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Abstract
To alleviate the burden of software maintenance,
bug localization, which aims to automatically lo-
cate the buggy source files based on the bug re-
port, has drawn significant attention in the software
mining community. Recent studies indicate that
the program structure in source code carries more
semantics reflecting the program behavior, which
is beneficial for bug localization. Benefiting from
the rich structural information in the Control Flow
Graph (CFG), CFG-based bug localization meth-
ods have achieved the state-of-the-art performance.
Existing CFG-based methods extract the semantic
feature from the CFG via the graph neural network.
However, the step-wise feature propagation in the
graph neural network suffers from the problem of
information loss when the propagation distance is
long, while the long-distance dependency is rather
common in the CFG. In this paper, we argue that
the long-distance dependency is crucial for feature
extraction from the CFG, and propose a novel bug
localization model named sgAttention. In sgAtten-
tion, a particularly designed structural-guided at-
tention is employed to globally capture the infor-
mation in the CFG, where features of irrelevant
nodes are masked for each node to facilitate bet-
ter feature extraction from the CFG. Experimen-
tal results on four widely-used open-source soft-
ware projects indicate that sgAttention averagely
improves the state-of-the-art bug localization meth-
ods by 32.9% and 29.2% and the state-of-the-art
pre-trained models by 5.8% and 4.9% in terms of
MAP and MRR, respectively.

1 Introduction
Once a bug occurs in the software system, a bug report de-
scribing the abnormal behavior is issued to the software main-
tenance team for locating the bug, i.e., determining which
source files caused the reported bug. However, it is costly
for the maintenance team to manually locate the bug, espe-
cially when the software system is large. To alleviate the bur-
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den of software maintenance, bug localization, which aims
to automatically locate the corresponding buggy source files
according to the textual description in the bug report, has
drawn significant attention in the software mining commu-
nity [Lukins et al., 2008; Lam et al., 2015; Huo et al., 2016;
Zhang et al., 2020; Ma and Li, 2022].

Traditional methods treat source code as pure text and lo-
cate buggy source files by measuring the lexical similarity
between the source code and the bug report [Gay et al., 2009;
Zhou et al., 2012; Lam et al., 2017]. Recent works indicate
that the program structure in source code carries more seman-
tics reflecting the program behavior, which is beneficial for
bug localization. For example, NP-CNN [Huo et al., 2016]
models the correlations between neighboring statements for
improving bug localization. LS-CNN [Huo and Li, 2017] fur-
ther exploits the inherent sequential nature of source code.
KGBugLocator [Zhang et al., 2020] builds a code knowl-
edge graph to model interrelations between classes, param-
eters, variables, methods, and properties for bug localization.
Benefiting from the rich structural information in the Con-
trol Flow Graph (CFG), CFG-based bug localization meth-
ods have achieved the state-of-the-art performance. CG-CNN
[Huo et al., 2020] decomposes the CFG into multiple execu-
tion paths according to complex structures like branches and
loops for multi-instance learning. To model the correlations
between execution paths, cFlow [Ma and Li, 2022] employs
the flow-based GRU, a specially designed graph neural net-
work, to extract the semantic feature from the CFG, where
statement features are step-wisely propagated from the entry
to the exit along all the possible execution paths.

Unfortunately, the step-wise feature propagation in the
graph neural network suffers from the problem of information
loss when the propagation distance is long. Consequently,
when using the graph neural network to extract the feature
from the CFG, it is difficult for nodes to capture the key in-
formation such as variable types in the distance. However,
the long-distance dependency is rather common in the CFG.
Figure 1 illustrates an example of the source code and the cor-
responding CFG, where each statement corresponds to one
node in the CFG and edges denote the possible successive
execution relationship. It can be observed that the variable
declaration information in the red box is crucial for under-
standing the return value of the function in the green box.
However, it takes entire eight steps to propagate the feature of
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Figure 1: An example of the source code and the corresponding
CFG. The declaration in the red box is the key information about
the return value in the green box, while it takes entire eight steps to
propagate it via the graph neural network.

the declaration statement to the return statement if the graph
neural network is used. Therefore, using the graph neural
network to extract the feature from the CFG may lose the key
information in the distance.

To alleviate the information loss problem and capture the
long-distance dependency in the CFG, a straightforward way
is to extract the feature of the CFG via the global attention
[Vaswani et al., 2017], which allows each node to directly
take features from all other nodes in the form of a weighted
sum. While benefiting from the convenience of directly tak-
ing features from other nodes, employing the global attention
to propagate node features in the CFG may be humbled by the
irrelevant information in the global. For example, as shown
in Figure 1, the two variable declaration statements in the red
and blue boxes are irrelevant in semantics. Therefore, the
blue node should avoid bringing in the feature of the red node
in feature propagation, and vice versa.

One question arises here: how to take advantage of the
global attention to capture the long-distance dependency in
the CFG, while avoiding bringing in the features of irrele-
vant nodes? In fact, if the features of irrelevant nodes can be
masked, we can still enjoy the convenience brought by the at-
tention mechanism. To this end, we further exploit the struc-
tural information in the CFG to determine which nodes are
related to it for each node. There are two kinds of dependen-
cies that could be mined from the CFG. One is the execution
dependency, which refers to whether one node will be exe-
cuted or not is determined by another node, and the other is
the computation dependency, which refers to the computa-
tion of one node depending on the results of other nodes or
the declarations of the variables in it. By taking the features
of nodes with dependency and masking the features of other
irrelevant nodes, the long-distance dependency in the CFG
would be carefully modeled.

In this paper, we propose a novel bug localization model
named sgAttention (structural-guided Attention), which aims
to capture the long-distance dependency in the CFG. In sgAt-
tention, the structural-guided attention is employed to capture
the information globally, where the execution and computa-
tion dependencies derived from the CFG are used to guide the
masking of irrelevant information to facilitate better feature

extraction. Experimental results based on four widely-used
open-source software projects show that sgAttention outper-
forms the state-of-the-art bug localization methods and pre-
trained models, indicating that capturing the long-distance
dependency in the CFG via structural-guided attention is ben-
eficial for improving bug localization.

The contributions of this work are summarized as follows:

• We argue that the long-distance dependency is crucial
for feature extraction from the CFG. However, when
capturing the long-distance dependency in the CFG, the
features of irrelevant nodes should not be brought in.

• We propose a novel bug localization model named
sgAttention, which employs a particularly designed
structural-guided attention to capture the long-distance
dependency in the CFG. In sgAttention, features of irrel-
evant nodes are masked for each node to facilitate better
feature extraction from the CFG.

• We evaluate the performance of sgAttention on four
widely-used open-source software projects. The results
indicate that sgAttention averagely improves the state-
of-the-art bug localization methods by 32.9% and 29.2%
and the state-of-the-art pre-trained models by 5.8% and
4.9% in terms of MAP and MRR, respectively.

The rest of this paper is organized as follows. In Section 2,
the proposed sgAttention model is introduced in detail. Ex-
periments are provided in Section 3 and the related work is
discussed in Section 4. Finally, this paper is concluded in
Section 5 and the future work is discussed.

2 The Proposed Method
The bug localization problem is formulated as determining
whether a given bug report and source file pair are correlated.
Formally, let C = {c1, c2, . . . , cNc

} denotes the collection of
source code files in a software project,R = {r1, r2, . . . , rNr

}
denotes the set of bug reports received by the software main-
tenance team, and yij ∈ Y = {0, 1} indicates whether the
source file cj ∈ C is correlated to the bug report ri ∈ R,
where Nc, Nr denote the number of source files and bug re-
ports, respectively. The learning task of bug localization aims
to learn a prediction function f : R× C 7→ Y by minimizing
the following objective function:

min
f

∑
i,j

L(f(ri, cj), yij) + λΩ(f), (1)

where L(·, ·) is the empirical loss, Ω(f) is the regularization
term, and λ is the trade-off hyper-parameter.

2.1 The General Framework
The general framework of sgAttention is shown in Figure 2,
which is composed of three encoders and a prediction layer.
These three encoders aim to extract the structural feature of
code zs, the lexical feature of code zl, and the bug report fea-
ture zr, respectively. Then, all the features are concatenated
for further fusion and prediction in the prediction layer:

ŷij = f(ri, cj) = ffuse(z
s
j , z

l
j , z

r
i ). (2)
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Figure 2: The general framework of sgAttention.

The prediction layer is implemented with a three-layer fully
connected network, and batch normalization is applied after
the first fully-connected layer to prevent overfitting.

In sgAttention, the cross-entropy loss is used as the empir-
ical loss function:

Loss = −
∑
i,j

yij log(ŷij) + (1− yij) log(1− ŷij), (3)

and L2 norm is employed for regularization.

2.2 The CFG Encoder
The CFG encoder aims to extract the structural feature zsj
from the source code cj . Since each node in the CFG cor-
responds to one statement in the code, we need to extract the
semantic features of statements first. Therefore, we addition-
ally insert a statement encoder before the CFG encoder to ex-
tract the statement feature xv from the corresponding tokens.

In sgAttention, we employ the encoder of the Transformer
[Vaswani et al., 2017] as the basic building block, which is
composed of N architecturally identical stacking layers:

Hn = EncoderLayern
(
Hn−1

)
, n ∈ [1, N ] , (4)

whereH0 is the embedding of input tokens. For each encoder
layer, it applies a multi-head self-attention (MHA) operation
followed by a feed-forward network (FFN) over the input:

Gn = LN(MHA(Hn−1) +Hn−1), (5)
Hn = LN(FFN(Gn) +Gn), (6)

where FFN is composed of two linear transformations with
a ReLU activation in between, and LN represents the layer
normalization operation. The MHA is computed via:

MHA(Hn−1) = [head1; . . . ; headh]WO, (7)

headi = Attn(Hn−1WQ
i , H

n−1WK
i , Hn−1WV

i ), (8)

Attn(Q,K, V ) = Softmax(
QKT

√
dk

)V , (9)

whereWO ∈ Rdh×dh ,WQ
i ,W

K
i ,WV

i ∈ Rdh×dk are param-
eters, h = dh/dk is the number of heads, and dh, dk are the
dimension of the representation and a head, respectively.

The statement encoder only contains one encoder layer in-
troduced in E.q. 4. We first tokenize each statement and re-
move unimportant punctuation such as braces, commas, and
quotation marks. Then, each token term is embedded with the
token embedding in CodeBERT [Feng et al., 2020], which is
a Transformer-architecture model pre-trained on pairs of nat-
ural language and programming language tokens. The state-
ment encoder encodes each statement individually, respecting
the atomicity of the statement explicitly.

xv = Max-Pooling(EncoderLayer(X̂t)), (10)

where X̂t = {[CLS], Xt, [SEP ]} is the input sequence,
Xt ∈ RLt×dt is the token vector matrix of one statement,
and Lt, dt denote the number tokens in the statement and the
dimension of the token vector, respectively. The [CLS] is
a special symbol added in front of the input sequence, and
[SEP ] is a special separator token indicating the end of the
input sequence. In order to extract the most distinguishing
signal, we employ the max-pooling over the output feature
sequence to extract the statement feature xv , which is used
for the input node feature in the CFG encoder.

The CFG encoder contains 6 stacking encoder layers intro-
duced in E.q. 4, except that the global attention is replaced
by the structural-guided attention. The structural feature zsj is
extracted by employing the mean-pooling over the node fea-
tures outputted by the last encoder layer:

zsj = Mean-Pooling(CFGEncoder(Xv
j )), (11)

where Xv
j ∈ RLv×dv is the node feature matrix of the CFG,

and Lv, dv denote the number nodes in the CFG and the di-
mension of the node feature, respectively.
Structural-Guided Attention. As aforementioned, nodes
in the CFG should only take the features of nodes with de-
pendency. To this end, instead of using the global attention in-
troduced in E.q. 9, we particularly design a structural-guided
attention in the CFG encoder. Specifically, we add a masking
matrix M on the attention weight:

sgAttn(Q,K, V ) = Softmax(
QKT

√
dk

+M)V . (12)

The value of the masking matrix M relies on the node depen-
dency in the CFG. Formally, Mij equals 0 if and only if the
ith node is depended on the jth node, and −∞ otherwise.

Figure 3 illustrates an example of the structural-guided at-
tention. Each row in the masking matrix denotes the atten-
tion masking of other statements to the corresponding state-
ment, where only statements with white boxes placed allow
being attended to. There are two kinds of dependencies that
could be mined from the CFG. One kind is the execution
dependency, which refers to whether one node will be ex-
ecuted or not is determined by another node. Specifically,
nodes in the Loop-body are execution-depended on the Loop-
condition, and nodes in the If -body or the Switch-body are
execution-depended on the If -condition or the correspond-
ing Case-statement, respectively. Thus, nodes in the Loop-
body should take the feature of the Loop-condition, and so
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Figure 3: An example of the structural-guided attention. Only the features of the execution-depended or the computation-depended nodes are
taken, which are placed with white boxes. Both the execution dependency and the computation dependency are transitive and asymmetric.

do nodes in the If -body or the Switch-body. For example,
as shown in the bottom left of Figure 3, whether the Append
and the Assign statements in the While-statement will be ex-
ecuted or not depends on the While-condition. Thus, the Ap-
pend and the Assign statements are execution-depended on
the While-condition, meaning that they could take the fea-
ture of the While-condition in the structural-guided attention.
The other kind is the computation dependency, which refers
to the computation of one node requiring the results of other
nodes or relying on those nodes that declare the variables in it.
For example, as shown in the bottom middle of Figure 3, the
declaration of the fInStr variable uses the file variable, mean-
ing that the declaration of fInStr is computation-depended on
the declaration of file. Thus, the declaration statement of fIn-
Str could take the feature of the declaration statement of file.
Similarly, the declaration of inStr could take the feature of the
declaration of fInStr in the structural-guided attention.

In addition, both the execution dependency and the compu-
tation dependency are transitive and asymmetric. As shown
in the bottom right of Figure 3, the declaration of inStr is
computation-depended on the declaration of fInStr and the
declaration of fInStr is computation-depended on the decla-
ration of file. We believe in that knowing the declaration of
file ought to be beneficial for better understanding the fInStr
variable, which is used in the declaration of inStr. According
to the transitivity, the declaration of inStr is depended on the
declaration of file. Thus, the declaration of inStr could also
take the feature of the declaration of file. On the other hand,
the declaration of file does not use the fInStr variable, which
should be regarded as irrelevant information for it. Although
the declaration of fInStr is computation-depended on the dec-
laration of file, the asymmetry makes sure that the declaration
of fInStr is masked for the declaration of file.

By taking the features of nodes with dependency and mask-
ing the features of irrelevant nodes, the long-distance depen-

dency in the CFG could be caught without being humbled by
the irrelevant information in the global.

It should be noted that adding the [CLS] and the [SEP ]
symbols in front of and behind the input is a normal oper-
ation in the sequential input and has been proven effective
[Devlin et al., 2019; Feng et al., 2020]. However, we did not
use such normal operation in the CFG encoder since it can
hardly define which statement is relevant to the special sym-
bol, resulting in special symbols would be masked by all the
nodes. Although Graphormer [Ying et al., 2021] suggests that
adding an additional super-node connected to all the nodes
and including the feature of the super-node as the graph fea-
ture are beneficial for the performance, we empirically found
that including the mean of node features performs better in
bug localization. See Section 3.4 for more details.

2.3 The Lexical Encoder
The lexical encoder aims to extract the lexical feature zlj from
the input source code cj . Here we use the same token embed-
ding as in the statement encoder, while tokens from different
statements are concatenated as a sequenceX l

j . Then, we fine-
tune the CodeBERT model as the lexical feature encoder with
the input sequence X̂ l

j = {[CLS], X l
j , [SEP ]}:

zlj = CodeBERT(X̂ l
j). (13)

We follow the suggestion in [Feng et al., 2020] to include the
feature of the [CLS] token outputted by the last encoder layer
as the lexical feature zlj of the input source code.

2.4 The Report Encoder
The report encoder takes the raw data of bug report ri as in-
put, and aims to extract the semantic feature zri of it.

We use the normal natural language preprocessing method
for bug report preprocessing. Specifically, we first tokenize
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the bug report and remove the stop words and the punctua-
tion. Then, all the word token terms are embedded into word
vectors. We employ a Transformer encoder with 6 encoder
layers, which is shown in E.q. 4, as the report encoder. The
report encoder takes the X̂r

i = {[CLS], Xr
i , [SEP ]} as the

input sequence, where Xr
i ∈ RLr×dr is the token vector ma-

trix of the bug report, and Lr, dr are the length of the bug
report and the dimension of the token vector, respectively.

zri = Transformer(X̂r
i ). (14)

As suggested in [Devlin et al., 2019], the feature of the [CLS]
token outputted by the last encoder layer is included as the
report feature zri , which is used for further prediction.

3 Experiment

In this section, we evaluate sgAttention against a number of
baseline methods based on four widely used datasets. We
first introduce the datasets and the baselines in Section 3.1
and 3.2, respectively. Then, experimental results are reported
in Section 3.3, followed by the ablation study in Section 3.4.

3.1 Datasets

The four datasets we used are extracted from real-world open-
source software projects. As suggested in [Fischer et al.,
2003], the ground truth correlations between bug reports and
source files are extracted from the bug tracking system (i.e.,
Bugzilla) and the version control system (i.e., GitHub). The
statistics of the four datasets are shown in Table 1.

Eclipse Platform1 defines a set of frameworks and com-
mon services that makes up Eclipse infrastructures. The first
dataset Platform is extracted from the “UI” component of it.
Plug-in Development Environment2 is a tool for creating and
deploying Eclipse plug-ins. The second dataset PDE is ex-
tracted from the “UI” component of it. Java Development
Tools3 is an Eclipse project that provides the tool plug-ins
supporting the development of any Java application. The
third dataset JDT is extracted from the “UI” component of
it. The AspectJ4 project is an aspect-oriented extension to
the Java programming language, which is the last dataset and
denoted as AspectJ. All these datasets have been extensively
used in previous bug localization studies [Ye et al., 2014;
Huo et al., 2016; Ma and Li, 2022].

As suggested in [Kochhar et al., 2014], we have filtered
those fully localized bug reports from the dataset, that is, the
names of all corresponding buggy source files have been in-
cluded in the bug report. For such bug reports, they no longer
need a machine learning model to automatically locate the
buggy source files. It should be noted that this approach
makes the performance seem to be worse, but more in line
with the real world situation.

1http://projects.eclipse.org/projects/eclipse.platform
2http://www.eclipse.org/pde
3http://www.eclipse.org/jdt
4http://www.eclipse.org/aspectj

Project # source files # bug reports # matches Avg. buggy files
per report

Platform 6,125 5,016 18,055 3.60
PDE 5,330 2,612 10,721 4.10
JDT 10,845 5,060 14,408 2.85

AspectJ 6,908 368 1,522 4.14

Table 1: The statistic information of the four datasets.

3.2 Baseline Methods
In order to show the effectiveness of sgAttention, we compare
it with the following state-of-the-art bug localization methods
and pre-trained models:

• CG-CNN [Huo et al., 2020]: A CFG-based bug localiza-
tion method, which decomposes the CFG into multiple
execution paths for multi-instance learning.

• KGBugLocator [Zhang et al., 2020]: A knowledge-
graph-based bug localization method, which extracts the
code feature based on the code knowledge graph embed-
ding and keywords supervised bi-directional attention.

• CodeBERT [Feng et al., 2020]: A Transformer-
architecture model that pre-trained on natural language
and programming language pairs using both masked lan-
guage modeling and replaced token detection tasks.

• GraphCodeBERT [Guo et al., 2021]: A Transformer-
architecture model that enhances the code representation
with the data flow, pre-trained on masked language mod-
eling, edge prediction, and node alignment tasks.

• cFlow [Ma and Li, 2022]: A CFG-based bug localization
method, which employs a particularly designed flow-
based GRU to step-wisely propagate node features from
the entry to the exit along all the execution paths.

• FLIM [Liang et al., 2022]: An information-retrieval-
based bug localization method, which locates buggy files
based on the cosine similarity between the report feature
and the code feature extracted by CodeBERT.

To compare with these baselines, we follow the same
experiment settings suggested in their studies. For hyper-
parameters in sgAttention, each encoder layer contains 12 at-
tention heads, and the dimensions of all the features are set
as 768. AdamW [Loshchilov and Hutter, 2019] with a learn-
ing rate of 1e-5 and linear schedule with a warm-up ratio 0.1
are employed for optimization in sgAttention. We train our
model on NVIDIA Tesla A100 with 128GB RAM, and the
source code is publicly available5.

3.3 Experimental Results
We use three metrics for evaluation: Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR), and Top-10 Rank, all
of which have been widely used in previous bug localization
studies [Lam et al., 2017; Zhang et al., 2020; Ma and Li,
2022]. For each dataset, we randomly split the dataset into the
training, validation, and test sets in a ratio of 8:1:1. We first
determine the batch size, the number of training epochs, and
the trade-off hyper-parameter λ based on the performance on

5https://www.lamda.nju.edu.cn/mayf/
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Method Platform PDE JDT AspectJ Avg.

KGBL 0.446 0.462 0.469 0.515 0.473
CG-CNN 0.453 0.471 0.478 0.541 0.486

CodeBERT 0.585 0.609 0.626 0.657 0.619
GCodeB 0.596 0.626 0.633 0.659 0.629

cFlow 0.464 0.486 0.489 0.563 0.501
FLIM 0.428 0.432 0.425 0.457 0.436

sgAttention 0.632 0.661 0.669 0.698 0.665

Table 2: The performance evaluation in terms of MAP, and the best
performance is boldfaced. KGBL and GCodeB are shorts for KG-
BugLocator and GraphCodeBERT, respectively.

Method Platform PDE JDT AspectJ Avg.

KGBL 0.526 0.578 0.567 0.618 0.572
CG-CNN 0.534 0.589 0.576 0.641 0.585

CodeBERT 0.667 0.736 0.738 0.808 0.737
GCodeB 0.674 0.739 0.744 0.809 0.742

cFlow 0.548 0.612 0.587 0.659 0.602
FLIM 0.519 0.534 0.512 0.558 0.531

sgAttention 0.710 0.772 0.783 0.845 0.778

Table 3: The performance evaluation in terms of MRR, and the best
performance is boldfaced. KGBL and GCodeB are shorts for KG-
BugLocator and GraphCodeBERT, respectively.

the validation set. Then, the training and validation sets are
mixed up to train the model. This process is repeated for 3
times and the average performance on the test set is reported.

The evaluation results in terms of MAP are listed in Ta-
ble 2. The best performance on each dataset is boldfaced.
It can be observed that sgAttention outperforms all the base-
lines on all the datasets in terms of MAP. It should be noticed
that sgAttention achieves the best average MAP performance
(0.665), which improves KGBugLocator (0.473) by 40.6%,
CG-CNN (0.486) by 36.9%, CodeBERT (0.619) by 7.4%,
GraphCodeBERT (0.629) by 5.8%, cFlow (0.501) by 32.9%,
and FLIM (0.436) by 52.7%.

The evaluation results in terms of MRR are listed in Ta-
ble 3, with the best performance on each dataset shown in
bold. Similar to the performance in terms of MAP, sgAtten-
tion achieves the best MRR performance on all the datasets.
In addition, sgAttention achieves the best average MRR per-
formance (0.778), which improves KGBugLocator (0.572) by
35.9%, CG-CNN (0.585) by 32.9%, CodeBERT (0.737) by
5.5%, GraphCodeBERT (0.742) by 4.9%, cFlow (0.602) by
29.2%, and FLIM (0.531) by 46.5%.

Across all the four datasets, sgAttention improves Graph-
CodeBERT, the second best method, by 5.6% to 6.0% in
terms of MAP and by 4.4% to 5.3% in terms of MRR. Be-
sides, sgAttention improves the state-of-the-art bug localiza-
tion methods by at least 24.0% in terms of MAP and by at
least 26.1% in terms of MRR, which should be considered a
huge improvement over the state-of-the-art.

The evaluation results in terms of Top-10 Rank are shown
in Figure 4. Not surprisingly, sgAttention once again out-
performs all the baselines on all the datasets. Higher Top-10
Rank values indicate that more buggy source files could be

Method Platform PDE JDT AspectJ Avg.

sgAttention 0.632 0.661 0.669 0.698 0.665
- w/o CFG 0.585 0.609 0.626 0.657 0.619
- w/o token 0.567 0.570 0.576 0.632 0.586
- w/o mask 0.600 0.634 0.641 0.677 0.638
- w/o mean 0.618 0.648 0.661 0.685 0.653

Table 4: The ablation study evaluation in terms of MAP.

Method Platform PDE JDT AspectJ Avg.

sgAttention 0.710 0.772 0.783 0.845 0.778
- w/o CFG 0.667 0.736 0.738 0.808 0.737
- w/o token 0.641 0.654 0.671 0.773 0.685
- w/o mask 0.687 0.741 0.762 0.826 0.754
- w/o mean 0.691 0.754 0.768 0.830 0.761

Table 5: The ablation study evaluation in terms of MRR.

correlated by sgAttention when the same number of potential
files are examined. Considering that only a limited number of
potential files provided by the bug localization model will be
checked, sgAttention would be more useful in practice.

In summary, experimental results on four widely-used
open-source software projects indicate that sgAttention out-
performs the state-of-the-art bug localization methods and
pre-trained models in terms of all the three commonly used
metrics, demonstrating that capturing the long-distance de-
pendency in the CFG via the structural-guided attention is
beneficial for improving bug localization.

3.4 The Ablation Study
To evaluate the effectiveness of the sgAttention design, we
conduct ablation studies on the CFG encoder, the lexical en-
coder, the attention masking mechanism, and the aggregation
method imposed on the CFG encoder, which are denoted as
w/o CFG, w/o token, w/o mask, and w/o mean, respectively.
The evaluation results in terms of MAP and MRR are shown
in Table 4 and Table 5, respectively.

Specifically, sgAttention w/o CFG denotes a model that
only uses the lexical encoder and the report encoder, which
exactly is the CodeBERT model. Compared with sgAtten-
tion, the MAP drops by 6.2% to 8.5% and the MRR drops
by 4.6% to 6.4%, indicating that the CFG plays an important
role in bug localization. By adding a CFG encoder without
the attention masking mechanism, the sgAttention w/o mask
model performs better on all the datasets, and even better than
GraphCodeBERT, which means that CFG carries more cru-
cial information than the data flow graph for bug localization.
However, compared with sgAttention, it still decreases by
3.1% to 5.3% in terms of MAP and by 2.3% to 4.2% in terms
of MRR, indicating that only focusing on relevant nodes in
the CFG improves the performance of bug localization.

In addition, sgAttention w/o lexical denotes a model that
only uses the CFG encoder and the report encoder. It can be
observed that compared with sgAttention, the MAP decreases
by over 10.4% and the MRR decreases by over 9.3%, indicat-
ing that the lexical information is crucial for bug localization.
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Figure 4: The performance evaluation in terms of Top-10 Rank. sgAttention (red) achieves the best performance (highest) on all the datasets.

At last, sgAttention w/o mean denotes a variant of sgAtten-
tion that follows the suggestion in Graphormer [Ying et al.,
2021] to aggregate node features. Specifically, it adds an ad-
ditional super-node connected to all nodes in the CFG, and
includes the feature of it as the CFG feature. We empirically
found that such operations do not perform better than simply
including the mean of node features as the CFG feature.

4 Related Work
In this section, we introduce a number of works related to bug
localization and some transformer-based models designed for
software mining tasks.

Bug localization aims to automatically locate buggy source
files based on the textual description in the bug report. A
large class is the information-retrieval-based bug localization
methods, which locate buggy files based on the lexical sim-
ilarity between the bug report and the source code [Poshy-
vanyk et al., 2007; Lukins et al., 2008; Saha et al., 2013;
Wang et al., 2018]. For example, BugLocator [Zhou et al.,
2012] employs the revised Vector Space Model (rVSM) to
measure the lexical similarity between the report and the
code. DNNLOC [Lam et al., 2017] further combines the
rVSM with the auto-encoder to alleviate the lexical mismatch
problem in information retrieval. BLIZZARD [Rahman and
Roy, 2018] and FineLocator [Zhang et al., 2019] improve
the information retrieval quality with the query reformula-
tion. Fejzer et al. [2022] adaptively reweight 19 similarity
scores in [Ye et al., 2016] to improve the retrieval quality,
which is further incorporated by FLIM [Liang et al., 2022].
However, many recent studies indicate that mining the pro-
gram structure from the source code is beneficial for improv-
ing bug localization [Huo et al., 2016; Youm et al., 2017;
Huo and Li, 2017]. CG-CNN [Huo et al., 2020] decomposes
the CFG of source code into multiple execution paths for
multi-instance learning. KGBugLocator [Zhang et al., 2020]
builds a code knowledge graph to model interrelations be-
tween classes, parameters, variables, methods, and properties
for bug localization. MRAM [Yang et al., 2021] builds the
code revision graph from past code commits and reports for
method-level bug localization. cFlow [Ma and Li, 2022] de-
signs a flow-based GRU to extract the feature of the CFG by
step-wisely feature propagation.

In addition, many methods deal with the bug localization
problem from other perspectives. Locus [Wen et al., 2016]
and FBL-BERT [Ciborowska and Damevski, 2022] retrieve
buggy source files from the code change logs. BRTracer

[Wong et al., 2014] improves bug localization with segmen-
tation and stack-trace analysis. Pathidea [Chen et al., 2022]
improves bug localization by reconstructing the execution
path from the bug report. TRANP-CNN [Huo et al., 2019]
and COOBA [Zhu et al., 2020] are designed for the cross-
project bug localization with the problem of insufficient his-
tory data. The usages of bug localization models in the edu-
cation [Gupta et al., 2019] and the industrial setting [Jarman
et al., 2022] are also explored.

Nowadays, with the success of the Transformer on the
natural language processing area, a number of Transformer
based models have been proposed for software mining tasks.
For example, GREAT [Hellendoorn et al., 2020] stacks the
Transformer encoder layers and the graph neural network to
extract the feature of the abstract syntax tree for the variable
misuse task. TPTrans [Peng et al., 2021] integrates the en-
coding of the absolute and the relative path in the abstract
syntax tree into the Transformer for the code summarization
task. MuST [Zhu et al., 2022] is a Transformer-architecture
program translation model that leverages multilingual code
snippets for training. CodeBERT [Feng et al., 2020] is a pre-
trained model that pre-trained on natural language and pro-
gramming language pairs using both masked language mod-
eling and replaced token detection tasks, and GraphCode-
BERT [Guo et al., 2021] further enhances the code represen-
tation with the data flow.

5 Conclusion
In this paper, we propose a novel bug localization model
named sgAttention, which employs a particularly designed
structural-guided attention to capture the long-distance de-
pendency in the CFG. In sgAttention, each node only takes
the features of the execution-depended and the computation-
depended nodes, and masks the features of irrelevant nodes
to facilitate better feature extraction of the CFG. Experimen-
tal results based on four widely-used open-source software
projects show that sgAttention averagely improves the state-
of-the-art bug localization methods by 32.9% and 29.2% and
the state-of-the-art pre-trained models by 5.8% and 4.9% in
terms of MAP and MRR, respectively. The empirical evalua-
tion indicates that capturing the long-distance dependency in
the CFG via the structural-guided attention is beneficial for
improving bug localization.

For future work, it is interesting to extract the features of
other code graph representations like the abstract syntax tree
or the call graph with the structural-guided attention.
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