 and v5. Note that multiple edges exist between
two individuals when they link to multiple same groups. For
example, there are two edges between v4 and v5.

4 Methodology
Figure 3 shows the architecture of CTGLP. It consists of three
main components: 1) Individual Representation Learning, 2)
Importance-based Group Modeling and 3) Prediction. The
Individual Representation Learning component aims to learn
the latent embeddings of individuals using our proposed CT-
GNN. The Importance-based Group Modeling component is
to model the latent representations of groups. The Prediction
component aims to predict the targets.

4.1 Individual Representation Learning
Given a continuous-time interaction network G =
{V,ET , T} with the initial random embeddings of nodes
X = {~x1, ~x2, . . . , ~xN}, ~xi ∈ RD, individual representation
learning part obtains the final latent embeddings of members
Z = {~z1,~z2, . . . ,~zN},~zi ∈ Rd using our proposed CTGNN,
where D and d are dimensions.

Continuous-Time Neighbor Sampling
Whereas previous GNNs simply examine k-hop neighbor-
hood or the sampling schemes are only applicable to static
networks [Zhou et al., 2020], the sampling process in all
convolutional layers of our CTGNN are continuous-time re-
spected, i.e., the time of the sampled edge should be less than
that of the sampled edge of the previous layer. It can be en-
sured that all sampled neighbors of the central node exist in
the past with respect to the central node, thus ensuring that
all sampled neighborhood information exists prior to the cur-
rent time during aggregation. We first define the time-limited
neighbor set ΓT (u) of node u at time T :

ΓT (u) = {(v, t) | e = (u, v, t) ∈ ET ∩ t < T }. (2)

Notably, node v may appear multiple times in ΓT (u) as mul-
tiple edges may exist between the same pair of nodes.

Then, in one convolutional iteration, we sample a fixed
number of neighbors from ΓT (u) for node u:

Samp =

{
ΓT (u), |ΓT (u)| ≤ θ;

rθ(ΓT (u)), |ΓT (u)| > θ,
(3)

where rθ(·) is the random sampling operation. θ is the neigh-
bor sampling size and θ may be different for each layer.

Performing multiple sampling, CTGNN obtains higher-
order neighbors and reduces the number of neighbors in-
volved in the computation. The l-order continuous-time sam-
pled neighbor set of node u at time T can be obtained by
performing neighbor sampling operations l times:

N̂ l
T (u) = Sampl

(
ΓlTl(. . . Samp1(Γ1

T1(u)))
)
, (4)

where Sampl represents the sampling operation in the l-th
convolutional layer. Ti+1 < Ti for 1 ≤ i < l, and T1 = T .

Embedding Update
By iteratively aggregating neighborhood features, GNNs
learn the embeddings of nodes. A simple but effective ag-
gregation scheme is mean operator [Kipf and Welling, 2017;
Hamilton et al., 2017], which assumes that all neighbors of
a central node contribute equally to the update of its new
representation. However, mean operator may not be the
optimal aggregation scheme for representation learning in
continuous-time group link prediction, since the impact of
different neighbors on the central node may vary dramatically
depending on the time of link formation. Inspired by a study
in event-based social networks [Pham et al., 2015], we argue
that the groups users recently linked to are typically more rep-
resentative of their preferences than those they linked to ear-
lier. The manifestation of this insight in aggregation is that
a newly connected neighbor has a higher contribution to the
embedding update of the central node.
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Figure 3: The overall framework of CTGLP. CTGLP is composed of three main components: individual representation learning, importance-
based group modeling and prediction.

We provide an aggregation coefficient α calculated by our
aggregation function CTAgg to bias the contribution of each
neighbor. Given the edge time tij between node ui and uj as
well as the edge time tik between node ui and uk, if tij > tik,
the aggregation coefficient αtij of node uj should be greater
than the aggregation coefficient αtik of node uk. At the l-th
layer of CTGNN, the embedding update of node u at time t
can be denoted as follows:

~n(l)
u = AGG(l)({αtuv · ~h(l−1)

v , v ∈ N̂ l
t (u)}), (5)

~h(l)
u = σ(W(l) · COM(~h(l−1)

u , ~n(l)
u ) + w(l)), (6)

where AGG(·) is a function that aggregates the information
of sampled neighbors and COM(·) is a function that com-
bines information about sampled neighborhoods and the pre-
update information of the central node in the previous layer.
σ is a nonlinear activation. N̂ l

t (u) is the l-th hop sampled
neighbor set of node u at time t. W and w are learnable
shared parameter matrices. αtuv is the aggregation coefficient
of neighbor v at time t , and it can be interpreted as the con-
tribution of v to the embedding update of the central node u
at time t. The calculation of αtuv is defined as:

αtuv =
exp (tuv − t)∑

v∈N̂ l
t (u)∪u

exp (tuv − t)
, (7)

where tuv is the time of the edge between nodes u and v.
After obtaining the embedding ~hu of node u output by the

last convolution iteration, a Multiple-layer Perceptron (MLP)
with activation functions is employed to attain the final rep-
resentation ~zu of node u:

~e(1)u = σ(U(1) · ~hu + u(1)),

~e(2)u = σ(U(2) · ~e(1)u + u(2)),

· · ·
~zu = σ(U(j) · ~e(j−1)u + u(j)),

(8)

where j is the index of neural layers. U and u are learnable
parameter matrices.

4.2 Importance-based Group Modeling
The practice of previous work [Stanhope et al., 2019] is to
sum up the vectors of all group members as the vector of the
group. While it is intuitively sound, it ignores the fact that
the influence of different members on the group may differ
greatly. To this end, we present an importance-based group
modeling strategy to represent groups into the latent space.

We first define an importance factor β to measure the im-
portance of each group member. The value of the importance
factor depends on the time when members are linked to the
group, i.e., more recent members have larger importance fac-
tor values as they are intuitively more in line with the group
formation trend. Formally, the importance factor of member
k on group si is defined as:

βik =

1
log (T−tk)∑K
j=1

1
log (T−tj)

, (9)

where K is the number of members in group si and T is the
prediction time for group si.

Given a group si with K members (i.e., si =
{vi,1, vi,2, . . . , vi,K}) and the embeddings of these K mem-
bers (i.e., {~zi,1,~zi,2, . . . ,~zi,K}), the importance-based group
modeling part models the vectors of members as the vector
~mi ∈ Rs of group si, where s is the size of the group vector.
The importance-based group modeling for group si is:

~pi =
K∑
j=1

βij · ~zi,j , (10)

~mi = C2 · σ(C1 · ~pi + c), (11)

where C1, C2 and c are learnable parameter matrices.

4.3 Prediction
The final outputs of the importance-based group modeling
part are fed into an MLP, and a Softmax activation function
is employed to generate the link probability distributions be-
tween candidate individuals and groups. Formally, given the
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Algorithm 1 Training of CTGLP
Input: Continuous-time interaction network G =
(V,ET , T ); set of node initial embeddings {~xv, ∀v ∈ V };
set of groups S = (s1, s2, . . . , sM ), si ⊂ V .
Parameter: Convolutional layer depth K; neighbor sam-
pling size θk, ∀k ∈ {1, . . . ,K}; learnable parameters.
Output: Continuous-time group link prediction function F .

1: while model not converge do
2: for i = 1 : M do
3: for u ∈ si do
4: N̂K

T (u)← Sample-Neighbors(u,G,K, T , θ)
5: ~zu ← Update-Embedding(~xu, ~xN̂K

T (u),K)
6: end for
7: ~mi ← Group-Modeling({βu · ~zu, u ∈ si})
8: Calculate link probabilities:

Pi ← Softmax( ~mi,G,g,Q,q)
9: Obtain the target: ui ← argmax(Pi)

10: end for
11: Update parameters by stochastic gradient descent
12: end while
13: return F

latent vector ~mi of group si, the prediction process is:

~q
(1)
i = σ(G(1) · ~mi + g(1)),

· · ·
~q
(k)
i = σ(G(k) · ~q(k−1)

i + g(k)),

(12)

Pi = Softmax(Q · ~q(k)
i + q) (13)

where G, Q, g and q are learnable parameter matrices. k
is the index of hidden layers. Pi is a link probability dis-
tribution whose elements represent the connection possibility
between individuals and group si. The index corresponding
to the element with the largest value in Pi is the index of the
target predicted by CTGLP.

4.4 Training
Algorithm 1 shows the overall process of training. Let yi
denote the one-hot encoding of the target in the i-th training
sample and Pi be the link probability distribution output by
CTGLP. Our objective function is formulated as:

L =
1

M

M∑
i=1

N∑
j=1

yij log (Pij) (14)

where M denotes the number of group samples. N denotes
the number of nodes in the node set V . yij and Pij are the
j-th element of yi and Pi, respectively.

5 Experiments
5.1 Experimental Setup
Datasets. MovieLens-100K (ML100K for short) [Harper
and Konstan, 2015] and MovieLens-25M (ML25M for
short) [Harper and Konstan, 2015] contains rating data from
users on movies. CiaoDVD [Guo et al., 2014] consists of
DVD rating data. We select the rating data and regard the set

Datasets Nodes Edges Groups Unseen*

ML100K 755 59 118 590 42
CiaoDVD 8 714 165 598 4 040 1 195
ML25M 16 065 1 048 836 18 882 1 578
ML100Kw/o 650 22 683 510 0
CiaoDVDw/o 5 766 85 562 3 341 0
ML25Mw/o 9 998 491 704 16 494 0
* The value indicates the number of nodes that are not presented

during training.

Table 1: Statistics of two versions of the three datasets. Note that
the subscript w/o denotes the dataset without unseen nodes.

of users who rate the same item as a group and take out the
last member of each group as our prediction target. The num-
ber of members in a group are set to be 3 to 20. To construct
the datasets without unseen nodes, we remove nodes that ap-
pear in validation and testing but not in training, and further
clean the data. The statistics of datasets are shown in Table 1.

Metrics. To evaluate the performance of methods, we in-
troduce three widely used evaluation metrics: Hit Ratio@K,
Normalized Discounted Cumulative Gain@K and Mean Re-
ciprocal Rank@K (denoted as HR@K, NDCG@K and
MRR@K respectively). HR@K measures the ability to
find the target and emphasizes the accuracy of prediction.
NDCG@K and MRR@K measure the ability to rank targets
and emphasize the ranking of targets.

Baselines. We compare our CTGLP with the following
baselines: (1) Three Group link prediction methods. LSTM-
based model (LSTM for short) [Stanhope et al., 2019] em-
ploys LSTM to combine the historical information of groups
and outputs link probabilities. CVAE-based model (CVAE
for short) [Sha et al., 2021] uses CVAE to reconstruct the
membership of groups using a vector encoding an entire
group and a vector encoding known members. CVAEH [Sha
et al., 2021] additionally introduces a vector encoding his-
torical information of previous groups for prediction. (2)
Two neural network-based methods. MLP [Taud and Mas,
2018] utilizes mini-batch gradient descent strategy to update
model parameters. GraphSAGE (GSAGE for short) [Hamil-
ton et al., 2017] uses multi-layer aggregation functions to
learn representations of nodes and obtains group vectors to
make prediction. (3) Two heuristic link prediction methods.
AA [Adamic and Adar, 2003] utilizes correlation coefficients
of overlapping neighborhoods between nodes to measure the
similarity between nodes. CN [Liben-Nowell and Kleinberg,
2007] uses the number of common neighbors between nodes
to measure the similarity between nodes. Nodes with higher
similarity to members of a group are considered more likely
to link to the group. (4) Three network embedding meth-
ods. DeepWalk (DW for short) [Perozzi et al., 2014] uses
random walks to generate vectors of nodes. node2vec (n2v
for short) [Grover and Leskovec, 2016] learns node repre-
sentations using biased random walks. HTNE [Zuo et al.,
2018] integrates the Hawkes process and attention mecha-
nism to learn the time-related representations of nodes. The
individual-group link scores are obtained by aggregating the
similarities between individuals.
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Method HR@K(%) NDCG@K(%) MRR@K(%)
K=10 K=20 K=10 K=20 K=10 K=20

M
L

10
0K

LSTM 15.9 22.7 8.7 10.4 6.6 7.0
CVAE 28.8±1.5 39.0±1.7 16.1±1.4 18.6±1.4 12.3±2.2 13.0±2.3

CVAEH 23.7±1.9 32.2±1.0 12.3±1.1 14.5±0.8 8.9±1.3 9.5±1.3
MLP 14.4±1.1 26.1±1.2 6.3±1.4 9.3±1.2 4.1±1.2 4.7±1.4

GSAGE 27.1±0.7 35.6±0.4 16.2±0.4 18.3±0.4 12.9±0.6 13.5±0.5
CTGLP 30.5±0.9 42.4±0.5 21.5±0.9 24.4±0.8 18.6±0.7 19.4±0.7

C
ia

oD
V

D

LSTM 10.6 14.7 6.0 7.0 4.5 4.8
CVAE 21.6±0.7 27.1±0.8 11.9±0.5 13.4±0.3 9.0±0.4 9.4±0.3

CVAEH 16.1±0.8 23.5±1.9 10.0±1.1 11.9±1.3 8.2±1.1 8.7±1.2
MLP 15.2±1.5 20.5±2.6 7.2±0.6 8.6±0.8 4.8±0.5 5.2±0.4

GSAGE 17.6±0.8 24.8±0.8 8.8±0.7 10.6±0.5 6.1±0.5 6.5±0.6
CTGLP 20.8±0.6 28.7±0.7 11.7±0.4 13.7±0.2 8.8±0.7 9.4±0.8

M
L

25
M

LSTM 20.5 25.3 13.9 15.1 11.9 12.2
CVAE 22.6±2.1 26.9±2.1 16.6±1.6 17.7±1.7 14.7±1.5 15.0±1.5

CVAEH 19.4±0.8 23.4±0.6 14.3±1.1 15.3±0.8 12.7±1.0 12.9±0.8
MLP 19.6±1.4 23.4±3.1 14.4±1.5 15.4±2.0 12.8±1.6 13.1±1.8

GSAGE 27.1±0.4 31.9±0.6 17.1±0.3 18.3±0.4 14.0±0.2 14.3±0.3
CTGLP 30.0±0.7 35.8±0.8 19.6±0.4 21.0±0.5 16.3±0.6 16.7±0.6

Table 2: Performance of various methods on datasets with unseen
nodes. Items with the highest values are marked in bold.

Implementation details. For each dataset, we split it into
8:1:1 for training, validation and testing. We implement our
CTGLP with PyTorch 1.6.0 and adopt the SGD as the opti-
mizer. We apply batch normalization and dropout strategy
with p = 0.5 for ML100K and CiaoDVD and p = 0.1 for
ML25M. The dimension D of initial embeddings, the dimen-
sion d of hidden states and the dimension s of group vec-
tors are all tested in {16, 32, 64, 128, 256, 512}. The batch
size and learning rate are searched in {32, 64, 128, 256} and
{0.005, 0.01, 0.05, 0.1} respectively. Two convolutional lay-
ers are employed in CTGNN, and the neighbor sampling sizes
are empirically set to 25 and 10 respectively. For the parame-
ters of our method, we initialize it randomly using a uniform
distribution with values from 0 to 1. For baselines, we initial-
ize the parameters according to the corresponding paper.

5.2 Performance Comparison
Performance on datasets with unseen nodes. From the
overall results in Table 2, we observe that CTGLP outper-
forms most of the competing methods by a comfortable mar-
gin. On ML100K, our method obtains better performance
than all baselines, especially in ranking targets. Specifically,
CTGLP achieves average gains of 7.3%, 31.9% and 43.9%
in terms of HR, NDCG and MRR scores. On CiaoDVD,
CTGLP outperforms other baselines except for CVAE when
K = 10. On ML25M, our method shows its great superior-
ity in finding and ranking targets. In terms of three evaluation
metrics, CTGLP obtains average gains of 11.45%, 14.7% and
11.1%, respectively.
Performance on datasets without unseen nodes. From the
overall results in Table 3, we can see that CTGLP always
achieves the best performance or the second-best one. On
ML100Kw/o, our method is slightly worse than CVAE in
HR scores, but it brings average gains of 22.4% and 45.9%
in NDCG and MRR scores, which indicates that CTGLP
can rank targets better. It is worth noting that most meth-

Method HR@K(%) NDCG@K(%) MRR@K(%)
K=10 K=20 K=10 K=20 K=10 K=20

M
L

10
0K

w
/o

AA 8.8 18.7 4.3 6.8 3.1 3.8
CN 7.7 18.7 3.5 6.3 2.2 3.0
DW 0.0 2.0 0.0 0.5 0.0 0.1
n2v 0.0 4.0 0.0 1.0 0.0 0.3

HTNE 0.0 8.0 0.0 2.0 0.0 0.5
LSTM 4.7 7.0 2.0 2.6 1.2 1.3
CVAE 30.0±1.6 38.0±1.1 17.7±1.1 19.6±1.1 13.8±1.3 14.3±1.3

CVAEH 24.0±3.0 28.0±2.3 12.2±1.9 13.1±1.8 8.4±1.9 8.7±1.9
CTGLP 28.0±1.0 34.0±0.6 22.1±0.9 23.5±1.0 20.3±0.8 20.7±0.8

C
ia

oD
V

D
w
/o

AA 20.4 28.7 12.6 14.8 10.3 10.9
CN 19.3 30.1 12.1 14.8 9.9 10.6
DW 0.9 1.9 0.3 0.6 0.2 0.3
n2v 0.5 1.0 0.2 0.4 0.1 0.2

HTNE 0.5 2.0 0.2 0.5 0.1 0.2
LSTM 13.0 16.6 8.2 9.1 6.7 7.0
CVAE 22.1±1.7 26.8±1.0 12.6±1.1 13.8±0.9 9.7±0.9 10.0±0.9

CVAEH 22.5±0.9 27.7±1.0 13.1±0.7 14.4±0.6 10.2±0.6 10.5±0.6
CTGLP 25.5±0.9 30.7±1.0 17.0±0.5 18.3±0.4 14.3±0.9 14.7±1.0

M
L

25
M

w
/o

AA 42.5 45.1 31.8 32.4 28.5 28.7
CN 42.7 45 31.9 32.5 28.6 28.7
DW 2.1 5.4 0.7 1.5 0.3 0.5
n2v 1.3 3.5 0.5 1.0 0.2 0.4

HTNE 1.3 3.1 0.5 0.9 0.2 0.3
LSTM 27.3 32.6 19.8 21.1 17.5 17.8
CVAE 27.8±0.5 34.2±0.6 19.3±0.4 20.9±0.7 16.6±0.7 17.1±0.5

CVAEH 27.2±0.4 32.1±0.7 19.3±0.5 20.6±0.4 16.9±0.4 17.2±0.4
CTGLP 45.8±1.1 54.4±0.9 28.3±0.8 30.5±1.0 22.9±1.1 23.5±1.3

Table 3: Performance of various methods on datasets without unseen
nodes. Items with the highest values are marked in bold.

ods, including CTGLP, perform worse on this dataset than
on ML100K. We argue that the removal of group members
may affect the intrinsic nature of small dataset to a greater
extent. On CiaoDVDw/o, our method always outperforms all
competing models. Specifically, in three different metrics,
CTGLP outperforms the best comparative method by 10.1%,
26.6% and 36.8% on average. On ML25Mw/o, CTGLP is
inferior to heuristic link prediction methods AA and CN in
the ability to rank targets, but it is still satisfactory in find-
ing targets (obtains average gain of 13.9%). Besides, task-
independent embedding-based methods perform quite poorly,
indicating that they are not suitable for continuous-time group
link prediction. Compared to the performance on ML25M,
the gains obtained by the three well-designed group link
prediction methods (LSTM, CVAE and CVAEH) are much
smaller than those of our method, suggesting that the lack of
fine-grained temporal information and neighborhood features
does limit the performance improvement of models.
Summaries. From the above analysis, several conclusions
are drawn: (1) Our proposed CTGLP outperforms most base-
lines in datasets with and without unseen nodes, especially in
finding targets. (2) Neighborhood information (the features
of neighbors) is helpful to enhance the model performance.
(3) Task-independent embedding-based methods are not suit-
able for group link prediction directly.

5.3 Comparison of Training and Inference Time
As shown in Figure 4, we can see that the training of our
method is faster than LSTM and GSAGE and the inference is
faster than CVAEH and GSAGE. MLP is always the fastest
due to its simple architecture, while LSTM takes the longest
time to train.
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Figure 4: Comparison of training time and inference time of six
methods on ML25M.
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Figure 5: Impact of various components on performance under
ML100K and CiaoDVD. IGM denotes the importance-based group
modeling.

5.4 Ablation Study
The ablation study results of various components on the per-
formance of our method are shown in Figure 5. From the
overall results, we observe that: (1) Pure CTGLP performs
much better than its three variants in terms of all metrics. (2)
The performance of CTGLP w/o CTAgg is similar to that of
CTGLP w/o IGM. (3) CTGLP w/o CTAgg&IGM obtains
the worst performance and is far inferior to the other variants,
especially in seeking out targets. The results verify our idea
that, depending on the time, different neighbors contribute
differently to the feature updates of the central nodes and dif-
ferent members have varying importance within the group.

5.5 Hyper-parameter Study
Effect of Embedding Dimension. The experimental re-
sults of the effect of embedding dimension are shown in Fig-
ure 6. Overall, the performance of our proposed CTGLP in
three metrics increases with the increasing embedding size,
but the performance deteriorates after reaching a dimension
bottleneck. In particular, CTGLP makes the best performance
when the hidden state size d is 128 and the group vector size
s is 16. The changes in embedding sizes have only a slight
effect on performance, which shows the robustness of our
method. Intuitively, using a larger embedding size enhances
the vector representation, but it is not always optimal and in-
creases model complexity. Therefore, we need to choose an
appropriate size to trade off performance and complexity.

Effect of Neighbor Sampling Size. The experimental re-
sults of the effect of neighbor sampling size are shown in
Figure 7. In general, the performance of our method first
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Figure 6: Impact of embedding dimension on method performance
under ML25M.
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Figure 7: Impact of embedding dimension on method performance
on datasets ML100K and CiaoDVD.

improves and then decreases as the growing of neighbor sam-
pling size. CTGLP achieves the best performance when size
θ is 30 on the small dataset ML100K, and it performs best
on CiaoDVD when size θ is 20. To sum up, a small size
may make the neighborhood information insufficient to cap-
ture link preference and an overly large size may introduce
information noise since not all neighbors are positive. The
larger the sampling size, the greater the memory usage and
time consumption. To keep the balance between performance
and complexity, we need to use a proper sampling size.

6 Conclusion
In this paper, to address the dynamic group link prediction
problem which concentrates on the future relationships be-
tween individuals and groups in continuous-time dynamic
settings, we propose a novel continuous-time group link pre-
diction method CTGLP. We first build continuous-time inter-
action networks based on the historical interactions between
individuals and groups and present a new graph neural net-
work CTGNN to learn the node embeddings, where a novel
aggregation function is designed to jointly capture network
structural features and temporal information. Then, we pro-
vide an importance-based group modeling function to model
latent representations of groups, which can differentiate the
contribution of members to group formation. Finally, the tar-
gets can be predicted using CTGLP based on group vectors.
We compare CTGLP with ten baselines on various datasets
and the experimental results show that CTGLP outperforms
the state-of-the-art method. We also conduct a series of com-
prehensive experiments to analyze the effects of model com-
ponents and hyperparameters on performance.
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