
Reinforcement Learning Approaches for Traffic Signal Control
under Missing Data

Hao Mei1 , Junxian Li2 , Bin Shi2 and Hua Wei†1,3
1 New Jersey Institute of Technology

2 Xi’an Jiaotong University
3 Arizona State University

hm467@njit.edu, ljx201806@stu.xjtu.edu.cn, shibin@xjtu.edu.cn, hwei27@asu.edu

Abstract
The emergence of reinforcement learning (RL)
methods in traffic signal control (TSC) tasks has
achieved promising results. Most RL approaches
require the observation of the environment for the
agent to decide which action is optimal for a long-
term reward. However, in real-world urban scenar-
ios, missing observation of traffic states may fre-
quently occur due to the lack of sensors, which
makes existing RL methods inapplicable on road
networks with missing observation. In this work,
we aim to control the traffic signals in a real-world
setting, where some of the intersections in the road
network are not installed with sensors and thus with
no direct observations around them. To the best of
our knowledge, we are the first to use RL methods
to tackle the TSC problem in this real-world set-
ting. Specifically, we propose two solutions: 1)
imputes the traffic states to enable adaptive con-
trol. 2) imputes both states and rewards to en-
able adaptive control and the training of RL agents.
Through extensive experiments on both synthetic
and real-world road network traffic, we reveal that
our method outperforms conventional approaches
and performs consistently with different missing
rates. We also investigate how missing data influ-
ences the performance of our model.

1 Introduction
Traffic congestion has been a challenge in modern society
and adversely affects economic growth, environmental sus-
tainability, and people’s quality of life. For example, traffic
congestion costs an estimated $87 billion in lost productiv-
ity in the US alone [Tirone, 2022]. Recently, reinforcement
learning (RL) has shown superior performance over tradi-
tional transportation approaches in controlling traffic signals
in dynamic traffic [Arel et al., 2010; El-Tantawy et al., 2013;
Oroojlooy et al., 2020; Wei et al., 2019a]. The biggest advan-
tage of RL is that it directly learns to take adaptive actions in
response to dynamic traffic by observing the states and feed-
back from the environment after previous actions.

†Corresponding author.

Although a number of literature has focused on improving
RL methods’ performance in traffic signal control, RL cannot
be directly deployed in the real world where accessible obser-
vations are sparse, i.e., some traffic states are missing [Chen
et al., 2019; Mai et al., 2019]. In most cities where sensors
are only installed at certain intersections, intersections with-
out sensors cannot utilize RL and usually use pre-timed traffic
signal plans that cannot adapt to dynamic traffic. Similar sit-
uations could happen when installed sensors are not properly
functioning, which will lead to missing observations in the
collected traffic states [Duan et al., 2016] and the failure to
deploy RL methods. Though there have been attempts such
as using imitation learning to learn from the experience of
human traffic engineers [Li et al., 2020], these methods need
manual design and cannot be easily extended to new scenar-
ios. Thus the missing data issue still hinders not only the
application of RL, but also the deployment of other adaptive
control methods that require observing traffic states like Max-
Pressure [Varaiya, 2013].

In this paper, we investigate the traffic signal control prob-
lem under the real-world setting, where the traffic condition
around certain intersections are never observed. To enable
dynamic control over these intersections, we investigate how
data imputation could help the control, especially how the
imputation on state and reward can remedy the missing data
challenge for RL methods. With imputed states, adaptive
control methods from transportation could be utilized; with
both imputed states and rewards, RL agents could be trained
for unobserved intersections. Inspired by model-based RL,
we also investigate to use the imaginary rollout with reward
model for better performance. The main contributions of this
work are summarized as follows:
• To the best of our knowledge, we are the first to adapt RL-
based traffic signal control methods under the missing data
scenario, hence improving reinforcement learning method’s
applicability under more realistic settings. We test different
kinds of approaches to control the intersections without ob-
servations. We propose a two-step approach that firstly im-
putes the states and rewards to enable the second step of RL
training. The proposed approach can achieve better perfor-
mance than only training RL agents at fully observed inter-
sections or training RL agents on all intersections using only
observed data without imputation and also outperforms using
pre-timed control methods.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2261

• We investigate our methods under synthetic and real-world
datasets with different missing rates and whether having
neighboring unobserved intersections. And the studies on
missing rates and relationships of missing positions show our
methods perform better than pre-timed methods and are ef-
fective in real-world scenarios.

2 Related Work
Traffic signal control methods. Optimizing traffic sig-
nal control to alleviate traffic congestion has been a chal-
lenge in the transportation field for a long time. Different
approaches have been extensively studied, including rule-
based methods [HUNT, 1981; Sims and Dobinson, 1980;
Varaiya, 2013] and RL-based methods [Arel et al., 2010;
Wei et al., 2019a; Wei et al., 2018] to optimize vehicle travel
time or delay. Most of these studies, for example, IDQN
method [Wei et al., 2018], have significantly improved com-
pared to pre-designed time control methods. However, to the
best of our knowledge, there is no existing work on dealing
with the unobserved intersections in dynamic traffic signal
control methods.
Traffic data imputation. In real-world scenarios, full ob-
servation is not always accessible. An effective way to deal
with the missing observations is data imputation, i.e., to in-
fer the missing data to complete traffic observations. Ear-
lier studies typically use historical data collected at each
location to predict the values at missing positions of the
same site [Gan et al., 2015; Zhong et al., 2004]. Re-
cently, neural network-based methods have been proven ef-
fective and extended to be used in the traffic data imputation
task [Lv et al., 2015]. These methods could be categorized
into Recurrent Neural Networks (RNNs) [Cui et al., 2020;
Yao et al., 2018], Graph Neural Network (GNN) [Wang et al.,
2022] and Generative Adversarial Networks (GANs) [Zhang
et al., 2021]. However, all the methods mentioned above
also need the observation of all intersections to train mod-
els, while in reality, it is hard to fulfill. Store-and-forward
method (SFM) [Aboudolas et al., 2009] is another approach
to model traffic state transition and is often used as the base
model traffic simulation.
Model-based reinforcement learning. Model-based rein-
forcement learning (MBRL) methods utilize predictive mod-
els of the environment on the immediate reward or transition
to provide imaginary samples for RL [Luo et al., 2022]. In
MBRL with a reward model, an agent learns to predict the
immediate reward of taking action at a certain state, and in
this paper, we borrow this idea to train a reward model. In
MBRL with a transition model, an agent usually has the di-
rect observation of its own surrounding states, and a transi-
tion model is used to simulate the next states from current
observations. Unlike MBRL with transition models, in this
paper, some agents do not have observations of their own sur-
roundings, where imputation methods are utilized to infer the
current states (rather than next states) for those agents.

3 Preliminaries
In this section, we take the basic problem definition used in
the multi-intersection traffic signal control [Wei et al., 2019a]

and extend it into the missing data scenario frequently en-
countered in the real world. An agent controls each intersec-
tion in the system. Given that only part of the agents can have
their local observation of the total system condition as their
state, we would like to proactively decide for all the intersec-
tions in the system which phases they should change to so
as to minimize the average queue length on the lanes around
the intersections. Specifically, the problem is characterized
by the following major components ⟨S, Ŝ,A, r ,Π, γ⟩:

• Observed state space S and imputed state space Ŝ . We
assume that the system consists of a set of intersections N =
No∪Nm, where No is the set of intersections where the agent
can observe part of the system as its state s ∈ S , and Nm

is the set of intersections where the agent cannot observe the
system. We follow setting from past works [Wei et al., 2019b;
Wu et al., 2021; Huang et al., 2021], and define sjt for agent
j ∈ No at time t, which consists of its current phase (which
direction is in green light) and the number of vehicles on each
lane at time t. Later we will introduce unobserved agent k ∈
Nm, and how we can infer its state ŝkt ∈ Ŝ at time t.
• Set of actions A. In the traffic signal control problem,

at time t, an agent i would choose an action ait from its can-
didate action set Ai as a decision for the next ∆t period of
time. Here, we take acyclic control method, in which each
intersection would choose a phase p as its action ait from its
pre-defined phase set, indicating that from time t to t + ∆t,
this intersection would be in phase p.
• Reward r . Each agent i obtains an immediate reward

r it from the environment at time t by a reward function
S × A1 × · · · × AN → R. In this paper, we want to min-
imize the travel time for all vehicles in the system, which is
hard to optimize directly. Therefore, we define the reward for
intersection i as r it = −Σlu

i,l
t where ui,lt is the queue length

on the approaching lane l at time t. Specifically, we denote
r jt as the observed reward for agent j ∈ No at time t, and the
inferred reward r̂kt as the reward for agent k ∈ Nm at time t.

• Policy set Π and discount factor γ. Intuitively, the joint
actions have long-term effects on the system, so we want to
minimize the expected queue length of each intersection in
each episode. Specifically, at time t, each agent chooses an
action following a certain policy π : S → A.

An RL agent follows policy πθ ∈ Π parameterized by
θ, aiming to maximize its total reward Git = ΣTτ=tγ

τ−tr it ,
where T is total time steps of an episode and γ ∈ [0, 1] dif-
ferentiates the rewards in terms of temporal proximity. Other
rule-based agents are denoted as π∅ ∈ Π.

Problem 1 (Traffic signal control under missing data). Given
a road network where only part of the intersections is ob-
served with S , the goal of this paper is to find a better Π, no
matter whether it consists of πθ, π∅ or mixed policies of pre-
vious two kinds, that can minimize the average travel time of
all vehicles.

In the RL framework, training and execution are two de-
coupled phases: (1) During execution, an agent takes actions
based on its policy π to roll out trajectories and evaluate their
performances. For policies that take the current state as input,
the agent can execute adaptive actions as long as the input

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2262

states are available. For observed intersections No, the input
states could directly be observed state s ∈ S; for unobserved
intersections Nm, the input states could be inferred ŝ ∈ Ŝ us-
ing data imputation. (2) In the training phase, agents explore
the environment, store experiences in the replay buffer, and
update their policies to maximize their long-term rewards.
The experiences usually consist of state st, reward rt, action
at, and next state st+1. Different from execution phase, which
only requires the input states, the training phase of RL re-
quires reward information. For unobserved intersections Nm,
the r̂t could also be inferred with data imputation on the re-
ward. Later in Sec. 4, we will introduce how the missing data
in the training and execution phase would influence the de-
sign of methods to tackle the traffic signal control problem.

4 Methods under Missing Data
Adaptive control methods like MaxPressure and RL-based
methods dynamically adjust traffic signals based on real-time
traffic state observations, which have been proven to work
well on traffic signal control tasks. However, in the real-
world scenario, these adaptive control methods cannot work
properly at intersections Nm where real-time observations are
missing. To adapt dynamic control methods to real-world, we
explore the conventional approach and propose two effective
imputation approaches to handle the failure of adaptive con-
trol at Nm. The overall frameworks are shown in Figure 1.

4.1 Conventional Approaches
Under the missing data scenario, there are three direct ap-
proaches for traffic signal control: (1) pre-timed control,
which sets fixed timings for all intersections; (2) the mixed
control of RL and pre-timed agents, which uses RL agents
only at observed intersections No and deploys pre-timed
agents at unobserved intersections Nm; (3) neighboring RL
control, where agents at unobserved intersections Nm con-
catenate states from neighboring observed intersections as
their own state and accumulate rewards from their neighbor-
ing observed intersections as their reward. This approach fol-
lows the general solution to the Partially Observable Markov
Decision Process (POMDP) and assumes the traffic condition
from observed neighboring intersections could reflect the un-
observed traffic condition. This assumption might not hold
when the number of missing intersections increases or the
traffic is dynamic and complex.

4.2 Remedy 1: Imputation over Unobserved States
To enable Nm with dynamic control during execution, a nat-
ural solution is to impute unobserved states ŝkt at Nm for con-
trol methods. After the imputation of the states at unobserved
intersections, dynamic control methods can be applied.
Imputation. Since the state information at unobserved in-
tersections is totally missing, it is inapplicable to train a
model on data collected from unobserved intersections and
recover unobserved states. Therefore, we need to pretrain a
state imputation model that will be shared by all the unob-
served intersections and apply it during the training of RL. In-
tuitively, vehicles currently on each lane are aggregated from
its up-streaming connected lanes in the previous time step.

Given the states of neighboring intersections Vk of intersec-
tion k ∈ Nm, the state imputation at k can be formally de-
fined as follows:

ŝkt = f(Vkt−1) (1)

where f could be any state imputation model. In this paper,
we investigate two pre-trained models, a rule-based Store-
and-Forward model (SFM) and a neural network model.
Their detailed descriptions can be found in Sec. 5.1.

Control. After imputation, we investigate two control ap-
proaches that can function during execution.
• Approach 1: Adaptive control methods in transportation.
Adaptive control methods in transportation usually require
observation of the surrounding traffic conditions to decide the
action for traffic signals. Without imputation, these methods
cannot be applied directly. In this paper, following [Wei et
al., 2019a; Chen et al., 2020], we use one widely used adap-
tive control method, MaxPressure [Varaiya, 2013], to control
traffic signals for unobserved intersections after imputation.
• Approach 2: Transferred RL models. Another method is to
enable RL-based control at missing intersections by training
an RL policy πθ at observed intersections No and later trans-
ferring to Nm during execution. Since all agents share the
same policy, we refer to this model-sharing agent as SDQN
for later use. During execution, agent j ∈ No can directly
use the states sjt observed from the environment to take ac-
tion πθ(a

j
t |s

j
t). For agent k ∈ Nm, it first imputes states ŝkt

and then takes action πθ(akt |̂skt) based on the imputed states
ŝkt . In this solution, we use (sjt , r

j
t , a

j
t , s

j
t+1) from all the ob-

served intersections j ∈ No as experiences to train an RL
model shared by all intersections. This approach can signif-
icantly improve sample efficiency, and all training samples
can reflect the true state of the environment. However, since
the agent is only trained on the experiences from observed in-
tersections No, it might not be able to cope with unexplored
situations at Nm, which could result in a loss of generality
based on the agent’s policy.

4.3 Remedy 2: Imputation over Unobserved States
and Rewards

To enable agents to learn from experiences on unobserved
intersections Nm, it is necessary to impute both state and
reward for unobserved intersections k ∈ Nm. After get-
ting both the imputed state ŝkt and inferred reward r̂kt at
Nm, we can train agents with these imputed experiences
(ŝkt , r̂

k
t , a

k
t , ŝ

k
t+1).

Imputation. The process of state imputation is the same as
described in Sec. 4.2.

For reward imputation, we use a neural network to infer
r̂kt for Nm with state and action as input and pre-train it be-
fore RL training starts. In the pre-training phase, we first run
with a conventional control approach to collect (sjt , r

j
t , a

j
t) as

training samples from observed intersections j ∈ No, upon
which we train the reward imputation model gψ with MSE
Loss:

L(ψ) = 1

n

∑
n

(gψ(s
j , aj)− rj)2 (2)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2263

Figure 1: Overall framework of our proposed approaches. Red lines represent how the imputed data flows into unobserved intersections. And
blue lines show how reward is imputed and used for imaginary rollout. In Remedy 1, we only impute states at Nm and enable agents at these
intersections to take adaptive actions; In Remedy 2, we impute states and rewards together for training agents. (a) Remedy 1.1: RL agents at
No take sjt , r

j
t for training their policies, and take sjt during the execution phase. And MaxPressure agents at Nm take imputed ŝkt together

with neighboring intersections’ sjt during training and execution phases. (b) Remedy 1.2: RL agents take sjt , r
j
t , and train based on these

observable experiences. And at the Nm, agents are transferred from No and take imputed ŝkt for taking actions during the execution phase.
(c) Remedy 2.1: agents at No and Nm take sjt , r

j
t pairs or ŝkt , r̂kt pairs respectively and optimize their own policies during training. During

execution, agents at No take sjt from the environment, and agents at Nm take imputed ŝkt for execution. Different from Remedy 2.1, in (d)
Remedy 2.2 and (e) Remedy 2.3, all agents share the same policy, while Remedy 2.3 has an additional imaginary rollout step.

During the RL training phase, the original sjt at
No returned from the environment will first pass through state
imputation model and get the recovered data ŝkt at Nm . The
imputed ŝkt combining akt will be fed into gψ which could be
described as:

r̂kt = gψ(ŝ
k
t , a

k
t) (3)

Combining rjt from j ∈ No, experiences at all intersections
are now available.

Control. After state and reward imputation, the problem of
traffic signal control under the missing data could be trans-
formed into the regular traffic signal control problem. In the
following, we investigate three approaches:
• Approach 1: Concurrent learning. In concurrent learning,
each agent has its own policy and learns from its own ex-
periences. We adopt this imputation over state and reward
approach to enable the training of RL method. We use ex-
periences returned from the environment to train RL agents
at No and imputed experiences to train agents at Nm. This
training approach concurrently trains agents over all intersec-
tions and potentially makes each agent achieve its local opti-
mality if the evaluation metric could converge at the training
end. The concurrent training process could be problematic
when the imputation at missing intersections is inaccurate,
and training on such imputed experiences can bring additional
uncertainties and make it hard to get stable RL models.
• Approach 2: Parameter sharing. To improve the sam-
ple efficiency and reduce the instability during training,
we investigate the shared-parameter learning approach as
Sec. 4.2 did. During training, we collect observed experi-
ences (sjt , r

j
t , a

j
t , s

j
t+1) from observed intersections j ∈ No

and use the imputation models to impute (ŝkt , r̂
k
t) and get

the imputed experiences (ŝkt , r̂
k
t , a

k
t , ŝ

k
t+1) for intersections

k ∈ Nm. Then a shared RL policy is trained with both
observed and imputed experiences. During execution, the

trained RL policy is shared by all the intersections. This
parameter-sharing approach aims to expose the shared agent
to the experiences from both No and Nm and make policy
stable and easy to converge.
• Approach 3: Parameter sharing with the imaginary rollout.
In all imputation approaches, we use a rule-based SFM and
pre-trained neural network to impute states or states and re-
wards. However, the sample distribution shifting caused by
different policies could be detrimental to the performance of
the pre-trained model [Chen and Jiang, 2019]. Thus we com-
bine the model-based reinforcement learning (MBRL) with
the reward model and train a shared policy in the Dyna-Q
style framework [Sutton, 1991; Zhao et al., 2020].

In this approach, the shared-parameters agent updates the
Q function with both observed experiences (sjt , r

j
t , a

j
t , s

j
t+1)

from observed intersections and imputed experiences from
state and reward imputation models. At each simulation step,
the reward imputation model gψ infers r̂j , j ∈ No , which
will be used in training gψ by calculating the loss between
r̂j and rj returned from the environment with Eq. (3). Each
round of imaginary rollout samples a batch of (sjc, a

j
c, s

′j
c) and

(ŝkc , a
k
c , ŝ

′k
c), where k ∈ Nm and j ∈ No . For k ∈ Nm , the

updated reward imputation model will infer the new r̂jc , r̂
k
c to

apply additional updates the Q function:
Qθ(s

i
c, a

i
c) := r̂ic + γmax

a′i
Qθ(s

′i
c , a

′i) (4)

where, r̂ic ∈ {r̂jc , r̂kc }. Details are shown in Algorithm 1.

5 Experiments
5.1 Experimental Setup
Datasets. We testify our two approaches on TSC task un-
der missing data on a synthetic dataset and two real-world
datasets 1. DSY N is a synthetic dataset generated by

1The code and dataset can be found on the authors’ website.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2264

Algorithm 1: Algorithm for Remedy 2.3 - SDQN-
SDQN (model-based) with imaginary rollout

Input: Observed intersections j ∈ No , unobserved
intersections k ∈ Nm , pre-trained reward
function gψ(s, a), initial Qθ(s, a), state
imputation function f(Vkt−1)

Output: Qθ, gψ
1 for e = 1,2, . . . do
2 Reset simulator environment
3 for t = 1,2 , . . . do
4 Use states from observed intersections to

impute ŝk with Eq. (1)
5 Take actions with aj = argmaxQθ(s

j , aj),
and ak = argmaxQθ(ŝ

k, ak)

6 Infer r̂k with gψ(ŝk, ak), and r̂j with
gψ(s

j , aj)

7 Record rj returned from environment
8 Update Qθ(s, a) with (sj , rj , aj , s′j) and

(ŝk, r̂k, ak, ŝ′k) using Eq. (4)
9 # Reward function update step

10 Optimizing gψ(s, a) with Eq. (2)
11 # Imaginary rollout step
12 for c = 1,2 , . . . do
13 Randomly sample experiences, including

imputated state-action pairs (ŝk, ak, ŝ′k)
from Nm and observed experiences
(sj , aj , s′j)

14 Infer r̂j with gψ(sj , aj), r̂k with
gψ(ŝ

k, ak)

15 Update Qθ(s, a) with (sj , r̂j , aj , s′j) and
(ŝk, r̂k, ak, ŝ′k)

16 end
17 end
18 end

CityFlow [Zhang et al., 2019], an open-source microscopic
traffic simulator. The traffic road network is 4 × 4 grid
structured, and traffic flow is randomly generated following
Gaussian distribution. DHZ is a public traffic dataset that
recorded a 4×4 network at Hangzhou in 2016. All the dataset
is collected from surveillance cameras nearby. DNY is a
public traffic dataset collected in New York City within 16×3
intersections. Three datasets contain every vehicle’s position
and speed at each second and the trajectory within the road
network.

Implementation. We introduce the details of reinforce-
ment learning , state, and reward imputation models:
• RL settings. We follow the past work [Wei et al., 2019b; Wu
et al., 2021; Huang et al., 2021] to set up the RL environment,
and details on the state, reward, and action definition can be
found in Sec. 3. We take exploration rate ϵ = 0.1, discount
factor γ = 0.95, minimum exploration rate ϵmin = 0.01,
exploration decay rate ϵdecay = 0.995, and model learning
rate r = 0.0001.

• State imputation model. SFM model is a rule-based
method often used in past traffic signal control design av-
enues. In this work, we model the current state as: f(Vkt−1) =

1
|Vk

t−1|
Σls

l
t−1, where l ∈ Vkt−1 and |Vkt−1| is the number of k’s

neighboring intersections.
• Reward imputation model. To pre-train the reward impu-
tation model, we use a four-layer feed-forward neural net-
work and simulate 100 epochs to collect the training data
with traffic signals controlled by the conventional approach
2 described in Sec. 4.1. The training samples are collected
from observed intersections and divided into 80% and 20%
for training and testing. In the RL framework, we train agents
for 100 epochs and take the average travel time for agents’
performance evaluation.

Compared methods To describe different control methods
without misunderstanding, we use the kind of agents at ob-
served and unobserved intersections to denote these methods.
For example, in IDQN-Fix, the first term represents that No

uses IDQN [Wei et al., 2018], and the second term represents
that Nm uses fixed timing:
• Conventional 1: Fix-Fix. This is a ruled-based method
with fixed timings for all phases. We use Webster’s
method [Koonce and Rodegerdts, 2008] to calculate the fixed
timing and fine-tune it with a grid search to ensure the fixed
time method had its best results.
• Conventional 2: IDQN-Fix. In this method, intersections
in No use their own model trained by Deep Q-Learning
(DQN) [Wei et al., 2018] and intersections in Nm use fine-
tuned fixed timings.
• Conventional 3: IDQN-Neighboring. This is a method
where both Nm and No use IDQN. At No , agents take in
state and reward from the environment, and at Nm, agents
take states and rewards from neighboring intersections. Un-
observed neighboring intersections are zero-padded.
• Remedy 1.1: IDQN-MaxP. In this method, intersections
in No uses the same IDQN agents as IDQN-Fix. For in-
tersections in Nm, a ruled-based control approach MaxPres-
sure [Varaiya, 2013] is used after the imputation of ŝkt . Dif-
ferent from the conventional methods, this method has a pre-
defined SFM model for state imputation, which is shared by
all the intersections in Nm.
• Remedy 1.2: SDQN-SDQN (transferred). Similar to
IDQN-MaxP , this method also imputes the states with SFM
model. Different from IDQN-MaxP , all the agents share one
policy which is trained by collecting data from intersections
in No and then transferred to intersections in Nm .
• Remedy 2.1: IDQN-IDQN. Unlike Remedy 1, in addition to
state imputation model, this method has a pretrained reward
imputation model shared by the intersections in Nm. Each
intersection has its individual RL policy to control the actions
trained from the observed data (for intersections in No) or the
imputed data (for intersections in Nm).
• Remedy 2.2: SDQN-SDQN (all). Similar to IDQN-IDQN ,
this method also has a state imputation model and a reward
imputation model, while it only trains one shared policy using
the observed data from No and imputed data from Nm .
• Remedy 2.3: SDQN-SDQN (model-based). This method
integrates SDQN-SDQN (all) approaches into MBRL frame-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2265

Dataset
Missing rate

Method

Fix-Fix IDQN-Neighboring IDQN-Fix IDQN-MaxP SDQN-SDQN (transferred) IDQN-IDQN SDQN-SDQN (all) SDQN-SDQN (model-based)

DHZ

6.25%

609.13

433.67±26.75 337.07±4.54 334.41±2.42 331.16±2.28 424.81±15.36 330.85±2.61 330.23±1.04

12.5% - 362.89±6.03 339.71±1.86 330.84±1.85 497.21±59.43 329.11±0.30 331.35±1.63

18.75% - 370.18±2.58 342.57±1.82 332.20±4.55 537.85±56.67 330.28±1.99 358.55±35.78

25% - 396.36±1.79 382.93±5.60 331.57±1.81 653.09±71.44 333.87±3.06 330.51±1.48

DSY N

6.25%

713.69

767.54±14.63 640.68±27.11 577.92±31.58 350.85±7.51 683.41±95.21 368.76±4.43 325.64±13.31

12.5% - 600.45±15.53 699.26±54.01 399.03±15.75 727.64±83.78 440.68±43.54 361.07±9.64

18.75% - 637.50±32.93 673.56±42.76 808.25±52.81 794.89 ± 51.09 584.03±37.95 568.21±7.29

25% - 574.01±18.42 719.52±28.91 660.59±17.09 877.44±101.36 538.42±32.09 540.13±20.17

DNY

6.25%

1099.67

519.95±259.09 286.43±124.59 334.41±2.42 200.72±9.1 279.25±40.34 191.06±1.21 192.53±4.26

12.5% - 726.68±163.72 502.56±285.56 215.54±3.39 336.9±26.28 513.08±273.82 210.4±5.36

18.75% - 913.48±31.77 820.91±82.97 240.98±33.12 415.31±83.85 228.39±2.73 220.49±1.06

25% - 1012.91±44.25 1218.71±32.86 414.79±147.33 1331.60±58.94 507.67±181.38 316.56±37.97

Table 1: Overall performance of two imputation approaches and two baseline approaches w.r.t. the average travel time. The lower, the better.
The best and second best performance are highlighted. ‘-’ means this method does not converge after 100 epochs of training.

Figure 2: The decrease of average travel time for six control approaches over Fix-Fix control method (conventional 1) with missing data at
non-neighboring intersections w.r.t. DHZ (left) DSY N (middle) DNY (right). The more negative the value is, the better. Each column in one
group uses the same control method. η represents the missing rate of intersections in the road network. All dynamic control methods achieve
better performance than Fix-Fix control. IDQN-MaxP , SDQN-SDQN (transferred), SDQN-SDQN (all), and SDQN-SDQN (model-based)
outperform IDQN-Fix (conventional 2) method on all three datasets.

work. During training, the SDQN agents learn from experi-
ences at all intersections and, at the same time, the reward in-
ference model predicts reward at Nm. Different from SDQN-
SDQN (all), the reward model is updated upon new exper-
iments returned from the environment; it also has an imag-
inary rollout phase, during which SDQN agents learn from
both states sjt at No and imputed states ŝkt at Nm and inferred
rewards r̂it from the updated reward model.

5.2 Overall Performance
We perform experiments to investigate how different ap-
proaches perform under different missing rates. The results
can be found in Table 1. We have the following observa-
tions: (1) Compared with Fix-Fix, optimizing IDQN agents at
No can significantly reduce the average travel time. This val-
idates the effectiveness of RL agents over pre-timed agents.
(2) Compared with IDQN-Fix, IDQN-Neighboring works
worse even at the ideal settings and cannot converge at higher
missing rates, which proves optimizing IDQN agents with no
imputation cannot solve the missing data problem. (3) IDQN-
IDQN method in Remedy 2 does not outperform the original
naive method since all agents on Nm are only trained with
imputed data, which could bring in large uncertainty. (4)
SDQN-SDQN (model-based), SDQN-SDQN (all), SDQN-
SDQN (transferred), and IDQN-MaxP approaches achieve

better performances than naive IDQN-Fix approach under all
three datasets. This proves the effectiveness of our two-step
imputation and control method. As the missing rate increases,
their performance decreases. (5) For shared-parameter meth-
ods, when the missing rate is moderate, the overall perfor-
mance is not greatly affected. This is because the shared agent
can learn from the experience in both No and Nm and make
policy stable and easy to converge.

Summary of Different Approaches. We analyze and sum-
marize all approaches in the Table 2, Generally, fixed-time
methods (e.g., Fix-Fix, IDQN-Fix) do not rely on observa-
tions and cannot adapt well to dynamic traffic; shared RL
methods (e.g., SDQN-SDQN) using Centralized Training and
Decentralized Execution (CTDE) usually perform better than
individual RL (e.g., IDQN), particularly with more agents, as
validated by [Chen et al., 2020]. SDQN-SDQN (transferred)
in Remedy 1 uses control models only trained on observed
intersections, which may underperform when deployed on
unobserved intersections. SDQN-SDQN (all) in Remedy 2
pre-trains an additional reward model, enabling the update
of the control model for unobserved intersections, thus miti-
gating performance issues. SDQN-SDQN (model-based) fur-
ther refines the reward model training, enhancing the control
model’s performance.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2266

Figure 3: The decrease of average travel time for six control ap-
proaches over Fix-Fix (conventional 1) with missing data at non-
neighboring and neighboring intersections under all three datasets.
The more negative the value is, the better. Each group on X-axis
represents a method. Within each group, three colors represent three
datasets, where light- and dark-colored bars indicate scenarios with
and without adjacent unobserved intersections, respectively. Our
proposed method outperforms the Fix-Fix method in most cases.

5.3 Data Sparsity Analysis
We investigate how the missing rate and unobserved locations
influence the performance of the proposed methods.

Influence of missing rates. We randomly sample 1,2,3,4
intersections from 16 intersections in the DHZ and DSY N

and 3,6,9,12 intersections from 48 intersections in the DNY

as unobserved intersections. The results in Table 1 and Fig-
ure 2 show that when there are no neighboring unobserved
intersections, IDQN-MaxP , SDQN-SDQN (transferred), and
SDQN-SDQN (all), SDQN-SDQN (model-based) achieve
consistent better performances than Fix-Fix. The perfor-
mances of the four approaches decrease as the number of un-
observed intersections increases. Moreover, the three shared-
parameter methods are more stable in performance improve-
ment when the missing rates increase.

Influence of unobserved locations. In the previous ex-
periments, the unobserved intersections are not adjacent to
each other. Here we investigate how the locations of un-
observed intersections influence the performance. We con-
duct experiments on situations where adjacent intersections
are unobserved. We randomly sample missing intersections
and make sure the network has two unobserved intersections
adjacent. The result is shown in Figure 3. We have the
following observations: (1) When there are adjacent unob-
served intersections, our proposed method still outperforms
the Fix-Fix method in most cases. Specifically, SDQN-
SDQN (transferred), SDQN-SDQN (all), and SDQN-SDQN
(model-based) perform consistently better than other base-
line methods. (2) Except for IDQN-Fix, the performance of
all other methods drops from non-neighboring scenarios to
neighboring scenarios. This is likely because the performance
of the control method relies on the imputation method, and
missing data at neighboring intersections could negatively af-
fect the performance of the imputation.

Remedy Approach Advantage

Convention
Fix-Fix The control model does not rely on imputation.

IDQN-Fix
1. All the control models do not rely on imputation.
2. IDQN is adaptive in observed intersections.

Remedy 1
IDQN-MaxP

1. Remedy 1 approaches enable adaptive control in
unobserved intersections.
2. Unlike Remedy 2, Remedy 1 approaches do not
require a reward imputation model.

SDQN-SDQN
(transferred)

1. Remedy 1 approaches enable adaptive control in
unobserved intersections.
2. Unlike Remedy 2, Remedy 1 approaches do not
require a reward imputation model.
3. SDQN uses CTDE and converges faster in training
the control models.

Remedy 2
IDQN-IDQN

Remedy 2 approaches enable the training of the
control model on unobserved intersections.

SDQN-SDQN
(all)

1. Remedy 2 approaches enable the training of the
control model on unobserved intersections.
2. SDQN uses CTDE and converges faster in
training the control models.

SDQN-SDQN
(model-based)

1. Remedy 2 approaches enable the training of the
control model on unobserved intersections.
2. SDQN uses CTDE and converges faster in
training the control models.
3. This method can alleviate the data-shifting
problem by updating the reward model.

Disadvatage

Convention
Fix-Fix Fixed-time agents are not adaptive to dynamic traffic.

IDQN-Fix Fixed-time agents are not adaptive to dynamic traffic.

Remedy 1
IDQN-MaxP

1. Remedy 1 approaches require additional training
on the state imputation model.
2. MaxPrusure is rule-based and has limited
performance under complex traffic.
3. IDQN is hard to converge with multiple agents.

SDQN-SDQN
(transferred)

1. Remedy 1 approaches require additional training
on the state imputation model.
2. Control models are not trained on imputed
unobserved intersections.

Remedy 2
IDQN-IDQN

1. Remedy 2 approaches require additional training
on reward imputation models.
2. IDQN is hard to converge with multiple agents.
3. Pretrained reward models might be biased
between observed and unobserved intersections.

SDQN-SDQN
(all)

1. Remedy 2 approaches require additional
training on reward imputation models.
2. Pretrained reward models might be biased
between observed and unobserved intersections.

SDQN-SDQN
(model-based)

Remedy 2 approaches require additional training
on reward imputation models.

Table 2: Summary of advantages and disadvantages of approaches

6 Conclusion and Future Work
We investigate the traffic signal control problem in a real-
world setting where the traffic condition around certain lo-
cations is missing. To tackle the missing data challenge, we
propose two solutions: 1) impute the state at missing inter-
sections and directly use them to help agents at missing inter-
sections make decisions; 2) impute both state and reward and
use the imputed experiences to train agents. We conduct ex-
tensive experiments using synthetic and real-world data and
demonstrate the superior performance of our proposed meth-
ods over conventional methods. In addition, we show in-
depth case studies and observations to understand how miss-
ing data influences the final control performance.

We would also like to point out several future works. First,
missing data at neighboring intersections brings a consider-
able challenge to the imputation model. Future work could
explore different imputation methods to improve imputation
accuracy. Another direction is to combine our imputation
model with more external data like speed data to make the
imputation more accurate and improve control performance.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2267

Acknowledgments
The work was supported in part by NSF award #2153311.
The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing
any funding agencies.

References
[Aboudolas et al., 2009] K. Aboudolas, M. Papageorgiou,

and E. Kosmatopoulos. Store-and-forward based meth-
ods for the signal control problem in large-scale congested
urban road networks. Transportation Research Part C:
Emerging Technologies, 17(2):163–174, 2009. Selected
papers from the Sixth Triennial Symposium on Trans-
portation Analysis (TRISTAN VI).

[Arel et al., 2010] Itamar Arel, Cong Liu, Tom Urbanik, and
Airton G Kohls. Reinforcement learning-based multi-
agent system for network traffic signal control. IET In-
telligent Transport Systems, 4(2):128–135, 2010.

[Chen and Jiang, 2019] Jinglin Chen and Nan Jiang.
Information-theoretic considerations in batch reinforce-
ment learning. In International Conference on Machine
Learning, pages 1042–1051. PMLR, 2019.

[Chen et al., 2019] Xinyu Chen, Zhaocheng He, and Lijun
Sun. A bayesian tensor decomposition approach for spa-
tiotemporal traffic data imputation. Transportation Re-
search Part C: Emerging Technologies, 98:73–84, 2019.

[Chen et al., 2020] Chacha Chen, Hua Wei, Nan Xu, Guanjie
Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui
Li. Toward a thousand lights: Decentralized deep rein-
forcement learning for large-scale traffic signal control. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 3414–3421, 2020.

[Cui et al., 2020] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and
Yinhai Wang. Stacked bidirectional and unidirectional
lstm recurrent neural network for forecasting network-
wide traffic state with missing values. Transportation Re-
search Part C: Emerging Technologies, 118:102674, 2020.

[Duan et al., 2016] Yanjie Duan, Yisheng Lv, Yu-Liang Liu,
and Fei-Yue Wang. An efficient realization of deep learn-
ing for traffic data imputation. Transportation Research
Part C: Emerging Technologies, 72:168–181, 2016.

[El-Tantawy et al., 2013] Samah El-Tantawy, Baher Abdul-
hai, and Hossam Abdelgawad. Multiagent reinforcement
learning for integrated network of adaptive traffic signal
controllers (marlin-atsc): methodology and large-scale ap-
plication on downtown toronto. IEEE Transactions on In-
telligent Transportation Systems, 14(3):1140–1150, 2013.

[Gan et al., 2015] Min Gan, C. L. Philip Chen, Han-Xiong
Li, and Long Chen. Gradient radial basis function based
varying-coefficient autoregressive model for nonlinear and
nonstationary time series. IEEE Signal Processing Letters,
22(7):809–812, 2015.

[Huang et al., 2021] Xingshuai Huang, Di Wu, Michael
Jenkin, and Benoit Boulet. Modellight: Model-based
meta-reinforcement learning for traffic signal control.
arXiv preprint arXiv:2111.08067, 2021.

[HUNT, 1981] PB HUNT. Scoot-a traffic responsive method
of coordinating signals. TRRL Laboratory Report, 1014,
1981.

[Koonce and Rodegerdts, 2008] Peter Koonce and Lee
Rodegerdts. Traffic signal timing manual. Technical
report, United States. Federal Highway Administration,
2008.

[Li et al., 2020] Xiaoshuang Li, Zhongzheng Guo,
Xingyuan Dai, Yilun Lin, Junchen Jin, Fenghua Zhu, and
Fei-Yue Wang. Deep imitation learning for traffic signal
control and operations based on graph convolutional
neural networks. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC),
pages 1–6. IEEE, 2020.

[Luo et al., 2022] Fan-Ming Luo, Tian Xu, Hang Lai,
Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey
on model-based reinforcement learning. arXiv preprint
arXiv:2206.09328, 2022.

[Lv et al., 2015] Yisheng Lv, Yanjie Duan, Wenwen Kang,
Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. IEEE Trans-
actions on Intelligent Transportation Systems, 16(2):865–
873, 2015.

[Mai et al., 2019] Tien Mai, Quoc Phong Nguyen,
Kian Hsiang Low, and Patrick Jaillet. Inverse rein-
forcement learning with missing data. arXiv preprint
arXiv:1911.06930, 2019.

[Oroojlooy et al., 2020] Afshin Oroojlooy, Mohammadreza
Nazari, Davood Hajinezhad, and Jorge Silva. Attendlight:
Universal attention-based reinforcement learning model
for traffic signal control. Advances in Neural Information
Processing Systems, 33:4079–4090, 2020.

[Sims and Dobinson, 1980] Arthur G Sims and Kenneth W
Dobinson. The sydney coordinated adaptive traffic (scat)
system philosophy and benefits. IEEE Transactions on ve-
hicular technology, 29(2):130–137, 1980.

[Sutton, 1991] Richard S Sutton. Dyna, an integrated archi-
tecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

[Tirone, 2022] Onathan Tirone. Congestion pricing, the
route more cities are taking. Bloomberg, 2022.

[Varaiya, 2013] Pravin Varaiya. The max-pressure controller
for arbitrary networks of signalized intersections. In Ad-
vances in dynamic network modeling in complex trans-
portation systems, pages 27–66. Springer, 2013.

[Wang et al., 2022] Peixiao Wang, Tong Zhang, Yueming
Zheng, and Tao Hu. A multi-view bidirectional spatiotem-
poral graph network for urban traffic flow imputation. In-
ternational Journal of Geographical Information Science,
36(6):1231–1257, 2022.

[Wei et al., 2018] Hua Wei, Guanjie Zheng, Huaxiu Yao, and
Zhenhui Li. Intellilight: A reinforcement learning ap-
proach for intelligent traffic light control. In Proceedings
of the 24th ACM SIGKDD International Conference on

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2268

Knowledge Discovery & Data Mining, pages 2496–2505,
2018.

[Wei et al., 2019a] Hua Wei, Chacha Chen, Guanjie Zheng,
Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li.
Presslight: Learning max pressure control to coordinate
traffic signals in arterial network. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’19, pages 1290–
1298, 2019.

[Wei et al., 2019b] Hua Wei, Nan Xu, Huichu Zhang, Guan-
jie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learn-
ing network-level cooperation for traffic signal control. In
Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pages 1913–
1922, 2019.

[Wu et al., 2021] Libing Wu, Min Wang, Dan Wu, and Jia
Wu. Dynstgat: Dynamic spatial-temporal graph atten-
tion network for traffic signal control. In Proceedings of
the 30th ACM International Conference on Information &
Knowledge Management, pages 2150–2159, 2021.

[Yao et al., 2018] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng
Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and
Zhenhui Li. Deep multi-view spatial-temporal network for
taxi demand prediction. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32(1), Apr. 2018.

[Zhang et al., 2019] Huichu Zhang, Siyuan Feng, Chang
Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan
Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow:
A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide web
conference, pages 3620–3624, 2019.

[Zhang et al., 2021] Weibin Zhang, Pulin Zhang, Yinghao
Yu, Xiying Li, Salvatore Antonio Biancardo, and Junyi
Zhang. Missing data repairs for traffic flow with self-
attention generative adversarial imputation net. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[Zhao et al., 2020] Yangyang Zhao, Zhenyu Wang, Kai Yin,
Rui Zhang, Zhenhua Huang, and Pei Wang. Dynamic
reward-based dueling deep dyna-q: Robust policy learning
in noisy environments. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 9676–
9684, 2020.

[Zhong et al., 2004] Ming Zhong, Pawan Lingras, and Satish
Sharma. Estimation of missing traffic counts using factor,
genetic, neural, and regression techniques. Transportation
Research Part C: Emerging Technologies, 12(2):139–166,
2004.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2269

	Introduction
	Related Work
	Preliminaries
	Methods under Missing Data
	Conventional Approaches
	Remedy 1: Imputation over Unobserved States
	Remedy 2: Imputation over Unobserved States and Rewards

	Experiments
	Experimental Setup
	Overall Performance
	Data Sparsity Analysis

	Conclusion and Future Work

