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Abstract
Selection bias hinders recommendation models
from learning unbiased user preference. Recent
works empirically reveal that pursuing invariant
user and item representation across biased and
unbiased data is crucial for counteracting selec-
tion bias. However, our theoretical analysis re-
veals that simply optimizing representation invari-
ance is insufficient for addressing the selection bias
— recommendation performance is bounded by
both representation invariance and discriminabil-
ity. Worse still, current invariant representation
learning methods in recommendation neglect even
hurt the representation discriminability due to data
sparsity and label shift. In this light, we pro-
pose a new Discriminative-Invariant Representa-
tion Learning framework for unbiased recommen-
dation, which incorporates label-conditional clus-
tering and prior-guided contrasting into conven-
tional invariant representation learning to mitigate
the impact of data sparsity and label shift, re-
spectively. We conduct extensive experiments on
three real-world datasets, validating the rational-
ity and effectiveness of the proposed framework.
Code and supplementary materials are available at:
https://github.com/HungPaan/DIRL.

1 Introduction
Recommender systems (RSs) make personalized recommen-
dation by predicting user preferences for items and have
achieved great success in various applications [Chen et al.,
2023]. Historical feedback (e.g., like or dislike) is indispens-
able for learning user preference, which is typically collected
from previous recommendation strategies. Consequently, the
historical feedback is subject to selection bias [Saito and No-
mura, 2022], i.e., unevenly distributed over the entire user-
item space. Blindly fitting such biased data will result in
biased user preference [Chen et al., 2023] and notorious is-
sues such as unfairness and filter bubble [Huang et al., 2022].
Therefore, it is crucial to counteract selection bias in user
preference learning.
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Figure 1: Data sparsity and label shift in three datasets. (a) The
biased data is highly sparse. For example, in Yahoo!R3, 97.98%
of the user-item pairs in the entire user-item space have no labels.
(b) The label distribution of the biased data differs from that of the
unbiased data. For example, in Yahoo!R3, the proportions of user-
item pairs with positive labels in the biased and unbiased data are
0.4013 and 0.08, respectively. (Un)biased refers to the (un)biased
data and + (-) refers to the positive (negative) label.

The key lies in aligning the distribution of user-item pairs
in the biased data to the unbiased data with feedback collected
under random exposure. Existing methods achieve the goal
by minimizing distribution discrepancy, which is in two main
categories at data level and representation level. Bridging the
discrepancy at data level is typically achieved by reweight-
ing the user-item pairs according to the exposure probability
(a.k.a. propensity score) [Swaminathan and Joachims, 2015;
Schnabel et al., 2016; Wang et al., 2019; Guo et al., 2021].
These propensity-based methods typically suffer from unre-
liable propensity estimation [Saito and Nomura, 2022] and
high variance [Li et al., 2022b]. At the representation level,
pursuing representations of user-item pairs with invariant dis-
tribution across different data is an emerging solution for min-
imizing distribution discrepancy [Saito and Nomura, 2022;
Wang et al., 2022]. These invariant representation-based
methods avoid the drawback of propensity scores, achieving
promising empirical results [Wang et al., 2022].

Nevertheless, it remains unclear whether representation
invariance is sufficient for unbiased recommendation. To
bridge this research gap, we analyze the theoretical connec-
tion between the representation and recommendation perfor-
mance based on the theory in unsupervised domain adap-
tation (UDA) [Ben-David et al., 2010], finding that the
recommendation performance is bounded by both the in-
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variance of representation across the biased and unbiased
data and the discriminability1 of representation among user-
item pairs with different labels. However, existing invariant
representation-based methods typically assume that the repre-
sentation discriminability is sufficiently high and blindly op-
timize the invariance [Jiang et al., 2022].

Through empirical analysis, we uncover extreme data spar-
sity [Koren et al., 2009] and severe label shift [Zhao et al.,
2019], as illustrated in Figure 1, leads to impaired repre-
sentation discriminability and argue that the discriminability
should be additionally optimized. The increase of data spar-
sity will inevitably limit the representation discriminability.
This means the underlying assumption of existing invariant
representation-based methods might be violated in the pres-
ence of extreme data sparsity. Worse still, blindly optimizing
the invariance will hurt the discriminability as the presence
of label shift. This is because blindly optimizing represen-
tation invariance will force the distribution of predictions on
the biased and unbiased data to be the same, which is a mis-
take when the label distribution in fact changes across them.
Therefore, optimizing the invariance of representation with
consideration of both data sparsity and label shift has the po-
tential of achieving better unbiased recommendation.

In this light, we propose a new Discriminative-Invariant
Representation Learning (DIRL) framework for unbiased
recommendation. Specifically, we equip the learning ob-
jective for pursuing invariant representation with two newly
designed losses of label-conditional clustering and prior-
guided contrasting to optimize both representation invariance
and discriminability. Label-conditional clustering concen-
trates representations with the same labels in close proxim-
ity while separating those with different labels farther apart.
Prior-guided contrasting restricts the distance between pre-
dictions on the biased data and unbiased data according to
the prior knowledge of label shift, which avoids the elimi-
nation of representation distribution discrepancy originating
from label shift. We implement DIRL based on a representa-
tive invariant representation learning method named adver-
sarial distribution alignment [Ganin and Lempitsky, 2015;
Tzeng et al., 2015] and conduct evaluations on three real-
world datasets. Extensive experimental results validate the
rationality and effectiveness of the proposed framework.

The main contributions of this paper are as follows:
• We provide theoretical and empirical analyses of the per-

formance bound for unbiased recommendation, highlight-
ing the significance of both representation invariance and
discriminability.

• We propose a new Discriminative-Invariant Representation
Learning framework to address the selection bias issue in
recommendation, which consists of two new losses to miti-
gate the ruins of data sparsity and label shift on representa-
tion discriminability.

• We conduct extensive experiments on three real-world
datasets, validating the rationality and effectiveness of the
proposed DIRL framework.

1The ability to separate different labels by a supervised clas-
sifier trained over the representations in both biased and unbiased
data [Chen et al., 2019].

2 Analysis on Unbiased Recommendation
In this section, we first formulate the task of unbiased rec-
ommendation (Section 2.1). We then review recent invari-
ant representation-based methods, uncovering the mystery of
their effectiveness and identifying their limitations (Section
2.2). Finally, we empirically demonstrate the importance of
boosting representation discriminability in RSs (Section 2.3).

2.1 Task Formulation
We are given an RS with a user set U and an item set I.
Let u (or i) denote a user (or an item) in U (or I). Let
f := U × I → {0, 1} be the label function, indicating
whether a user actually likes an item (y = 1) or not (y = 0).
Historical feedback data can be formulated as a set of user-
item pairs DB := {(u, i)jB}nj=1 drawn from a biased distribu-
tion pB(u, i) (e.g., subject to previous recommendation pol-
icy) and their corresponding labels f(DB) = {yjB}nj=1. The
task of unbiased recommendation can be formulated as fol-
low: learning a recommendation model from the available bi-
ased data for capturing user preference and accordingly mak-
ing a high-quality recommendation. Formally, the goal is to
learn a function h := U × I → {0, 1} from the biased data
that approaches the ideal f over the test distribution:

εU (h, f) := E(u,i)∼pU (u,i) [l(h (u, i) , f (u, i))] , (1)

where pU (u, i) denotes the unbiased distribution under ran-
dom exposure, which is commonly assumed to be uniform
over the entire user-item space, and l(., .) denotes the se-
lected error function between the prediction and the ground
truth. Following [Ganin and Lempitsky, 2015; Chen et al.,
2019] in UDA, we adopt 0-1 error function for analysis and
employ its surrogate error function cross-entropy for training
the recommendation model. Since labels of user-item pairs
DU := {(u, i)jU}nj=1 drawn from pU (u, i) are not available,
the model can be only trained on the biased data with opti-
mizing the following empirical loss:

ε̂B(h, f) :=
1

|DB |
∑

(u,i)∈DB

[l(h (u, i) , f (u, i))] . (2)

As the distribution of the training dataset differs from the test,
blindly fitting the biased data result in inferior performance
and notorious issues like filter bubble [Huang et al., 2022].
Thus, it is essential to develop a debiasing strategy for making
great recommendations.

2.2 Analyses over Existing Invariant
Representation-based Methods

To better understand the effectiveness and limitation of these
methods, we first introduce the theorem in UDA [Ben-David
et al., 2010] for analyzing the generalized error bound of un-
biased recommendation. In fact, we have:
Theorem 1. (Generalized Error Bound.) Let H be a hypoth-
esis space with VC-dimension d. With the probability of at
least 1− η, ∀h ∈ H,

εU (h, f) ≤ ε̂B(h, f) +
1

2
dH∆H(DB ,DU )

+ λ∗ +O(

√
dlogn+ log(1/η)

n
),

(3)
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where H∆H-divergence dH∆H(DB ,DU ) measures the dis-
tribution discrepancy between the biased and unbiased data.
The ideal joint error λ∗ := minh∈HεB(h, f) + εU (h, f) is
the optimal error that can be achieved by the hypotheses in
H on both the biased and unbiased data.

Following existing work [Ganin and Lempitsky, 2015;
Zhang et al., 2019], we can apply a representation function
g := U × I → Z that maps the user-item space U × I to
the representation space Z before passing through hypothesis
h2, which means we can analyze the bound from the data
level to the representation level. Accordingly, besides the
empirical error and constant, the unbiased recommendation
performance is subjected to dH∆H(g(DB), g(DU )) (i.e., rep-
resentation invariance) and λ∗ (i.e., representation discrim-
inability). Particularly, 1) low representation distribution dis-
crepancy dH∆H(g(DB), g(DU )) means high representation
invariance; 2) low ideal joint error λ∗ means high representa-
tion discriminability.

Here we revisit CVIB [Wang et al., 2020], DAMF [Saito
and Nomura, 2022], and InvPref [Wang et al., 2022], which
are types of methods that leverage additional regularizing loss
to control the representation distribution discrepancy.
CVIB. The objective can be reorganized as follow:

1

|DB |
∑

(u,i)∈DB

l (h (u, i) , f (u, i)) + βl (mU ,mB) . (4)

For brevity, here we omit the irrelevant terms and only pre-
serve the key modules. mB and mU are defined as follows:

mB =
1

|DB |
∑

(u,i)∈DB

h (g (u, i)) ,

mU =
1

|DU |
∑

(u,i)∈DU

h (g (u, i)) .

(5)

The second term is derived from information bottleneck,
which reduces the discrepancy between the mean of the
model predictions on the biased and unbiased data. Note
minimizing distribution discrepancy w.r.t. model’s prediction
boosts representation invariance indirectly.
DAMF. The objective can be rewritten as:

1

|DB |
∑

(u,i)∈DB

l (h (u, i) , f (u, i)) + βdh,H (DB ,DU ) , (6)

where dh,H is a kind of metric of the distribution discrepancy.
DAMF minimizes it w.r.t. predictions on the biased and unbi-
ased data by adversarial learning.
InvPref. The objective of InvPref can be formulated as:

1

|DB |
∑

(u,i)∈DB

l (h (u, i) , f (u, i))+βd∗ (D1,D2, · · · ) , (7)

where d∗ is defined by the environment classifier in the orig-
inal and measures the representation distribution discrep-
ancy among multi-environments. InvPref constructs hetero-
geneous environments {D1,D2, · · · } via clustering. Based

2There is a little abuse of the notation h here. The domain of
definition is changed.
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Figure 2: Discriminbility analysis in Yahoo!R3. (a) Impact of data
amount on representation discriminability and recommendation per-
formance in MF. (b) Impact of label shift on representation discrim-
inability and recommendation performance in adversarial distribu-
tion alignment. OM and ReM denote the learned invariant models
trained on the biased data with label shift and without label shift, re-
spectively. (c) Comparison of the distribution discrepancy between
predictions on the biased and unbiased data with real label distribu-
tion discrepancy between the biased and unbiased data.

on the assumption that the distribution of the unbiased data
is a combination of distributions of the constructed environ-
ments, InvPref would naturally reduce representation distri-
bution discrepancy between the biased and unbiased data.

Based on the above analysis, the merit of existing invari-
ant representation-based methods can be easily understood —
they employ various forms of regularizer to boost representa-
tion invariance and reduce εU (h, f) to some extent, yielding
better performance.

Despite promising, we argue one limitation of existing in-
variant representation-based methods — the representation
discriminability has been overlooked. These methods typ-
ically assume that the representation discriminability is suf-
ficiently high, which however is not true in RSs. In fact,
RSs usually suffer from extreme data sparsity and severe
label shift. The increase in data sparsity will incur inad-
equate training of the model and inevitably hurts the rep-
resentation discriminability. Naturally, the presence of ex-
treme data sparsity violates the above assumption. Worse
still, purely pursuing the invariance will ruin the discrim-
inability as the presence of label shift. This is because blindly
optimizing representation invariance (i.e., force pB(g(u, i))
equals to pU (g(u, i))) will force the distribution of predic-
tions on the biased and unbiased data to be the same (i.e.,
pB(h(g(u, i))) = pU (h(g(u, i)))), which is a mistake be-
cause the label distribution in fact changes across them. Thus,
towards better unbiased recommendation, it is essential to
consider both representation invariance and discriminability.

2.3 Empirical Analysis
In this section, we conduct the empirical analysis on a real-
world dataset Yahoo!R3 to provide evidence of how data
sparsity and label shift hurt representation discriminability.

Data sparsity. We respectively use 100%, 75%, 50%, and
25% of the biased data in Yahoo!R3 for training the Matrix
Factorization (MF) model. We use 1 − 0.5λ∗ [Chen et al.,
2019; Kundu et al., 2022] to measure representation discrim-
inability. The discriminability with varying data ratios of bi-
ased data is presented in Figure 2. As can be seen, the dis-
criminability and performance drop heavily with the decrease
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Figure 3: The framework of DIRL. The representation function g
and the prediction function h are consecutively applied to user-item
pairs in the biased and unbiased data. The adversarial distribution
alignment for representation boosts the invariance. The clustering
for representation based on labels of the biased data and pseudo la-
bels of unbiased data and contrasting for prediction based on prior
knowledge of label shift boost the discriminability.

in the data amount, i.e., the increase of the data sparsity.
Label Shift. We conduct under-sampling on the user-item
pairs with positive labels in the original biased data from Ya-
hoo!R3. This process yields resampled biased data that main-
tains the same label distribution as the unbiased data. We
train a model named OM on the original based on adversar-
ial distribution alignment [Ganin and Lempitsky, 2015]. This
process is subsequently repeated, wherein the original data is
substituted with the resampled one when calculating the rep-
resentation distribution discrepancy. We denote the model in
this setting as ReM. For the two models, we explore the distri-
bution discrepancy between predictions on the original biased
data and unbiased data. The results are shown in Figure 2.
We make two interesting observations: 1) The discriminabil-
ity and performance on the ReM are significantly larger than
OM, suggesting label shift indeed hurts representation dis-
criminability and recommendation performance; 2) In com-
parison to the distribution discrepancy between the predic-
tions of ReM on the original biased and unbiased data, the
distribution discrepancy between the predictions of OM on
the original biased and unbiased data is significantly lower
than the real label distribution discrepancy. This confirms that
blindly boosting representation invariance will force the dis-
tribution of predictions on the biased and unbiased data to be
the same.

3 Proposed Method: DIRL
We now present the proposed DIRL framework (cf. Figure 3),
which consists of three modules: 1) Adversarial distribution
alignment for boosting representation invariance; 2) Label-
conditional clustering for mitigating the ruin of data sparsity
on representation discriminability; 3) Prior-guided contrast-
ing for mitigating the ruin of label shift on discriminability.

3.1 Adversarial Distribution Alignment
Inspired by the success of adversarial training on UDA task
[Jiang et al., 2022], here we leverage adversarial learning in

RS for mitigating the distribution discrepancy. That is, the
metric of distribution discrepancy dH∆H(DB ,DU ) can be
approximated by training a distribution classifier C.

Formally, the recommendation model and the classifier
play a min-max game with optimizing:

min
θ

max
ϕ

Ld =− 1

|DB |
∑

(u,i)∈DB

l (C (g (u, i)) , 1)

− 1

|DU |
∑

(u,i)∈DU

l (C (g (u, i)) , 0) ,

(8)

where θ and ϕ are the recommendation model’s and the dis-
tribution classifier’s parameters respectively. We use MF as
our recommendation model. This means g(u, i) := eu ⊙ ei,
where eu and ei are embeddings of the user u and the item i
respectively. And h(z) := σ(z⊺1), which is fixed as 1 in H.
In practice, the issue of serious gradient vanishing is encoun-
tered [Tzeng et al., 2017] and thus a gradient trick [Tzeng et
al., 2015] has been utilized, i.e., optimizing the recommenda-
tion model with:

min
θ

Lada =
1

|DB |
∑

(u,i)∈{DB ,DU}

l

(
C (g (u, i)) ,

1

2

)
. (9)

3.2 Label-conditional Clustering
Label-conditional clustering has been leveraged for boosting
representation discriminability. A clustering loss is intro-
duced, which can encourage representations with the same
labels to gather close together and those with different labels
to be separated farther apart. Specifically, we optimize the
following loss on biased data:

Lcb =
1

|DB |
∑

y∈{0,1}

∑
(u,i)∈DB

δ (f (u, i) = y) ∥g (u, i)− cyB∥
2

−
∥∥∥cy=1

B − cy=0
B

∥∥∥2 ,
(10)

where δ is the indicator function and cyB is the centroid of
the representations with the same labels in biased data. cyB is
defined as:

cyB =

∑
(u,i)∈DB

δ (f (u, i) = y) g (u, i)∑
(u,i)∈DB

δ (f (u, i) = y)
. (11)

We also apply the clustering loss on the unbiased data to fur-
ther boost representation discriminability. Considering the
labels of unbiased data are unavailable, inspired by the self-
labeling technique [Lee, 2013], we use pseudo labels from
model prediction as substitutes. That is, we simply assign
the pseudo-label as 1 if the model prediction is greater than
threshold tp = 0.5, or to 0 if it is smaller. The overall cluster
loss on both biased and unbiased data is:

Lclu = Lcb + Lcu. (12)

Minimizing Eq. (12) concentrates the representation with
the same labels and increases the distance among represen-
tation centroids of different labels. It naturally mitigates the
impact caused by data sparsity that representations with dif-
ferent labels are not separated enough.
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Algorithm 1 DIRL
Input: History feedback DB and f(DB); the user set U and
the item set I; trade-off parameters β, α1, and α2; learning
rate lr; weight decay λ
Parameter: The recommendation model’s parameter θ; the
distribution classifier’s parameter ϕ
Output: Model predictions of users’ feedback on items

1: Randomly initialize θ and ϕ
2: while not convergence do
3: Construct unbiased user-item pairs DU by uniformly

sampling n users and n items in U and I respectively
4: Update ϕ by Adam according to max-step in Eq. 16
5: Update θ by Adam according to min-step in Eq. 16
6: end while
7: return Recommendation model

3.3 Prior-guided Contrasting
To mitigate the impact of label shift on representation dis-
criminability, a straightforward solution is to directly restrict
the distribution discrepancy of model predictions. Here we
propose prior-guided contrasting that constrains the distance
between the predictions on the biased data and unbiased data
according to the prior knowledge of label shift. In typical
RSs, the biased data contain a much higher proportion of
user-item pairs with positive labels than the unbiased data col-
lected using a random exposure policy. Naturally, a constraint
is introduced for capturing such useful prior knowledge:

Lcon = −log (σ (m̄B − m̄U )) ,

m̄B =
1

|DB |
∑

(u,i)∈DB

h̄ (g (u, i)) ,

m̄U =
1

|DU |
∑

(u,i)∈DU

h̄ (g (u, i)) ,

(13)

where h̄(z) := z⊺1, i.e., the predicted logits of the model.
Here we directly constrain the average logit of biased data
shall be larger than unbiased data.

To better understand the effect, we conduct analyses based
on the gradient w.r.t. model parameters θ:

−(1− σ (m̄B − m̄U ))
∂ (m̄B − m̄U )

∂θ
. (14)

As can be seen, each gradient step has a multiplicative scalar:

∆m̄B ,m̄U
= (1− σ (m̄B − m̄U )). (15)

This quantity depends on the gap of average logits (i.e.,
m̄B − m̄U ). When it is contrary to the prior knowledge of
real label distribution discrepancy, ∆m̄B ,m̄U

is large, which
makes a large update to the representation. When it is con-
sistent with the prior, ∆m̄B ,m̄U

will gradually decrease with
the increase of the gap, which prevents the gap from being too
large. Minimizing Eq. 13 causes invariance boosting focus on
eliminating representation distribution discrepancy outside of
label shift, which prevents it from forcing the distribution of
predictions on the biased and unbiased data to be the same.

3.4 Joint Optimization
DIRL pursues to boost both representation invariance and
discriminability and optimizes the following joint objective
function:

max
ϕ

Ld,

min
θ

ε̂B(h, f) + βLada + α1Lclu + α2Lcon,
(16)

where β, α1 and α2 are hyper-parameters regulating the ef-
fects of the modules. The algorithm is in Algorithm 1.

4 Experiments
In this section, we conduct several experiments to answer
the following questions: RQ1 Can DIRL outperform exist-
ing recommendation methods for mitigating selection bias?
RQ2 To what extent do different modules contribute to the
effectiveness of DIRL? RQ3 Does DIRL improve the rep-
resentation discriminability and reduce the empirical error
on the unbiased data as expected? RQ4 How well do the
discriminability-boosting modules generalize? Supplemen-
tary materials describe the experiment details including eval-
uation metrics, baselines, and hyperparameter settings.

4.1 Experiment Setup
We use three publicly available datasets: Yahoo!R33, Coat4,
and KuaiRand-Pure5, which contain both biased data for
training and unbiased data for testing. Following [Chen et
al., 2021], we transform the ratings in Yahoo!R3 and Coat
into positive (> 3) and negative (≤ 3) labels. We treat click
or not in KuanRand-Pure as positive and negative labels. The
statistics of datasets are shown in supplementary materials.

4.2 Performance Comparison (RQ1)
We first compare the ranking performance of DIRL with
baselines. Table 1 shows results on Yahoo!R3, KuaiRand-
Pure, and Coat. From the table, we observe that:

• In most cases, DIRL outperforms all baselines, with signif-
icant improvements, e.g., the improvement on Yahoo!R3
is up to 9.25% w.r.t. NDCG@5. This result validates
the effectiveness of DIRL and the rationality of optimizing
both representation invariance and discriminability, which
is consistent with our theoretical analysis.

• Propensity-based methods, IPS, DRJL, and MRDR, per-
form better than the base model MF, showing the effect
of data reweighting. Furthermore, MRDR performs better
than IPS and DRJL owing to its design for reducing vari-
ance in imputation learning. These results are consistent
with previous works [Guo et al., 2021].

• In most cases, invariant representation-based methods es-
pecially InvPref outperform propensity-based methods,
validating the advantages of pursuing invariant representa-
tion to minimize the distribution discrepancy for addressing

3http://webscope.sandbox.yahoo.com/
4https://www.cs.cornell.edu/˜schnabts/mnar/
5https://kuairand.com/
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Method Yahoo!R3 KuaiRand-Pure Coat

NDCG@5 Precision@5 Recall@5 NDCG@5 Precision@5 Recall@5 NDCG@5 Precision@5 Recall@5

MF 0.4790 0.2318 0.6244 0.3271 0.2601 0.2704 0.5219 0.3143 0.5725
IPS 0.5048 0.2386 0.6446 0.3221 0.2556 0.2727 0.5429 0.3322 0.5979

DRJL 0.5503 0.2577 0.7139 0.3388 0.2687 0.2790 0.5515 0.3425 0.6236
MRDR 0.5686 0.2623 0.7276 0.3410 0.2693 0.2827 0.5593 0.3478 0.6261
CVIB 0.5356 0.2545 0.7048 0.3612 0.2799 0.3099 0.5645 0.3377 0.6141
DAMF 0.5679 0.2600 0.7169 0.3677 0.2860 0.3170 0.5693 0.3372 0.6108
InvPref 0.6229 0.2817 0.7723 0.3678 0.2868 0.3245 0.5926 0.3504 0.6488

DIRL w/o PL 0.5627 0.2599 0.7209 0.3508 0.2745 0.3027 0.5841 0.3432 0.6267
DIRL w/o P 0.6510 0.2873 0.7942 0.3784 0.2928 0.3227 0.6036 0.3497 0.6491
DIRL w/o L 0.6291 0.2808 0.7706 0.3872 0.2987 0.3308 0.5956 0.3451 0.6369

DIRL 0.6805 0.2965 0.8151 0.3991 0.3063 0.3382 0.6101 0.3522 0.6536
Impv (%) 9.25% 5.25% 5.54% 8.51% 6.80% 4.22% 2.95% 0.51% 0.74%

Table 1: Recommendation performance. The bold and underlined fonts indicate the best and the second-best performance.
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Figure 4: Hyperparameter sensitivity analysis for NDCG@5 in Ya-
hoo!R3, Coat, and KuaiRand-Pure.

selection bias in recommendation. Besides, this result in-
dicates the potential of invariant representation learning for
unbiased recommendation.

• DAMF performs better than CVIB. We postulate that the
metric dh,H utilized by DAMF can better measure the dis-
tribution discrepancy in recommendation than the mean-
based measurement of CVIB.

4.3 Ablation Study (RQ2)
We then examine the impact of adversarial distribution align-
ment (A), prior-guided contrasting (P), and label-conditional
clustering (L) on the effectiveness of DIRL by further com-
paring three variations of DIRL: (1) removal of both label-
conditional clustering and prior-guided contrasting (DIRL
w/o PL), (2) removal of prior-guided contrasting (DIRL w/o
P), (3) removal of label-conditional clustering (DIRL w/o
L), with DIRL and MF (i.e., removal of adversarial dis-
tribution alignment, label-conditional clustering, and prior-
guided contrasting). The results in Table 1 demonstrate that
each module is critical to unbiased recommendations. In
particular, (1) even ignoring representation discriminability
(i.e., DIRL w/o PL), it can achieve competitive performance,
which shows the effectiveness of optimizing representation
invariance through adversarial distribution alignment; (2) ei-
ther label-conditional clustering (i.e., DIRL w/o P) or prior-
guided contrasting (i.e., DIRL w/o L) improve recommen-
dation performance effectively, showing the importance of
optimizing representation discriminability; and (3) the best
performance is achieved by using label-conditional cluster-
ing and prior-guided contrasting together (i.e., DIRL), which
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Figure 5: Discriminability analysis for DIRL in Yahoo!R3. (a) Dis-
criminability of DIRL and its variants. (b) The distribution discrep-
ancy between predictions on the biased data and unbiased data.

further validates the effectiveness of jointly considering data
sparsity and label shift.

We further evaluate the influence of adversarial distribu-
tion alignment, label-conditional clustering, and prior-guided
contrasting on model performance by adjusting their coeffi-
cients (i.e., β, α1, and α2). Figure 4 presents the results of
model performance w.r.t. NDCG@5 as β, α1, and α2 varying
in [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0] on three datasets, re-
spectively. Note that the performance w.r.t. Precision@5 and
Recall@5 show similar trends (see supplementary materials).
From Figure 4, we find that: (1) DIRL can achieve optimal
performance by striking a balance between different modules,
which confirms the significance of promoting both represen-
tation invariance and discriminability; (2) the optimal values
of α1 and α2 vary, as their corresponding modules boost rep-
resentation discriminability by addressing issues arising from
different sources (i.e., data sparsity and label shift respec-
tively); (3) unsuitable strength of each module deteriorates
model performance.

4.4 In-depth Analysis (RQ3, RQ4)
We investigate sources of DIRL’s performance gain by ana-
lyzing representation discriminability. And we validate the
generalization of our discriminability-boosting modules.

Discriminability. We evaluate the discriminability of DIRL
representation. Figure 5 (a) shows that both prior-guided con-
trasting and label-conditional clustering improve the repre-
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Figure 6: Discriminability analysis for DAMF w/ PL in Yahoo!R3.
(a) Discriminability and NDCG@5 of DAMF w/ PL and its variants.
(b) The distribution discrepancy between predictions on the biased
data and unbiased data.

sentation discriminability. This result confirms that improv-
ing representation discriminability indeed benefits the recom-
mendation performance. Note Figure 5 (b) shows that both
the DIRL w/o PL and DIRL w/o P with prior-guided con-
trasting have closer prediction distribution discrepancy to real
label distribution discrepancy than without it. This means the
prior-guided contrasting module improves discriminability in
the way expected, i.e., maintaining the true prediction distri-
bution discrepancy between biased and unbiased data.
Generalization. To validate that our discriminability-
boosting modules can generalize to other representation
invariance-boosting methods, we equip them to DAMF. The
results are displayed in Figure 6. Similar observations can be
made: (1) When equipped with our discriminability-boosting
module, both representation discriminability and recommen-
dation performance (NDCG@5) increase heavily. (2) With
prior-guided contrasting, the distribution discrepancy of pre-
dictions on the biased and unbiased data is closer to the real
label distribution discrepancy.

5 Related Work
In this section, we elaborate on the review of existing un-
biased recommendation methods and unsupervised domain
adaptation relating to our proposal.
Unbiased Recommendation. We focus on methods deal-
ing with selection bias in recommendation. One of the most
popular methods is to bridge the gap between biased and
unbiased data. Propensity-based methods [Schnabel et al.,
2016; Imbens and Rubin, 2015] reweight biased data to align
the distribution of unbiased data by the inverse propensity
score. Various strategies have been proposed for estimat-
ing these propensity scores, such as using statistic metrics of
users or items [Saito, 2020a], naive Bayes [Schnabel et al.,
2016], or logistic regression [Guo et al., 2021]. [Saito, 2020b;
Lee et al., 2022] extend propensity-based methods from ex-
plicit feedback data to implicit feedback data. Additionally,
methods such as doubly robust [Jiang and Li, 2016; Wang
et al., 2019; Chen et al., 2021; Dai et al., 2022] and multi-
ple robust [Li et al., 2022a] incorporate imputation learning
to achieve double or multiple robustness for unbiased recom-
mendation. However, propensity scores may be extremely
small and these propensity-based methods may have infinite

bias, variance, and generalization error bounds [Li et al.,
2022b]. An additional line for unbiased recommendation is
to bridge the gap at the representation level [Liu et al., 2020;
Wang et al., 2020; Liu et al., 2021a; Saito and Nomura, 2022;
Wang et al., 2022]. [Wang et al., 2020] leverage informa-
tion bottleneck and obtain a contrastive loss for balancing
the model’s average predictions on biased and unbiased data.
[Saito and Nomura, 2022] introduce UDA for unbiased rec-
ommendation and minimize distribution discrepancy between
biased and unbiased data by adversarial distribution align-
ment. The current leading method is InvPref [Wang et al.,
2022], which disentangles variant and invariant representa-
tions by clustering and aligning distributions. However, these
methods neglect the discriminability of representation.

Unsupervised Domain Adaptation. The task of
UDA [Ben-David et al., 2010] is to transfer knowl-
edge from the labeled source domain to the unlabeled
target domain. Adversarial distribution alignment is
the most popular method in UDA, which focuses on
minimizing the distribution discrepancy w.r.t. rep-
resentation between source and target domains by
adversarial learning [Ganin and Lempitsky, 2015;
Tzeng et al., 2015; Tzeng et al., 2017; Zhang et al., 2019;
Acuna et al., 2021]. However, these methods ignore
the representation discriminability, leading to limited
generalization performance [Chen et al., 2019]. Some
work balances representation invariance and discrim-
inability for better generalization [Chen et al., 2019;
Kundu et al., 2022]. Nevertheless, these works are not
tailored to recommendation, lacking the consideration of
label shift and data sparsity in recommendation. Along this
line, a series of methods dealing with the mixed case of
covariate distribution shift and label shift [Yan et al., 2017;
Deng et al., 2019; Kang et al., 2019; Wu et al., 2019;
Li et al., 2020; Prabhu et al., 2021; Liu et al., 2021b]. In
an orthogonal direction, we propose a simple and effective
module to reduce the impact of label shift on representation
discriminability with prior knowledge of label distribution
discrepancy. Note that such prior knowledge is unavailable
in other scenarios.

6 Conclusion
In this paper, we studied the selection bias in recommender
systems from the perspective of invariant representation. Ac-
cording to the analysis of the theory in UDA, we pointed
out the importance of optimizing both the invariance and
discriminability of representation. Furthermore, we empiri-
cally found that the presence of data sparsity and label shift
can hurt the discriminability of representation. Accordingly,
we proposed a new Discriminative-Invariant Representation
Learning framework for unbiased recommendation with ad-
ditional modules for counteracting the impact of data sparsity
and label shift.

One interesting direction for future work is extending our
methods to implicit feedback data, which can be collected
easier. Besides, it is valuable to explore unbiased methods
for sequential recommendation and conversation recommen-
dation to further account for dynamic user preference.
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