
Uncovering the Largest Community in Social Networks at Scale

Shohei Matsugu1 , Yasuhiro Fujiwara2 and Hiroaki Shiokawa3

1Graduate School of Science and Technology, University of Tsukuba, Japan
2NTT Communication Science Laboratories, Japan

3Center for Computational Sciences, University of Tsukuba, Japan
matsugu@kde.cs.tsukuba.ac.jp, yasuhiro.fujiwara.kh@hco.ntt.co.jp, shiokawa@cs.tsukuba.ac.jp

Abstract
The Maximum k-Plex Search (MPS) can find the
largest k-plex, which is a generalization of the
largest clique. Although MPS is commonly used in
AI to effectively discover real-world communities
of social networks, existing MPS algorithms suf-
fer from high computational costs because they it-
eratively scan numerous nodes to find the largest
k-plex. Here, we present an efficient MPS algo-
rithm called Branch-and-Merge (BnM), which out-
puts an exact maximum k-plex. BnM merges un-
necessary nodes to explore a smaller graph than the
original one. Extensive evaluations on real-world
social networks demonstrate that BnM significantly
outperforms other state-of-the-art MPS algorithms
in terms of running time.

1 Introduction
The largest community discovery is an essential tool to un-
derstand user behaviors in social networks [Shiokawa et al.,
2013; Shiokawa et al., 2019]. To this end, traditional applica-
tions employ the maximum clique search [Tomita and Seki,
2003] or the maximum k-core search [Seidman, 1983]. How-
ever, these searches are difficult to apply to real-world so-
cial networks for two reasons. First, social networks have di-
verse densities due to the scale-free and the power-law prop-
erties [Faloutsos et al., 1999]. Second, the identified sub-
graphs using the above search methods tend to be too dense
for actual communities [Matsugu et al., 2021]. Consequently,
these methods fail to reproduce the largest community in real-
world social networks [Pattillo et al., 2013].

To overcome these limitations, the Maximum k-Plex
Search (MPS) [Balasundaram et al., 2007] has recently at-
tracted much attention in the AI community [Conte et al.,
2017; Conte et al., 2018]. MPS finds the maximum k-plex,
which is the largest subgraph containing n nodes where each
node is adjacent to at least n − k nodes within the sub-
graph [Seidman, Stephen B and Foster, Brian L, 1978]. Un-
like traditional methods, MPS can balance the density and the
size of a discovered subgraph to meet the diverse density of
communities in social networks [Leskovec and Krevl, 2014].
As described below, MPS has recently been applied in vari-
ous AI-powered applications:

Criminal network analysis: MPS effectively uncovers
suspicious communications among terrorist cells, criminal
gangs, and religious cults in social networks. For example,
Wiil et al. applied MPS to public social network data to de-
tect terrorist groups engaged in the September 11 attacks on
the World Trade Center in 2001 [Wiil et al., 2010]. MPS
uncovered more terrorists than other dense subgraph models.
Similarly, MPS achieved a better performance in detecting
narcotics trades and money laundering in criminal networks
than the maximum clique model [Balasundaram, 2007].

Personalized social search: MPS can enhance a personal-
ized social search, which reranks Web search results based on
friendship communities in social networks [Noll and Meinel,
2007; Carmel et al., 2009]. Danezis et al. proposed an MPS-
based algorithm that estimates search preferences shared in
the largest friendship community [Danezis et al., 2010]. The
algorithm first extracts the maximum k-plex from a social net-
work. It infers preferences in the k-plex via Bayesian models.
Their MPS-based algorithm achieved more accurate search
results than other dense subgraph models.

Graph neural network (GNN): MPS contributes to en-
hanced performances of GNN which has played a key role
in social network analysis. In GNN, graph pooling is essen-
tial to capture the context of nodes, and many clique-based
methods have been used [Ying et al., 2018; Lee et al., 2019;
Wang et al., 2020]. Bianchi et al. recently proposed an MPS-
based graph pooling method [Bianchi et al., 2020]. They re-
ported that the MPS-based method successfully mitigated the
oversmoothing issues in GNN [Li et al., 2018], improving the
accuracy compared to other GNN models.
MPS can also be used in other applications such as viral mar-
keting [Doerr et al., 2012; Bodaghi and Oliveira, 2022], dis-
ease propagation analysis [Wang et al., 2003; Wang and Dai,
2008], etc. Due to space limitations, we omit the details here.

Although MPS is effective for many AI-powered appli-
cations, it has an NP-hard complexity [Balasundaram et
al., 2007]. Specifically, the naı̈ve MPS algorithm requires
O(2|VG| |VG|) time to find the maximum k-plex [Balasun-
daram et al., 2007], where VG is a node set. In the 2010s,
MPS was applied to graphs composed of only 100 nodes. By
contrast, recent AI-based applications handle massive graphs
with at least 10,000 nodes [Jiang et al., 2021]. Hence, MPS
requires several days to obtain the maximum k-plex.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2251

1.1 Existing Approaches and Challenges
Many studies have improved the efficiency of MPS [Conte et
al., 2018; Zhu et al., 2020]. Here, we focus on those most
related to this study. For a broader discussion, please refer
the Section 5. Classical algorithms include greedy branch-
ing [Moser et al., 2012], branch-and-cut [Balasundaram et
al., 2007], and branch-and-search [Xiao et al., 2017]. To
improve the efficiency, these algorithms attempt to reduce
candidates of the maximum k-plex by bounding the k-plex
size. Although they are faster than the naı̈ve MPS algorithm,
quickly computing graphs with 10,000 nodes remains a chal-
lenge since they must explore numerous nodes due to the
large search space. Hence, classical MPS algorithms fail to
output the maximum k-plex in a reasonable time.

Gao et al. recently proposed branch-and-bound (BnB)
as an alternative [Gao et al., 2018]. The key idea of BnB
is to avoid unnecessary searches using graph reduction al-
gorithms, which remove nodes that are unlikely to be the
largest k-plex. Based on these reduction algorithms, BnB
achieves a faster search than the classical ones. However,
BnB still requires expensive costs to handle massive graphs
due to insufficient node removal. To overcome this issue,
several algorithms have introduced heuristic upper bounding
methods [Zhou et al., 2021; Jiang et al., 2021; Chang et al.,
2022]. Unfortunately, they are also unsuitable for large social
networks since their graph reduction algorithms must scan
the whole graph repeatedly. For example, the state-of-the-art
method [Chang et al., 2022], incurs O(|VG|2) time to reduce
the graph size. Thus, it is still a challenging task to develop
an efficient MPS algorithm for massive social networks.

1.2 Our Approaches and Contributions
Our goal is to develop an efficient MPS algorithm for large
social networks with million-scale nodes. Here, we present
a novel algorithm called Branch-and-Merge (BnM). The ex-
isting approaches discussed in Section 1.1 suffer from a
quadratic cost against the number of nodes since they must
repeatedly scan all nodes to reduce the graph size. In con-
trast, the basic idea underlying BnM is to reduce the graph
size by scanning only unpromising nodes. In social net-
works, many nodes are not included in the maximum k-plex
due to the well-known scale-free property. Since BnM can
efficiently reduce the graph size by removing unpromising
nodes, it avoids redundant iterative traversals of all nodes.

We derived BnM using three steps: First, we theoreti-
cally derive safe-to-merge nodes, which are never included
in the maximum k-plex together. (Section 3.2). Second, we
provide a node-merging strategy to efficiently find safe-to-
merge nodes (Section 3.3). Finally, we propose BnM using a
node-merging strategy to efficiently find the maximum k-plex
(Section 3.4). Furthermore, we theoretically show that the
proposed node-merging strategy more efficiently reduces the
graph size than state-of-the-art graph reduction algorithms.
As a result, BnM has the following attractive characteristics:

• Efficiency: BnM is faster than recently proposed MPS
algorithms (Section 4.1). BnM has a better time com-
plexity than the state-of-the-art methods (Theorem 1).

Symbol Definition
G An unweighted, undirected, and connected graph
VG A set of nodes in G
EG A set of edges in G

dG(u) Degree of a node u in G
G[VS] An induced subgraph of G (VS ⊆ VG)
G−v Remaining graph after removing v from G
α The size of searching k-plex
UG A set of unfruitful nodes in G

Ĝ A converged graph of G
FĜ A set of fragile nodes of Ĝ
M A set of safe-to-merge nodes
G∗ A graph after merging sage-to-merge nodes

Table 1: Definitions of the main symbols

• Exactness: BnM always outputs the maximum k-plex
because it does not sacrifice the search quality of MPS
algorithms (Theorem 2).

• Scalability: BnM is more scalable than other MPS al-
gorithms (Section 4.3). BnM shows nearly linear scala-
bility against the number of nodes in a graph.

BnM is the first solution that achieves an efficient and exact
MPS on massive social networks. BnM outperforms other
state-of-the-art MPS algorithms in terms of running time. For
example, BnM finds the maximum k-plex from a scale-free
graph that has 1.1 million nodes within 7 seconds, while the
state-of-the-art algorithm [Chang et al., 2022] does not output
a result within 100 seconds. Therefore, BnM can improve the
quality in a wide variety of AI-based applications.

2 Preliminaries
First, we define the basic notations used in this paper. Table 1
summarized the main symbols and their definitions. Simi-
lar to previous studies [Gao et al., 2018; Zhou et al., 2021;
Jiang et al., 2021], let G = (VG, EG) be an unweighted, undi-
rected, and connected graph, where VG and EG are sets of
nodes and edges in G, respectively. The degree of node u in
G is denoted as dG(u). G[VS] represents an induced subgraph
of G, where VS ⊆ VG. G−v is defined as the remaining graph
after removing node v from G (i.e., G−v = G[VG\{v}]).

MPS is a task to find the largest k-plex in a graph G, where
k-plex is a generalization of a clique proposed by [Abello et
al., 2002]. Formally, k-plex is defined as:
Definition 1 (k-plex). Given a graph G, and a positive in-
teger k, a subgraph G[VS] ⊆ G is a k-plex if dG[VS](v) ≥
|VS | − k for all v ∈ VS .
If G[VS] is a k-plex, then each node v ∈ VS is adjacent to at
least |VS | − k nodes. Thus, the MPS is defined as:
Problem 1 (MPS). Given a positive integer k, MPS is a task
to find a k-plex G[VS] ⊆ G that maximizes |VS |.
If k = 1, Problem 1 is clearly equivalent to the maxi-
mum clique search [Bomze et al., 1999]. Since MPS is
NP-hard [Abello et al., 2002; McClosky and Hicks, 2012;
Xiao and Kou, 2017], an efficient algorithm must be devel-
oped to compute large social networks.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2252

𝑣!𝑠!"#

𝑣"

𝑠$%&

𝑣#

(a) (b) (c) (d) (e)

𝑣$ 𝑣"

𝑣% 𝑣!

𝑣&

𝑣'

𝑣(

𝑣)

𝑣#

𝑠!"

𝑣!

𝑣"

𝑠!"# 𝑣(

𝑣#

𝑠')
𝑠!"#

(6, 3)-plexes

𝑣$$

𝑣$ 𝑣"

𝑣% 𝑣!

𝑣&

𝑣'

𝑣(

𝑣)

𝑣# 𝑣$*

𝑣$ 𝑣"

𝑣% 𝑣!

𝑣&

𝑣'

𝑣(

𝑣)

𝑣# 𝑣$*

𝑠$%&
Fragile nodesUnfruitful nodes Edges between safe-to-merge nodes

Figure 1: Running example of the node-merging strategy with α = 6 and k = 3. s123, s78, and s789 are supernodes.

3 Branch-and-Merge (BnM)
This paper proposes BnM to efficiently find the maximum k-
plex. In this section, we overview the ideas underlying BnM
and then provide a full description.

3.1 Overview
The existing approaches discussed in Section 1.1 iteratively
run graph reduction algorithms to remove the unpromising
nodes. These reduction algorithms require a quadratic cost
against the number of nodes since all nodes are scanned re-
peatedly. In contrast, BnM can efficiently reduce the graph
size by scanning the unpromising nodes. Herein, we first
theoretically identify safe-to-merge nodes, which are not in-
cluded together in the maximum k-plex (Section 3.2). We
then introduce a node-merging strategy to efficiently remove
the safe-to-merge nodes from a graph (Section 3.3). Finally,
we describe BnM to drastically reduce the graph size and ef-
ficiently explore the maximum k-plex (Section 3.4).

Our ideas have two advantages. First, BnM is more effi-
cient than existing approaches that repeatedly scan all nodes.
Social networks contain many unpromising low-degree nodes
due to the scale-free property [Faloutsos et al., 1999]. Be-
cause BnM scans only adjacent nodes for each unpromising
node to reduce the graph size, it can drastically decrease the
graph size on social networks. Second, BnM always outputs
exact results, although it removes unpromising nodes via a
node-merging strategy. This is because BnM detects nodes
not included in the maximum k-plex while performing node
merging. Hence, BnM does not sacrifice the k-plex search
quality. Consequently, BnM can efficiently find the exact
maximum k-plex included in massive social networks.

3.2 Safe-to-merge Nodes
BnM reduces the graph size by removing nodes not included
together in the maximum k-plex. We call such nodes safe-to-
merge nodes. To theoretically derive the safe-to-merge nodes,
we introduce Definitions 2, 3, and 4:
Definition 2 ((α, k)-plex). A subgraph G[VS] ⊆ G is an (α,
k)-plex in a graph G if G[VS] is a k-plex such that |VS | = α.
The (α, k)-plex is a k-plex whose size is α. For a given α, a
graph can have multiple (α, k)-plexes. For instance, the graph
in Figure 1 (a) has two (6, 3)-plexes: {v1, v2, v3, v4, v5, v6}
and {v4, v5, v6, v7, v8, v9}.

Based on Definition 2, unfruitful nodes, which cannot be
included in any (α, k)-plexes, are defined as:
Definition 3 (Unfruitful Nodes). For α and k, unfruitful
nodes UG are defined as UG = {v ∈ VG | dG(v) < α− k}.
Definition 3 indicates that unfruitful nodes have a degree less
than α−k. From Definitions 2 and 3, they are never included
in any (α, k)-plexes. In Figure 1 (a), the set of unfruitful
nodes is UG = {v11} since dG(v11) = 2 < α− k = 3.

Unfruitful nodes can be removed from a graph G since they
are not included in any (α, k)-plexes. Because the node de-
grees decrease after node removal, G can have additional un-
fruitful nodes. Thus, we define a converged graph, which is
obtained after removing all unfruitful nodes in G.

Definition 4 (Converged Graph). For α and k, let G(i) be the
i-th remaining graph after removing unfruitful nodes as

G(i) =

{
G[VG\UG] (i = 1)

G[VG(i−1)\UG(i−1)] (i > 1).

A converged graph Ĝ is defined as Ĝ = G[VG(i)\UG(i)] such
that UG(i) = ∅.
As shown in Definition 4, a converged graph Ĝ has no un-
fruitful nodes for any (α, k)-plexes. Suppose that the graph
in Figure 1 (a) is used to generate the converged graph for (6,
3)-plexes. Recall that it has unfruitful nodes UG = {v11}.
Figure 1 (b) shows G(1), which is the graph after removing
UG from G. From Definition 3, G(1) also has a set of un-
fruitful nodes UG(1) = {v10}. Figure 1 (c) shows graph G(2),
which has no unfruitful nodes since all nodes have at least
α − k = 3 neighbor nodes. Hence, G(2) is the converged
graph (i.e., Ĝ = G(2)).

We finally derive the safe-to-merge nodes using Defini-
tions 2, 3, and 4 as:
Definition 5 (Safe-to-Merge Nodes). Given two adjacent
nodes u, v ∈ Ĝ, nodes u and v are safe-to-merge nodes and
denoted as u↔Ĝ v, iff u ∈ UĜ−v

and v ∈ UĜ−u
.

Definition 5 indicates that node u becomes an unfruitful node
after removing node v from Ĝ if and only if u ↔Ĝ v holds,
and vice versa. In Figure 1 (c), the bold line links the safe-to-
merge nodes. For example, two adjacent nodes v7 and v8 are
the safe-to-merge nodes for (6, 3)-plexes because the degree

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2253

Algorithm 1 Node-merging algorithm

Input: A converged graph Ĝ;
Output: A graph G∗ after merging safe-to-merge nodes;
1: procedure MERGE (Ĝ, α, k):
2: G∗ ← Ĝ;
3: FG∗ ← {v ∈ VG∗ | dG∗(v) = α− k};
4: M ← a connected node set in G[FG∗];
5: while M ̸= ∅ do
6: Add a supernode s to VG∗ ;
7: for each v ∈M do
8: for each u ∈ N(v)\M do
9: Add an edge (u, s) to EG∗ ;

10: Remove v from VG∗ ;
11: FG∗ ← FG∗ ∪ {s}\M ;
12: M ← ∅;
13: for each v ∈ NG∗(s) do
14: if v ↔G∗s then
15: M ←M ∪ {v};
16: if M = ∅ then
17: M ← a connected node set in G[FG∗];
18: return G∗;

of node v7 becomes 2 in G−v8 , which is smaller than α−k =
3. Additionally, node v8 has a degree smaller than 3 in G−v7

.
For Definition 5, we derive the following lemma:

Lemma 1. For u ↔Ĝ v, node u is not included in an (α,
k)-plex if node v is not included in the (α, k)-plex.

Proof. We prove by contradiction. Given safe-to-merge
nodes u ↔Ĝ v, we assume that u is included in an (α, k)-
plex if v is not included in the (α, k)-plex. That is, we have
u /∈ UĜ−v

. From Definition 5, this is a clear contradiction
since u↔Ĝ v ⇒ u ∈ UĜ−v

holds. This completes the proof
of Lemma .
Lemma 3.2 indicates that safe-to-merge nodes never become
members of an (α, k)-plex if one of them is not included in the
(α, k)-plex. Conversely, they are members of an (α, k)-plex
if one is included in the (α, k)-plex. Thus, removing the safe-
to-merge nodes can effectively reduce the graph size if one
of them is not included in the (α, k)-plex. However, it needs
O(|VĜ|2) time to list the safe-to-merge nodes for exploring
all node pairs. To avoid this, we propose a node-merging
strategy that dynamically merges unnecessary nodes.

3.3 Node-merging Strategy
We introduce a node-merging strategy to efficiently find safe-
to-merge nodes from a converged graph. We overview a key
property underlying our strategy and then provide its details.

Node-merging Property To find the safe-to-merge nodes
efficiently, we present the node-merging property. First, we
define fragile nodes for a converged graph Ĝ as:

Definition 6 (Fragile Nodes). Given a converged graph Ĝ,
fragile nodes FĜ are defined as:

FĜ = {v ∈ VĜ | dĜ(v) = α− k}.

In Figure 1 (c), fragile nodes are those whose degree is α− k

= 3. Thus, Ĝ has FĜ = {v1, v2, v3, v7, v8}. Fragile nodes
become unfruitful if one of their adjacent nodes is removed
since the removed node decreases the degree of the fragile
nodes. In Figure 1 (c), v7 is unfruitful after removing v8
from Ĝ. Formally, safe-to-merge nodes can be obtained from
G[FĜ] using the following property:

Lemma 2. Let G[FĜ] be the induced subgraph comprised of
fragile nodes. If a path v1 → v2 → ...→ vN exists in G[FĜ],
vi ↔Ĝ vi+1 always holds for i ∈ {1, 2, ..., N − 1}.
Proof. From Definition 5, dĜ(vi+1) = α − k holds. If vi is
removed from Ĝ, we have dĜ−vi

(vi+1) = α − k − 1 since
(vi, vi+1) ∈ EĜ. From Definition 3, we have vi+1 ∈ UĜ−vi

.
Furthermore, vi ∈ UĜ−vi+1

holds since we have dĜ(vi) =

α− k. Hence, vi ↔Ĝ vi+1 holds from Definition 5.
If nodes are connected in the induced subgraph composed of
fragile nodes, they are safe-to-merge nodes. In Figure 1 (c),
nodes v1, v2, and v3 are included in FĜ. Because there is a
path of v1 → v2 → v3 in G[FĜ], v1 ↔Ĝ v2 and v2 ↔Ĝ v3
hold. Clearly, we can find the path in O(|VĜ|) time, at most,
by obtaining the fragile nodes. Hence, Lemma 2 can be used
to efficiently find safe-to-merge nodes.

Node-merging Algorithm Our algorithm efficiently finds
safe-to-merge nodes by initially enumerating all safe-to-
merge nodes based on Lemma 2. Then the nodes are removed
based on Lemma 3.2 by merging the nodes to a supernode.
This efficiently reduces the graph size. Here, we formally
define a supernode as:

Definition 7 (Supernode). Given a graph Ĝ and a set of con-
nected safe-to-merge nodes M ∈ G[FĜ], a supernode s is
defined as a node obtained after merging nodes in M . Here,
s is adjacent to nodes in {v ∈ VĜ | ∀u ∈ M, (u, v) ∈ EĜ}.
We also define its degree dĜ(s) as α − k. By merging M ,
nodes of M and edges linked to them are removed from Ĝ.
|s| = |M | denotes the number of merged nodes.

A supernode is a special class of nodes in which safe-to-
merge nodes are represented as a single node. The degree of
a supernode is always α− k since all merged nodes are frag-
ile nodes. Additionally, a supernode can be linked by several
edges since edges in M are reconnected to the supernode. For
example, in Figure 1 (d), two edges (v1, v4) and (v2, v4) are
reconnected as (s123, v4) after merging {v1, v2, v3} to s123.

If u, v ∈ FĜ are connected in G[FĜ], they are safe-to-
merge nodes based on Lemma 2. Using this property, Algo-
rithm 1 is designed to output a graph after merging the nodes
by finding the safe-to-merge nodes in Ĝ. Algorithm 1 first
constructs fragile nodes FG∗ . Then it finds a connected node
set M in G[FG∗] using depth-first-search (DFS) 1 based on
Lemma 2 (lines 3–4). For each connected node set M , Algo-
rithm 1 replaces M with the corresponding supernode s using
Definition 7 (lines 6–10). Then it adds s to FG∗ since the de-
gree of s is α − k (line 11). Let NG∗(u) = {v ∈ VG∗ |
(u, v) ∈ EG∗} be a set of adjacent nodes of node u in G∗.

1Any search method is acceptable if it yields equivalent search results as DFS.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2254

Algorithm 2 Proposed method: Branch-and-Merge (BnM)
Input: A given graph G, a positive integer k;
Output: A maximum k-plex Gmax;
1: Ĝ← G, Gmax ← ∅, α← k + 1;
2: while true do
3: Gcurr ← BRANCH (Ĝ, α, k);
4: if Gcurr = ∅ then
5: return Gmax;
6: Ĝ← G[VĜ\FĜ];
7: Gmax ← Gcurr;
8: α← α+ 1;
9:

10: procedure BRANCH (Ĝ, α, k)
11: Ĝ← a converged graph of Ĝ for α and k;
12: n← 0;
13: for each v ∈ VĜ do
14: if v is a supernode then
15: n← n+ |v|;
16: else
17: n← n+ 1;
18: if n = α then
19: return Ĝ;
20: if n < α then
21: return ∅;
22: G∗ ←MERGE (Ĝ, α, k);
23: Gcurr ← ∅;
24: for each v ∈ VG∗ do
25: Gcurr ← BRANCH (G∗

−v, α, k);
26: if Gcurr ̸= ∅ then
27: return Gcurr;
28: return ∅;

Then Algorithm 1 updates the connected node set M by ex-
ploring the nodes in NG∗(s). If NG∗ has the safe-to-merge
nodes to s, Algorithm 1 adds the nodes to M (lines 13–15).
Otherwise, it explores another connected node set (lines 16–
17). Finally, Algorithm 1 is terminated if no safe-to-merge
nodes are found (lines 5–17).

Figures 1 (c), (d), and (e) illustrate a running example of
Algorithm 1. Figure 1 (c) shows that the converged graph Ĝ
has FĜ = {v1, v2, v3, v7, v8}. By merging {v7, v8}, Algo-
rithm 1 adds supernode s78 as shown in Figure 1 (d). Based
on Definition 7, the edges (v7, v4), (v7, v9), (v8, v6), and
(v8, v9) are replaced by (s78, v4), (s78, v9), (s78, v6), and
(s78, v9), respectively. Then Algorithm 1 merges {v1, v2, v3}
into s123. In Figure 1 (d), since s78 and v9 are linked by two
edges, they become the safe-to-merge nodes by Definition 5.
Hence, our algorithm merges them into s789 in Figure 1 (e),
and the graph has no safe-to-merge nodes.

Finally, we theoretically assess the time complexity to
merge all safe-to-merge nodes in Ĝ using Algorithm 1.
Lemma 3. Algorithm 1 incurs O(|FĜ| · (α− k)) time.
Proof. Algorithm 1 can be split into two processes: find-
ing the safe-to-merge nodes (lines 4, 12–17) and reconnecting
the edges to merge the nodes (lines 5–9). We first discuss the
time complexity to find all safe-to-merge nodes. As proved in

Lemma 2, if a path exists in G[FĜ], the nodes in the path are
safe-to-merge nodes. Thus, we employ the depth-first search
(DFS) to enumerate the connected node set in G[FĜ]. We
start DFS from a fragile node in FĜ to explore adjacent fragile
nodes in Ĝ recursively. If the search is terminated, the fragile
nodes explored by the DFS are safe-to-merge nodes. By per-
forming DFS iteratively by selecting unvisited fragile nodes
as the starting node, we can enumerate all connected node sets
in G[FĜ]. This computation incurs O(|FĜ| ·(α−k)) time for
two reasons. First, each fragile node has exactly α − k adja-
cent nodes in Ĝ. Second, DFS is performed only for fragile
nodes FĜ and their adjacent nodes. Next, we discuss the time
complexity to reconnect edges of the merging nodes. From
Definition 5, each safe-to-merge node v ∈M becomes an un-
fruitful node if nodes in M\{v} are removed from Ĝ. Thus,
v has less than α − k adjacent nodes in Ĝ\M from Defini-
tion 3. It indicates that less than α− k edges are reconnected
for each merged node. Since the number of merged nodes
is approximately |FĜ| from Lemma 2, reconnecting edges
incurs O(|FĜ| · (α − k)) time. Hence, Algorithm 1 needs
O(|FĜ| · (α− k)) time in total.
As described in Section 3.1, real-world social networks typ-
ically contain many low-degree nodes due to the scale-free
property; the expected number of nodes with d adjacent nodes
is proportional to |VG|d−γ , where γ is a positive constant
representing the strength of the degree skewness [Albert and
Barabási, 2002]. Since fragile nodes are adjacent to exactly
d = α − k nodes, we have O(|FĜ|) ≈ O(|VĜ|(α − k)−γ)
in practice. Thus, Algorithm 1 practically incurs O(|FĜ| ·
(α − k)) ≈ O(|VĜ|/(α − k)(γ−1)) time to reduce the graph
size, which is a sublinear time to the number of nodes in real-
world social networks. In contrast, existing state-of-the-art
algorithms require O(|VG|2) time to reduce the graph size.
Thus, Lemma 3 indicates that Algorithm 1 reduces the graph
size more efficiently than state-of-the-art MPS algorithms.

3.4 BnM Algorithm
Algorithm 2 fully describes BnM. It iteratively explores (α,
k)-plexes by increasing α until the maximum k-plex is found
(lines 2–8). Initially, BnM sets α = k + 1 since any k nodes
can be a (k, k)-plex (line 1). In each iteration, BnM invokes
the BRANCH function (line 3) to find (α, k)-plexes from Ĝ.
The BRANCH function is composed of two steps: (1) graph
reduction (line 22) and (2) graph branching (lines 24–27).
The first step reduces the graph size using the MERGE func-
tion shown in Algorithm 1, which finds and merges the safe-
to-merge nodes to efficiently reduce the graph size. In the
subsequent step, BnM recursively invokes the BRANCH func-
tion by removing each node in VG∗ one-by-one (lines 24–25).
After recursive computations, if the graph size of Ĝ reaches
α, Ĝ is returned as an (α, k)-plex (lines 18–19). Otherwise,
the BRANCH function outputs no graph (lines 20–21). Fi-
nally, BnM outputs (α− 1, k)-plexes as the maximum k-plex
if the BRANCH function does not return a graph (lines 4–5).

Theoretical analysis: We theoretically assessed the effi-
ciency and the exactness of BnM. By letting τ be the total
number of BRANCH functions invoked in Algorithm 2, the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2255

Graphs |VG| |EG| γ αmax k BnM BnB Maplex KpLeX kPlexS

soc-LiveMocha 104,103 2,193,083 1.75

19 2 16.23 (± 0.31) sec. 467.19 (± 4.42) sec. 48.96 (± 0.91) sec. 12.01 (± 0.32) sec. 29.01 (± 0.44) sec.

22 3 40.80 (± 0.55) sec. DNF 329.74 (± 1.37) sec. 42.77 (± 0.81) sec. 47.20 (± 0.72) sec.

25 4 529.31 (± 2.76) sec. DNF 5,122.63 (± 7.72) sec. 631.10 (± 4.28) sec. 580.10 (± 3.10) sec.

28 5 8,899.67 (± 8.42) sec. DNF DNF DNF DNF

soc-douban 154,908 327,162 2.13

12 2 0.16 (± 0.01) sec. 0.81 (± 0.06) sec. 0.21 (± 0.03) sec. 0.28 (± 0.02) sec. 0.25 (± 0.02) sec.

14 3 0.16 (± 0.01) sec. 0.71 (± 0.05) sec. 0.26 (± 0.03) sec. 0.31 (± 0.03) sec. 0.23 (± 0.01) sec.

16 4 0.14 (± 0.01) sec. 0.59 (± 0.07) sec. 0.16 (± 0.02) sec. 0.21 (± 0.02) sec. 0.16 (± 0.01) sec.

17 5 0.10 (± 0.01) sec. 0.20 (± 0.03) sec. 0.09 (± 0.01) sec. 0.16 (± 0.02) sec. 0.10 (± 0.01) sec.

soc-twitter-follows 404,719 713,319 1.18

8 2 1.53 (± 0.07) sec. 11.42 (± 0.23) sec. 0.81 (± 0.09) sec. 0.98 (± 0.05) sec. 0.58 (± 0.04) sec.

9 3 1.28 (± 0.05) sec. 23.56 (± 0.36) sec. 0.75 (± 0.08) sec. 0.72 (± 0.04) sec. 0.47 (± 0.03) sec.

11 4 0.61 (± 0.02) sec. 24.44 (± 0.32) sec. 0.52 (± 0.08) sec. 0.68 (± 0.07) sec. 0.35 (± 0.03) sec.

13 5 0.29 (± 0.02) sec. 28.71 (± 0.47) sec. 0.32 (± 0.03) sec. 0.44 (± 0.06) sec. 0.31 (± 0.02) sec.

soc-youtube 495,957 1,936,748 1.88

20 2 2.49 (± 0.18) sec. 17.23 (± 1.72) sec. 3.26 (± 0.21) sec. 4.52 (± 0.31) sec. 4.09 (± 0.14) sec.

21 3 19.31 (± 0.89) sec. 30.06 (± 1.96) sec. 16.25 (± 0.56) sec. 5.81 (± 0.39) sec. 5.27 (± 0.19) sec.

24 4 21.31 (± 0.85) sec. 20.12 (± 2.01) sec. 50.46 (± 0.91) sec. 23.22 (± 0.80) sec. 18.21 (± 0.31) sec.

26 5 11.90 (± 0.52) sec. 25.00 (± 1.75) sec. 3,701.25 (± 20.31) sec. 63.00 (± 2.13) sec. 21.80 (± 0.45) sec.

soc-delicious 536,108 1,365,961 2.14

23 2 0.20 (± 0.01) sec. 1.51 (± 0.15) sec. 0.19 (± 0.05) sec. 0.89 (± 0.04) sec. 0.25 (± 0.01) sec.

27 3 0.21 (± 0.02) sec. 1.79 (± 0.17) sec. 0.21 (± 0.04) sec. 0.82 (± 0.04) sec. 0.27 (± 0.01) sec.

29 4 0.14 (± 0.01) sec. 1.11 (± 0.14) sec. 0.16 (± 0.02) sec. 0.77 (± 0.04) sec. 0.27 (± 0.02) sec.

30 5 0.08 (± 0.01) sec. 0.79 (± 0.11) sec. 0.16 (± 0.03) sec. 0.63 (± 0.02) sec. 0.12 (± 0.01) sec.

soc-FourSquare 639,014 3,214,986 1.52

35 2 621.23 (± 2.31) sec. 5,291.21 (± 24.33) sec. 798.20 (± 8.21) sec. 680.21 (± 4.12) sec. 740.81 (± 1.90) sec.

39 3 886.14 (± 2.91) sec. DNF 1,302.39 (± 10.04) sec. 430.99 (± 3.10) sec. 656.74 (± 2.86) sec.

42 4 910.26 (± 3.09) sec. DNF 5,788.21 (± 25.42) sec. 604.49 (± 4.47) sec. 598.90 (± 2.23) sec.

44 5 3,490.63 (± 6.89) sec. DNF DNF 4,289.75 (± 21.08) sec. 2,809.31 (± 5.89) sec.

soc-youtube-snap 1,134,890 2,987,624 1.72

20 2 1.87 (± 0.19) sec. 32.80 (± 0.90) sec. 3.92 (± 0.42) sec. 3.57 (± 0.29) sec. 2.02 (± 0.19) sec.

21 3 9.89 (± 0.79) sec. 79.56 (± 1.16) sec. 49.95 (± 1.89) sec. 4.99 (± 0.41) sec. 3.89 (± 0.26) sec.

24 4 10.02 (± 0.90) sec. 77.37 (± 1.20) sec. 200.34 (± 3.55) sec. 10.11 (± 0.85) sec. 6.16 (± 0.30) sec.

26 5 16.20 (± 1.44) sec. 101.02 (± 2.18) sec. 3,922.66 (± 17.16) sec. 79.22 (± 2.15) sec. 14.22 (± 0.80) sec.

soc-lastfm 1,191,805 4,519,330 1.93

18 2 4.23 (± 0.35) sec. 261.19 (± 4.74) sec. 9.88 (± 1.14) sec. 7.90 (± 0.21) sec. 19.31 (± 0.82) sec.

21 3 6.96 (± 0.39) sec. 823.35 (± 6.45) sec. 62.10 (± 2.43) sec. 10.12 (± 0.30) sec. 101.24 (± 1.53) sec.

24 4 32.77 (± 1.02) sec. DNF 1,166.42 (± 8.70) sec. 42.29 (± 0.38) sec. 217.92 (± 1.81) sec.

27 5 201.00 (± 1.42) sec. DNF DNF 312.10 (± 2.51) sec. 305.38 (± 2.11) sec.

soc-pokec 1,632,803 22,301,964 2.88

31 2 16.73 (± 1.31) sec. 112.42 (± 1.39) sec. 39.92 (± 1.36) sec. 21.10 (± 0.71) sec. 44.72 (± 0.70) sec.

32 3 17.33 (± 1.48) sec. 151.04 (± 1.46) sec. 44.86 (± 1.82) sec. 23.54 (± 0.59) sec. 39.20 (± 0.59) sec.

32 4 17.32 (± 1.29) sec. 96.34 (± 1.21) sec. 36.21 (± 1.27) sec. 22.16 (± 0.62) sec. 27.70 (± 0.64) sec.

34 5 18.11 (± 1.50) sec. 77.00 (± 0.00) sec. 32.05 (± 1.14) sec. 26.35 (± 0.91) sec. 23.79 (± 0.39) sec.

soc-flixster 2,523,386 7,918,801 1.88

38 2 34.50 (± 0.82) sec. 941.23 (± 5.12) sec. 110.79 (± 4.28) sec. 28.10 (± 1.22) sec. 9.11 (± 0.15) sec.

42 3 290.90 (± 1.74) sec. DNF DNF 344.80 (± 4.67) sec. 179.04 (± 1.16) sec.

46 4 1,984.52 (± 7.21) sec. DNF DNF 2,721.11 (± 6.72) sec. 415.57 (± 1.72) sec.

49 5 4,016.59 (± 13.36) sec. DNF DNF DNF 569.30 (± 1.79) sec.

soc-livejournal 4,033,137 27,933,062 2.47

214 2 2.12 (± 0.21) sec. 17.34 (± 0.38) sec. 5.82 (± 0.27) sec. 20.21 (± 0.71) sec. 4.09 (± 0.31) sec.

214 3 2.24 (± 0.20) sec. 17.23 (± 0.32) sec. 6.21 (± 0.24) sec. 19.20 (± 0.49) sec. 3.96 (± 0.30) sec.

214 4 2.25 (± 0.21) sec. 17.80 (± 0.35) sec. 8.11 (± 0.27) sec. 15.70 (± 0.42) sec. 3.64 (± 0.39) sec.

214 5 2.39 (± 0.22) sec. 17.60 (± 0.38) sec. 8.23 (± 0.23) sec. 13.10 (± 0.31) sec. 3.29 (± 0.20) sec.

Table 2: Running times for real-world social networks.

time complexity of BnM is analyzed as follows:

Theorem 1. BnM incurs O(τ(|VĜ|+ |FĜ|(α− k))) time.

Proof. As shown in line 22 of Algorithm 2, the BRANCH func-
tion invokes the MERGE function, which incurs O(|FĜ|(α−
k)) time, as proved in Lemma 3. Furthermore, as shown in
lines 24–27 in Algorithm 2, BnM performs |VĜ| iterations
to explore (α, k)-plexes. Hence, BnM requires O(τ(|VĜ| +
|FĜ|(α− k))) time.

State-of-the-art MPS algorithms require O(|VG|2) time for
each graph reduction. Thus, they incur O(τ |VG|2) time to
find the maximum k-plex. In contrast, BnM drastically re-
duces the time complexity. Since O(|FĜ|) ≈ O(|VG|/(α −
k)(γ−1)) holds due to the scale-free property, we have
O(τ(|VG|+ |FĜ|(α−k))) ≈ O(τ |VG|(1+1/(α−k)(γ−2))))
for the time complexity as proved in Theorem 1. Since
O(1 + 1/(α − k)(γ−2)) ≈ O(1) in practice, BnM incurs
O(τ |VG|) time. Because τ theoretically depends on |VG∗ |,
which dynamically decreases as the search progresses, the
practical size of τ is much smaller than |V ∗

G|. Thus, BnM
has an almost linear scalability against the number of nodes.
In Section 4, we further assess the practical efficiency and
scalability using real-world social networks.

We then assess the exactness of BnM as follows:

Theorem 2. BnM outputs the exact maximum k-plex.

Proof. BnM is composed of two steps: (1) construct Ĝ
(line 11) and (2) invoke the BRANCH function (lines 3, 10–
28). As shown in line 11 of Algorithm 2, Ĝ is constructed
while removing only unfruitful nodes not included in the (α,
k)-plex from Definition 4. Second, as shown in lines 24–27
of Algorithm 2, BnM recursively searches (α, k)-plex from Ĝ

without v while varying v ∈ Ĝ. As we proved in Lemma 1,
if v is a member of a supernode s, then all nodes merged
into s are never included in any (α, k)-plexes in Ĝ−v , even
if each node is not computed by Algorithm 2. That is, BnM
does not fail to find all (α, k)- plexes in each iteration, al-
though it simultaneously removes all nodes of the supernode
by a node-merging strategy. Therefore, BnM outputs the ex-
act maximum k-plex.

Theorem 2 indicates that BnM efficiently finds the exact max-
imum k-plex, although BnM dynamically prunes numerous
nodes. As a result, BnM achieves an efficient MPS algorithm
without sacrificing the quality of AI-powered applications.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2256

4 Experimental Evaluation
We experimentally evaluated the efficiency of BnM.

Experimental Setup: We compared our proposed algo-
rithm BnM with state-of-the-art MPS algorithms: BnB [Gao
et al., 2018], Maplex [Zhou et al., 2021], KpLeX [Jiang et al.,
2021], and kPlexS [Chang et al., 2022]. All experiments were
conducted on a Linux server with Intel Xeon Gold 6246R
CPU 3.40 GHz and 128 GiB RAM. All algorithms were im-
plemented in C/C++ using “-O3” option as a single-threaded
program with the entire graph held in the main memory. All
results are averaged over ten independent runs.

Datasets: We tested 11 real-world social networks used
in previous works [Gao et al., 2018; Zhou et al., 2021;
Jiang et al., 2021; Chang et al., 2022] with more than 100,000
nodes, which are originally published by the Network Reposi-
tory [Rossi and Ahmed, 2015]2. Table 2 shows their statistics,
where αmax and γ denote the size of the maximum k-plex and
the skewness of the degree distribution, respectively. If γ is
large, the graph has many low-degree nodes.

4.1 Efficiency
Table 2 shows the running times of MPS on the datasets,
where DNF indicates that the runtime exceeded 10,000 sec-
onds. Similar to previous studies [Gao et al., 2018; Zhou et
al., 2021], we varied k from 2 to 5. Although BnM guaran-
tees the same results as the Naı̈ve algorithm by Theorem 2, it
is up to 305.2, 311.0, 9.53, and 14.54 times faster than BnB,
Maplex, KpLeX, and kPlexS, respectively. Specifically, BnM
significantly outperforms the other methods on graphs with
a large γ value (e.g., soc-lastfm, soc-pokec, soc-livejournal,
etc.). Compared to other algorithms, BnM has an improved
time complexity as proved in Theorem 1. It is responsible for
the superior running time.

In many datasets, BnM can find the maximum k-plex even
if k is set to 5, unlike the graph reduction algorithms of
BnB, Maplex, KpLeX, and kPlexS. As k increases, the com-
putation cost increases since the maximum k-plex would be
large. Regardless of the degree distribution, the reduction al-
gorithms repeatedly compute all nodes to remove unpromis-
ing nodes. However, real-world social networks have many
low-degree nodes (i.e., large γ values in Table 2) that are un-
likely to be the maximum k-plex due to the scale-free prop-
erty. Thus, reduction algorithms fail to return the maximum
k-plex for large k settings on massive graphs. In contrast,
BnM efficiently removes unpromising nodes using a node-
merging strategy based on the scale-free property if graphs
have a large γ value. Therefore, BnM can efficiently com-
pute massive social networks with large k settings compared
to other MPS algorithms.

4.2 Effectiveness
We experimentally evaluated the effectiveness of our ap-
proach by comparing the runtime of BnM to its variant that
excludes the node-merging strategy (BnM (w/o merge)). Ta-
ble 3 shows the runtimes, where DNF indicates the algorithm
did not finish within 10,000 seconds. Table 3 also includes the

2All graphs are publicly available online from https://networkrepository.com.

Graphs k BnM BnM (w/o merge) GRR

soc-LiveMocha

2 16.23 sec. DNF 0.05%
3 40.8 sec. DNF 0.03%
4 529.31 sec. DNF 0.03%
5 8,899.67 sec. DNF 0.03%

soc-douban

2 0.16 sec. 358.84 sec. 0.04%
3 0.16 sec. 291.14 sec. 0.05%
4 0.14 sec. 285.92 sec. 0.04%
5 0.1 sec. 202.42 sec. 0.05%

soc-twitter-follows

2 1.53 sec. 2,156.17 sec. 0.06%
3 1.28 sec. 7,829.11 sec. 0.01%
4 0.61 sec. 7,356.13 sec. 0.01%
5 0.29 sec. 7,001.65 sec. 0.01%

soc-youtube

2 2.49 sec. 3,801.64 sec. 0.06%
3 19.31 sec. 7,301.28 sec. 0.25%
4 21.31 sec. 7,016.16 sec. 0.26%
5 11.9 sec. 5,792.48 sec. 0.20%

soc-delicious

2 0.2 sec. 371.38 sec. 0.05%
3 0.21 sec. 480.72 sec. 0.04%
4 0.14 sec. 301.18 sec. 0.05%
5 0.08 sec. 266.02 sec. 0.03%

soc-FourSquare

2 621.23 sec. DNF 0.05%
3 886.14 sec. DNF 0.04%
4 910.26 sec. DNF 0.04%
5 3,490.63 sec. DNF 0.03%

Table 3: Effectiveness of a node-merging strategy.

graph reduction ratio (GRR), which is the fraction of edges
visited by BnM compared to BnM (w/o merge), to visualize
the reduced graph size by the node-merging strategy.

On average, BnM reduces the running time by 99.96%
compared to BnM (w/o merge). These results correspond to
the values derived from GRR where the node-merging strat-
egy reduces 99.93% of the computed edge sizes compared
to BnM (w/o merge). These results indicate that the node-
merging strategy enhances the efficiency since BnM dramat-
ically reduces the search space. Our strategy can remove all
the safe-to-merge nodes simultaneously if one of them is not
included in the (α, k)-plexes (Lemma 3.2). Furthermore, the
average number of GRR is 0.07%, which implies that the size
of τ in Theorem 1 is quite small since the size of τ depends
on the graph size obtained after merging safe-to-merge nodes
G∗. Consequently, the node-merging strategy effectively re-
duces the running time.

4.3 Scalability
We assessed the scalability of BnM. Figure 2 plots the run-
ning time on the four largest social networks in Table 2 as
a function of the number of nodes. We sampled 1 × 104,
3×104, 1×105, 3×105, and 1×106 nodes from the original
graphs using the Metropolis-Hastings Random Walk [Cui et
al., 2022] and evaluated the runtime on each sampled graph
with k = 5. If the algorithm did not finish within 10,000
seconds, the results are omitted in Figure 2.

Overall, BnM shows a nearly linear scalability against the
number of nodes on most graphs due to the skewness of
the degree distribution in social networks. BnM requires
O(τ |VG|(1 + 1/(α− k)(γ−2)) ≈ O(τ |VG|) time if γ is suffi-
ciently large. Hence, BnM is scalable if a degree distribution
is highly skewed. Therefore, BnM achieves a nearly linear
scalability since most graphs have a large γ value (Table 2).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2257

https://networkrepository.com

 BnM BnB Maplex KpLeX kPlexS

104 105 106

Number of nodes
10−1

100

101

102

103

104
R

un
ni

ng
 ti

m
e

[s
ec

.]

(a) soc-lastfm

104 105 106

Number of nodes
10−3

10−2

10−1

100

R
un

ni
ng

 ti
m

e
[s

ec
.]

(b) soc-pokec

104 105 106

Number of nodes
10−1

100

101

102

103

104

R
un

ni
ng

 ti
m

e
[s

ec
.]

(c) soc-flixster

104 105 106

Number of nodes
10−3

10−2

10−1

100

101

R
un

ni
ng

 ti
m

e
[s

ec
.]

(d) soc-livejournal

Figure 2: Scalability. Results are omitted if their running time exceeds 10,000 seconds.

5 Related Works
The problem of finding large dense communities has been
studied for several decades [Matsugu et al., 2020; Shiokawa
and Takahashi, 2020; Shiokawa, 2021]. Here we review some
of more successful MPS methods.

MPS algorithms: MPS is a problem to find the largest
k-plex included in a graph. MPS was first proposed by [Bal-
asundaram et al., 2007] in 2007 as a generalization of a max-
imum clique search. However, the naı̈ve MPS algorithm
is unresponsive to large social networks because it requires
O(2|VG| |VG|) time, where |VG| is the number of nodes in-
cluded in a graph [Balasundaram et al., 2007].

Several branching algorithms have been proposed to over-
come this limitation. Examples include GuidedBranch-
ing [Moser et al., 2012] and BS [Xiao et al., 2017]. The
key idea of these algorithms is to recursively partition search
spaces explored during the search process by branching each
search space according to whether a node can be included
in the maximum k-plex or not. As reported in [Xiao et al.,
2017], branching algorithms reduce the running times for
graphs with 700 nodes. However, they still require an expen-
sive cost to handle large social networks since the algorithms
need O(1.98|VG| |VG|2 log(|VG|)) time for MPS at k = 5.

Recently, Gao et al. proposed branch and bound (BnB) to
mitigate the expensive costs of MPS. To enhance the com-
putational efficiency, BnB introduced graph reduction ap-
proaches that dynamically exclude unpromising nodes, which
are unlikely to be the maximum k-plex. BnB approaches
still incur a large computational cost to find unpromising
nodes because they must repeatedly scan the whole graph.
To mitigate the overhead of graph reduction approaches, sev-
eral bounding methods have recently been proposed such as
Maplex [Zhou et al., 2021], KpLeX [Jiang et al., 2021], and
kPlexS [Chang et al., 2022]. These methods employ tighter
upper bounds for graph reduction to further reduce the num-
ber of visited nodes/edges. However, these cannot handle
large social networks with a few million nodes since their
state-of-the-art approaches require O(|VG|2) time to exclude
unpromising nodes.

Our work differs from these existing MPS algorithms in
that BnM provides a very efficient graph reduction algorithm
based on a node-merging strategy (Section 3.3). As we the-
oretically discussed in Section 3.4, BnM incurs O(τ |VG|)

time in practice, which is more efficient than the above algo-
rithms. Furthermore, our experimental analysis in Section 4
shows that BnM has a higher performance in terms of the
running time and the node-merging strategy successfully re-
moves 99.93% of visited edges.

Other k-plex search algorithms: Several other types of k-
plex search problems have also been studied in recent years.
An example is the maximal k-plex search [Wang et al., 2017;
Conte et al., 2018; Zhou et al., 2020]. Given a user-specified
query nodes VQ, the maximal k-plex search is a problem to
find a k-plex GS such that GS includes all VQ and no other
k-plex that contains GS exists. Unlike MPS, the maximal
k-plex search is not guarantee to output the largest k-plex
because it requires user-specified query nodes. Conversely,
the maximal k-plex search algorithms can find the maximum
k-plex if all possible query patterns can be tested, but this
clearly incurs O(2|VG|) time. Unfortunately, even state-of-
the-art algorithms [Dai et al., 2022] still require exponential
complexity with the number of nodes. Thus, it is difficult to
use a maximal k-plex search for MPS.

Unlike the above approaches, our proposed method, BnM,
guarantees to output the maximum k-plex. Furthermore, we
theoretically and experimentally verified that BnM has an al-
most linear scalability with the number of nodes included in
a graph. That is, BnM is a more effective approach than the
above ones in terms of the maximum k-plex finding.

6 Conclusion

Here, we propose an efficient MPS algorithm, BnM, for mas-
sive social networks. BnM effectively handles the scale-free
property of social networks. It reduces the graph size by find-
ing and merging safe-to-merge nodes. Experiments reveal
that BnM offers an improved efficiency compared to state-of-
the-art MPS algorithms. Consequently, BnM can enhance the
effectiveness of AI-powered applications for massive graphs.

Acknowledgements

This paper is partly supported by JST PRESTO JP-
MJPR2033, JST AIP Acceleration Research JPMJCR23U2,
and JSPS KAKENHI 22J10972.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2258

References
[Abello et al., 2002] James Abello, Mauricio G. C. Resende,

and Sandra Sudarsky. Massive Quasi-Clique Detection.
Proceedings of the 5th Latin American Symposium on The-
oretical Informatics, page 598–612, 2002.

[Albert and Barabási, 2002] Réka Albert and Albert-László
Barabási. Statistical Mechanics of Complex Networks.
Rev. Mod. Phys., 74:47–97, Jan 2002.

[Balasundaram et al., 2007] B Balasundaram, Sergiy
Butenko, I. Hicks, and S Sachdeva. Clique Relaxations in
Social Network Analysis: The Maximum k-Plex Problem.
Operations Research, 01 2007.

[Balasundaram, 2007] Balabhaskar Balasundaram. Graph
theoretic generalizations of clique: Optimization and ex-
tensions. Texas A&M University, 2007.

[Bianchi et al., 2020] Filippo Maria Bianchi, Daniele Grat-
tarola, and Cesare Alippi. Spectral Clustering with Graph
Neural Networks for Graph Pooling. In Proceedings of
the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

[Bodaghi and Oliveira, 2022] Amirhosein Bodaghi and Jon-
ice Oliveira. The Theater of Fake News Spreading, Who
Plays Which Role? A Study on Real Graphs of Spreading
on Twitter. Expert Systems with Applications, 189:116110,
2022.

[Bomze et al., 1999] Immanuel M Bomze, Marco Budinich,
Panos M Pardalos, and Marcello Pelillo. The Maximum
Clique Problem. Handbook of Combinatorial Optimiza-
tion, 4:1–74, 05 1999.

[Carmel et al., 2009] David Carmel, Naama Zwerdling, Ido
Guy, Shila Ofek-Koifman, Nadav Har’el, Inbal Ronen,
Erel Uziel, Sivan Yogev, and Sergey Chernov. Person-
alized Social Search Based on the User’s Social Net-
work. In Proceedings of the 18th ACM Conference on In-
formation and Knowledge Management, CIKM’09, page
1227–1236, New York, NY, USA, 2009. Association for
Computing Machinery.

[Chang et al., 2022] Lijun Chang, Mouyi Xu, and Darren
Strash. Efficient Maximum k-Plex Computation over
Large Sparse Graphs. Proceedings of the VLDB Endow-
ment, 16(2):127–139, 2022.

[Conte et al., 2017] Alessio Conte, Donatella Firmani, Cate-
rina Mordente, Maurizio Patrignani, and Riccardo Tor-
lone. Fast Enumeration of Large K-Plexes. In Proceed-
ings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’17, page
115–124, New York, NY, USA, 2017. Association for
Computing Machinery.

[Conte et al., 2018] Alessio Conte, Tiziano De Matteis,
Daniele De Sensi, Roberto Grossi, Andrea Marino, and
Luca Versari. D2K: Scalable Community Detection in
Massive Networks via Small-Diameter k-Plexes. KDD’18,
page 1272–1281, New York, NY, USA, 2018. Association
for Computing Machinery.

[Cui et al., 2022] Yingan Cui, Xue Li, Junhuai Li, Huaijun
Wang, and Xiaogang Chen. A Survey of Sampling Method
for Social Media Embeddedness Relationship. ACM Com-
put. Surv., 02 2022. Just Accepted.

[Dai et al., 2022] Qiangqiang Dai, Rong-Hua Li, Hongchao
Qin, Meihao Liao, and Guoren Wang. Scaling Up Max-
imal K-Plex Enumeration. In Proceedings of the 31st
ACM International Conference on Information & Knowl-
edge Management, CIKM’22, page 345–354, New York,
NY, USA, 2022. Association for Computing Machinery.

[Danezis et al., 2010] George Danezis, Tuomas Aura, Shuo
Chen, and Emre Kıcıman. How to share your favourite
search results while preserving privacy and quality. In In-
ternational Symposium on Privacy Enhancing Technolo-
gies Symposium, pages 273–290. Springer, 2010.

[Doerr et al., 2012] Benjamin Doerr, Mahmoud Fouz, and
Tobias Friedrich. Why Rumors Spread so Quickly in So-
cial Networks. Commun. ACM, 55(6):70–75, jun 2012.

[Faloutsos et al., 1999] Michalis Faloutsos, Petros Falout-
sos, and Christos Faloutsos. On Power-Law Relationships
of the Internet Topology. SIGCOMM Comput. Commun.
Rev., 29(4):251–262, 08 1999.

[Gao et al., 2018] Jian Gao, Jiejiang Chen, Minghao Yin,
Rong Chen, and Yiyuan Wang. An Exact Algorithm for
Maximum k-Plexes in Massive Graphs. In Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI’18, pages 1449–1455. Inter-
national Joint Conferences on Artificial Intelligence Orga-
nization, 7 2018.

[Jiang et al., 2021] Hua Jiang, Dongming Zhu, Zhichao Xie,
Shaowen Yao, and Zhang-Hua Fu. A New Upper Bound
Based on Vertex Partitioning for the Maximum K-plex
Problem. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI’21,
pages 1689–1696. International Joint Conferences on Ar-
tificial Intelligence Organization, 8 2021.

[Lee et al., 2019] Junhyun Lee, Inyeop Lee, and Jaewoo
Kang. Self-Attention Graph Pooling. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pages 3734–3743. PMLR, 09–15 Jun 2019.

[Leskovec and Krevl, 2014] J. Leskovec and A. Krevl.
SNAP Datasets: Stanford Large Network Dataset Collec-
tion. http://snap.stanford.edu/data, June 2014.

[Li et al., 2018] Qimai Li, Zhichao Han, and Xiao-Ming Wu.
Deeper Insights into Graph Convolutional Networks for
Semi-Supervised Learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational
Advances in Artificial Intelligence, AAAI’18. AAAI Press,
2018.

[Matsugu et al., 2020] Shohei Matsugu, Hiroaki Shiokawa,
and Hiroyuki Kitagawa. Fast and Accurate Community

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2259

http://snap.stanford.edu/data

Search Algorithm for Attributed Graphs. In Database and
Expert Systems Applications: 31st International Confer-
ence, DEXA’20, pages 233–249. Springer, 2020.

[Matsugu et al., 2021] Shohei Matsugu, Hiroaki Shiokawa,
and Hiroyuki Kitagawa. Fast Algorithm for Attributed
Community Search. Journal of Information Processing,
29:188–196, 2021.

[McClosky and Hicks, 2012] Benjamin McClosky and
Illya V Hicks. Combinatorial Algorithms for the
Maximum k-Plex Problem. Journal of Combinatorial
Optimization, 23(1):29–49, 2012.

[Moser et al., 2012] Hannes Moser, Rolf Niedermeier, and
Manuel Sorge. Exact Combinatorial Algorithms and Ex-
periments for Finding Maximum k-Plexes. Journal of
combinatorial optimization, 24(3):347–373, 2012.

[Noll and Meinel, 2007] Michael G. Noll and Christoph
Meinel. Web Search Personalization Via Social Book-
marking and Tagging. In Karl Aberer, Key-Sun Choi,
Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Ri-
ichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, The Semantic Web, pages 367–380,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[Pattillo et al., 2013] Jeffrey Pattillo, Nataly Youssef, and
Sergiy Butenko. On Clique Relaxation Models in Network
Analysis. European Journal of Operational Research,
226(1):9–18, 2013.

[Rossi and Ahmed, 2015] Ryan Rossi and Nesreen Ahmed.
The Network Data Repository with Interactive Graph An-
alytics and Visualization. In Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, AAAI’15, 2015.

[Seidman, Stephen B and Foster, Brian L, 1978] Seidman,
Stephen B and Foster, Brian L. A Graph-theoretic Gener-
alization of the Clique Concept. Journal of Mathematical
sociology, 6(1):139–154, 1978.

[Seidman, 1983] Stephen B. Seidman. Network Structure
and Minimum Degree. Social Networks, 5(3):269–287,
1983.

[Shiokawa and Takahashi, 2020] Hiroaki Shiokawa and
Tomokatsu Takahashi. DSCAN: Distributed Structural
Graph Clustering for Billion-edge Graphs. In Database
and Expert Systems Applications: 31st International
Conference, DEXA’20, pages 38–54. Springer, 2020.

[Shiokawa et al., 2013] Hiroaki Shiokawa, Yasuhiro Fuji-
wara, and Makoto Onizuka. Fast Algorithm for
Modularity-Based Graph Clustering. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence,
AAAI’13, pages 1170–1176, 2013.

[Shiokawa et al., 2019] Hiroaki Shiokawa, Toshiyuki Ama-
gasa, and Hiroyuki Kitagawa. Scaling Fine-grained Mod-
ularity Clustering for Massive Graphs. In Proceedings of
the 28th International Joint Conference on Artificial Intel-
ligence, IJCAI’19, pages 4597–4604, 2019.

[Shiokawa, 2021] Hiroaki Shiokawa. Scalable Affinity Prop-
agation for Massive Satasets. In Proceedings of the 30th

AAAI Conference on Artificial Intelligence, volume 35 of
AAAI’21, pages 9639–9646, 2021.

[Tomita and Seki, 2003] Etsuji Tomita and Tomokazu Seki.
An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique. pages 278–289, 01 2003.

[Wang and Dai, 2008] Lin Wang and Guan-zhong Dai.
Global Stability of Virus Spreading in Complex Heteroge-
neous Networks. SIAM Journal on Applied Mathematics,
68(5):1495–1502, 2008.

[Wang et al., 2003] Yang Wang, D. Chakrabarti, Chenxi
Wang, and C. Faloutsos. Epidemic Spreading in Real Net-
works: an Eigenvalue Viewpoint. In 22nd International
Symposium on Reliable Distributed Systems, 2003. Pro-
ceedings., pages 25–34, 2003.

[Wang et al., 2017] Yue Wang, Xun Jian, Zhenhua Yang,
and Jia Li. Query Optimal k-Plex Based Community in
Graphs. Data Science and Engineering, 2(4):257–273,
2017.

[Wang et al., 2020] Yu Guang Wang, Ming Li, Zheng Ma,
Guido Montufar, Xiaosheng Zhuang, and Yanan Fan. Haar
Graph Pooling. In International Conference on Machine
Learning, pages 9952–9962. PMLR, 2020.

[Wiil et al., 2010] Uffe Wiil, Nasrullah Memon, and Panagi-
otis Karampelas. Detecting New Trends in Terrorist Net-
works. pages 435–440, 08 2010.

[Xiao and Kou, 2017] Mingyu Xiao and Shaowei Kou. Ex-
act Algorithms for the Maximum Dissociation Set and
Minimum 3-Path Vertex Cover Problems. Theor. Comput.
Sci., 657(PA):86–97, January 2017.

[Xiao et al., 2017] Mingyu Xiao, Weibo Lin, Yuanshun Dai,
and Yifeng Zeng. A Fast Algorithm to Compute Maximum
k-Plexes in Social Network Analysis. In Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, 2017.

[Ying et al., 2018] Rex Ying, Jiaxuan You, Christopher Mor-
ris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical Graph Representation Learning with Differ-
entiable Pooling. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’18, page 4805–4815, Red Hook, NY, USA,
2018. Curran Associates Inc.

[Zhou et al., 2020] Yi Zhou, Jingwei Xu, Zhenyu Guo,
Mingyu Xiao, and Yan Jin. Enumerating Maximal k-
plexes with Worst-case Time Guarantee. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34
of AAAI’20, pages 2442–2449, 2020.

[Zhou et al., 2021] Yi Zhou, Shan Hu, Mingyu Xiao, and
Zhang-Hua Fu. Improving Maximum k-Plex Solver via
Second-Order Reduction and Graph Color Bounding. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35 of AAAI’21, pages 12453–12460, 2021.

[Zhu et al., 2020] Jinrong Zhu, B. Chen, and Yifeng Zeng.
Community Detection Based on Modularity and k-Plexes.
Information Sciences, 513:127–142, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2260

	Introduction
	Existing Approaches and Challenges
	Our Approaches and Contributions

	Preliminaries
	Branch-and-Merge (BnM)
	Overview
	Safe-to-merge Nodes
	Node-merging Strategy
	BnM Algorithm

	Experimental Evaluation
	Efficiency
	Effectiveness
	Scalability

	Related Works
	Conclusion

