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Abstract
User review data is considered as auxiliary infor-
mation to alleviate the data sparsity problem and
improve the quality of learned user/item or interac-
tion representations in review-based recommender
systems. However, existing methods usually model
user-item interactions in a holistic manner and ne-
glect the entanglement of the latent intents behind
them, e.g., price, quality, or appearance. In this pa-
per, we propose a Self-supervised Graph Disentan-
gled Networks for review-based recommendation
(SGDN), to separately model the user-item inter-
actions based on the latent factors through the tex-
tual review data. To this end, we first model the
distributions of interactions over latent factors from
both semantic information in review data and struc-
tural information in user-item graph data, forming
several factor graphs. Then a factorized message
passing mechanism is designed to learn disentan-
gled user/item and interaction representations on
the factor graphs. Finally, we set an intent-aware
contrastive learning task to alleviate the sparsity is-
sue and encourage disentanglement. Empirical re-
sults over five benchmark datasets validate the su-
periority of SGDN over the state-of-the-art meth-
ods and the interpretability of learned intent factors.

1 Introduction
Review-based recommendation aims to alleviate the data
sparsity problem [Mao et al., 2016] in collaborative filtering
methods [Koren et al., 2022] by using the reviews of users to
items as auxiliary information. Textual reviews contain use-
ful semantic information that can be associated with the basis
of users for their ratings, thereby leading to several investiga-
tions [Zheng et al., 2017; Chen et al., 2018] aimed to evaluate
these user reviews to improve user preference modeling and
rating predictions.

Early review-based recommendation methods usually em-
ploy deep neural networks such as Convolutional Neural Net-
works to model the review data for recommendation [Zheng
et al., 2017; Catherine and Cohen, 2017]. In addition, mo-
tivated by the attention mechanism [Vaswani et al., 2017],
many attention-based methods [Chen et al., 2018; Wu et

Figure 1: An example of user-item rating graph.

al., 2019a] are proposed to identify the different importance
of components, such as sentences, reviews, and users/items
for better recommendation. More recently, the success of
graph neural works [Kipf and Welling, 2016] in modeling the
graph data also inspires its application in review-based rec-
ommender systems [Shuai et al., 2022].

Despite their success, existing methods typically employ
a holistic approach to leverage review data for user pref-
erence or user-item interaction modeling, i.e., either aggre-
gating user/item reviews for user/item embedding learning
[Chen et al., 2018; Wu et al., 2019b] or approximating the re-
view of each user-item interaction based on learned user/item
embeddings [Catherine and Cohen, 2017; Sun et al., 2020].
Recently proposed RGCL [Shuai et al., 2022] moves them
forward by modeling the reviews as edge features in the user-
item graph and incorporating them into the message passing
process. However, user ratings of items are typically influ-
enced by various complex latent intents, such as price, qual-
ity, appearance, etc. As shown in Figure 1, User 1 likes the
printer because of its excellent quality, whereas User 2 dis-
likes it for its cheap cost performance. When it comes to
predicting User 3’s rating to the printer, we notice that User
3 is price sensitive based on his/her interactions with other
items, so we anticipate a low rating score. Therefore, the
complex latent factors underlying user-item interactions high-
light a desire to disentangle these factors in the review-based
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recommendation, which is still unexplored. As a result, the
representations learned by existing methods contain a jumble
of entangled factors, reducing interpretability and leading to
suboptimal recommendation performance.

In this paper, we propose to learn disentangled user/item
and interaction representations for better and more explain-
able review-based recommendation. To this end, we bor-
row the idea from disentangled representation learning (DRL)
[Higgins et al., 2016], which learns factorized representations
to characterize the latent factors hidden in the data. Although
introduced for some other recommendation tasks [Wang et
al., 2020; Ma et al., 2020], DRL in review-based recommen-
dation faces the following challenges.

• How to accurately identify the distribution of latent factors
in the user-item interactions based on review and graph in-
formation and model the interactions at a finer granularity?

• How to design a proper self-supervised task based on the
learned interaction representations to alleviate the sparsity
issue and encourage disentanglement?

To tackle these challenges, we propose a novel Self-
supervised Graph Disentangled Network (SGDN) for review-
based recommendation. In particular, we first design a disen-
tangled graph learning module equipped with graph disen-
tangling and factorized message passing mechanisms. The
former models the distribution of latent factors in each user-
item interaction jointly from semantic information in the re-
view and structure information in the user-item graph. The
latter characterizes the user preferences from various aspects
based on the generated factor graphs by accumulating factor-
relevant information from neighborhoods. Furthermore, we
present an intent-aware contrastive learning (CL) task that
can alleviate the sparsity issue. Specifically, we dynami-
cally select positive and negative samples for each interac-
tion based on the learned intent distributions and maximize
the agreement between positive pairs compared to negative
ones. In comparison to existing methods, SGDN learns dis-
entangled representations for users, items, and interactions,
allowing it to investigate the meaning of each latent factor,
resulting in greater explainability for predicting user ratings.

Our contributions can be mainly summarized as:

• Based on the review and graph information in review-based
recommendation scenario, we make the first attempt to
learn disentangled representations for users/items and in-
teractions at a finer granularity.

• We propose a novel SGDN framework based on a con-
trastive learning task that alleviates the data sparsity issue
as well as encourages disentanglement.

• We conduct extensive experiments on five datasets to vali-
date the effectiveness and interpretability of SGDN.

2 Related Work
With the development of deep learning, many advanced text
methods are used to extract semantic information from the
review data. For instance, DeepCoNN [Zheng et al., 2017]
models user behaviors and item properties from review data
using two parallel networks. TransNet [Catherine and Cohen,

2017] extends DeepCoNN by adding an additional layer for
learning the target review features. In addition, inspired by at-
tention mechanism [Vaswani et al., 2017], DAML [Liu et al.,
2019] used the local and mutual attention of CNN to learn the
user/item and interaction representations. DRRNN [Xi et al.,
2021] uses both target ratings and reviews for backpropaga-
tion to retain more semantic review information.

Recently, inspired by the success of Graph neural networks
(GNNs) [Kipf and Welling, 2016], RMG [Wu et al., 2019b]
applied a three-level attention network to learn representa-
tions of sentence, review, and user/item and a graph attention
network to model interactions. RGCL [Shuai et al., 2022] in-
corporated review information as edge features into user/item
embedding learning and designed two contrastive learning
tasks as additional self-supervised signals. Summarizing ex-
isting review-based recommendation methods, they do not
consider disentangling the hidden factors of user ratings, and
the problem of data sparsity still exists.

Meanwhile, many contrastive learning (CL) paradigms
have been designed to alleviate the data sparsity issue in rec-
ommender systems. For instance, SGL [Wu et al., 2021]
utilized an auxiliary GCL task to enhance user/item repre-
sentation learning via self-discrimination. HCCF [Xia et al.,
2022b] conducted cross-view contrastive learning between
the explicit interaction graph and the learned implicit hyper-
graph structure. While these works simply regard the same
data instance and others as positive and negative samples, re-
spectively, our intent-aware CL module selects proper posi-
tive and negative samples based on the learned intent distri-
butions and further enhances the disentanglement.

Disentangled representation learning aims to learn factor-
ized representations that reveal and disentangle the under-
lying latent factors hidden in the observed data [Ma et al.,
2019]. When it comes to recommendation, DGCF [Wang et
al., 2020] factorized the user-item graph into several intent-
aware interaction graphs and iteratively update them based on
user-item interaction. [Ma et al., 2020] proposed a sequence-
to-sequence training strategy based on latent self-supervision
and disentanglement for sequential recommendation. Despite
the promising performance, existing methods do not fit our
task since they ignore the fruitful semantic information hid-
den in the review texts.

3 Problem Definition
In the task of review-based recommendation, we denote U
(|U| = M ) as the user set and I (|I| = N ) as the item set.
The rating record is formulated as a user-item rating matrix
R ∈ RM×N , where Rij denotes the rating score of user i to
item j and R denotes the set of all the possible ratings in the
dataset (e.g., R = {1, 2, 3, 4, 5} in Amazon). Meanwhile, the
review texts are pre-processed to a fixed-length tensor E ∈
RM×N×d, where ei,j denotes the feature of review text user
i comments on item j. Then the user-item interactions E can
be represented by the combination of the rating matrix and the
review tensor, i.e., E = (R,E). Finally, the input data can be
formulated as a user-item bipartite graph G = (U ∪ I, E).
The task is to predict the values of the full rating matrix R̂ ∈
RM×N based on the graph G.
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Figure 2: Overview of SGDN. For clarity, we show the pipeline to generate the rating prediction for one user-item interaction.

4 Proposed Model
This section gives a detailed introduction to our proposed
SGDN. The overview of SGDN is shown in Figure 2, which
is composed of two parts: 1) Disentangled Graph Learning
(DGL) Module: factorizing the input graph based on the user-
item interactions and learning disentangled representations
for users/items and interactions. 2) Intent-aware Contrastive
Learning (ICL) Module: introducing an auxiliary CL task to
alleviate the sparsity issue and encourage disentanglement.
Our demonstration is unfolded as follows.

4.1 Disentangled Graph Learning Module
To model user/item’s attributes pertinent to latent factors, we
design a GNN model that learns disentangled user/item and
interaction representations. Each GNN layer consists of a
graph disentangling mechanism which identifies the latent
factors in interactions to form multiple factor graphs, and a
factorized message passing mechanism that performs multi-
channel message passing on the factor graphs. Finally, multi-
ple GNN layers are stacked to gather useful information from
higher-order neighborhoods and make rating predictions.

Initialization
We parameterize user/item ID embeddings as free embedding
matrices U ∈ RM×d and V ∈ RN×d. Then we further di-
vide the ID embedding into K chunks for separate user/item
representation learning in each channel. Specifically, the ID
embedding for user i is represented as:

u
(0)
i = (u

1,(0)
i ,u

2,(0)
i , . . . ,u

K,(0)
i ), (1)

where u
k,(0)
i ∈ R d

K is the chunked embedding of
user i on the k-th latent factor. Analogously, v

(0)
j =

(v
1,(0)
j ,v

2,(0)
j , . . . ,v

K,(0)
j ) is initialized as the ID embedding

for item j.
For review representations, we follow [Shuai et al., 2022]

to encode user i’s review on item j into the vector ei,j with
BERT-Whitening [Su et al., 2021], whose parameters are
frozen during training for time efficiency consideration.

Graph Disentangling
Considering the fruitful semantic information, we propose
to mine the distribution of latent factors from review texts.
Specifically, given the review embedding eki,j of user i to item
j in channel k, we present a prototype-based method to ob-
tain the semantic score seki,j that indicates how relevant is the
review (i, j) to factor k. We introduce K latent factor proto-
types {ck}Kk=1 and the score seki,j is calculated as:

seki,j =
exp(ϕ

(
e′

k
i,j , ck

)
/τ)∑K

k′=1 exp(ϕ
(
e′k

′

i,j , ck′

)
/τ)

; e′
k
i,j = ei,jWk,

(2)
where Wk ∈ Rd×d is the transformation parameter matrix,
ϕ(·, ·) denotes the cosine similarity and τ is the temperature
hyperparameter. c ∈ RK×d is learnable parameters and ini-
tialized by the K-means clustering on the review features e.

Although the reviews can provide us some hints as to which
factor user-item interactions fall into, there might be some
missing information. Recalling the example in Figure 1, the
review text (d) is general and cannot explicitly reflect the rea-
son for user’s rating. To tackle this problem, we propose to
infer it from the neighborhood of user/item. Generally, if user
i/item j frequently interacts with its neighbors based on fac-
tor k, we can draw the inference that user i might also rating
item j based on factor k with high probability. On the basis of
this insight, we further introduce the similarity between user
i and item j in terms of aspect k to assist in judging the latent
factors of interactions, which can be formulated as:

st
k,(l)
i,j =

exp(ϕ
(
u
k,(l−1)
i ,v

k,(l−1)
j

)
/τ)∑K

k′=1 exp(ϕ
(
u
k′,(l−1)
i ,v

k′,(l−1)
j

)
/τ)

, (3)

where st
k,(l)
i,j denotes the structural score of user i and item

j on the k-th factor at the l-th layer and u
k,(l−1)
i /vk,(l−1)

j de-
notes the learned embedding of user i/item j at the (l− 1)-th
layer in the k-th channel. When l = 1, stk,(l) reflects the
matching degree of user and item’s own attributes on factor
k; When l > 1, stk,(l) can integrate the information on factor
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k from a larger receptive field due to the iterative accumu-
lation of factor-relevant information from neighborhoods via
factorized message passing.

Having modeled the distributions of latent factors from
both semantic and structural perspectives, we then combine
them into the final score s

k,(l)
i,j representing the coefficient of

the edge between user i and item j in the k-th factor graph:

s
k,(l)
i,j =

seki,j
1 + exp(−ηi,j)

+
st

k,(l)
i,j

1 + exp(ηi,j)
, (4)

where ηi,j ∈ R is a learnable parameter to balance the
weights of semantic score and structural score.

Factorized Message Passing
Given the learned factor graphs, we aim to leverage mes-
sage passing to accumulate factor-relevant information for
user/item representation learning. Specifically, we perform
embedding propagation [Kipf and Welling, 2016] in each
channel, such that the information of reviews and neighbor-
ing items/users, which are relevant to the factor, are integrated
into the learned user/item representations. Following [Berg et
al., 2017], we treat rating score as edge type. Then for rating
r, the factorized message passing from item j to user i in the
l-th layer is formulated as:

x
k,(l)
r;j→i =

s
k,(l)
i,j σ(e′

k
i,j ·W

k,(l)
r,1 + v

k,(l−1)
j ·Wk,(l)

r,2 )√∣∣∣Dk,(l)
j

∣∣∣ ∣∣∣Dk,(l)
i

∣∣∣ , (5)

where W
k,(l)
r,1 ∈ Rd× d

K and W
k,(l)
r,1 ∈ R d

K × d
K are the param-

eter matrices to project the review embedding and user/item
embedding to the same space in the k-th channel. Dk,(l)

i =∑
p∈N (i) s

k,(l)
i,p and Dk,(l)

j =
∑

p∈N (j) s
k,(l)
p,j denote the de-

grees of user i and item j in the l-th layer of channel k.
To intuitively figure out the essence of Equation (5), we

hypothesize that factor k represents price. Then the inter-
pretation is three-fold: 1) the coefficient sk,(l)i,j is capable of
filtering out the noise information of reviews and items with
which user i do not interact due to price. 2) The review in-
formation eki,j of user i is collected to characterize his/her
reviewing behaviors based on price. 3) The neighboring item
feature v

k,(l−1)
j of user i is accumulated to depict his/her

price-sensitive preference on items.
After message passing in each channel, we then aggregate

all the factor-relevant messages as follows:

u
k,(l)
i = W(l)

∑
r∈R

∑
p∈Ni,r

x
k,(l)
r;p→i, (6)

where W(l) ∈ R d
K × d

K is the parameter matrix and Ni,r is
the set of items that user i rates with rating r. Similarly, we
can obtain the aggregated feature v

k,(l)
j of item j.

Layer Combination and Prediction
To capture the useful information from higher-order neigh-
bors, we further stack L graph disentangling layers to form

the final representations for users/items in each channel:

uk
i =

1

L

L∑
l=1

u
k,(l)
i ; vk

j =
1

L

L∑
l=1

v
k,(l)
j . (7)

Then we model the interactions between users and items from
each latent factor using a Multi-Layer Perceptron (MLP) to
obtain the factorized interaction feature hk

i,j and merging rep-
resentations under all factors:

hi,j = ∥Kk=1h
k
i,j ; h

k
i,j = MLP

(
uk
i ∥vk

j

)
, (8)

where hi,j ∈ Rd denotes the merged interaction feature be-
tween user i and item j. The predicted rating score of user i
to item j is calculated as:

r̂i,j = w⊤hi,j , (9)

where w ∈ Rd is a parameter vector. We employ Mean
Square Error (MSE) loss as the supervision signal:

Lsup =
1

|T |
∑

(i,j)∈T

(r̂i,j − ri,j)
2
, (10)

where T denotes the observed user-item interactions in the
training set.

4.2 Intent-aware Contrastive Learning Module
In this section, we design a contrastive learning task to alle-
viate the sparsity issue of user-item interactions. So far, we
have obtained the interaction features coupling with the la-
tent factor distributions sLi,j = (s1,Li,j , s2,Li,j , . . . , sK,L

i,j ) from
the disentangled graph learning module. A very impor-
tant step in contrastive learning is to select reasonable pos-
itive and negative examples. Previous practice [Shuai et al.,
2022] considers the embeddings of the same node/interaction
from different views as positive pairs and that of different
nodes/interactions as negative pairs. However, we argue that
different interactions with the same rating and similar intents
should also be treated as positive pairs. Therefore, for each
interaction (i, j), we calculate the similarity of latent factor
distribution between it and other interactions with the same
rating and select the top-k ones as positive samples of (i,j),
which is formulated as follows:

P(i,j) = {(i′, j′), ri,j = ri′,j′},

yi′,j′ = sLi,j
⊤
sLi′,j′ , (i

′, j′) ∈ P(i,j),

P(i,j)+ = Rank(y,Kp),

(11)

where P(i,j) denotes the interaction set with the same rating
as anchor and P(i,j)+ denotes the set of positive samples.
Rank(yi′,j′ ,Kp) returns the interaction indices of the Kp-
largest values in y.

As revealed in a recent study [Xia et al., 2022a], CL bene-
fits from hard negatives which are similar to the anchor. In our
rating prediction task, interactions with the same rating tend
to have similar embeddings under the supervision by the MSE
loss. Thus to mine the hard negatives, we select the remain-
ing interactions in P(i,j) as negative examples. Specifically,
we randomly discard edges on graph G with probability p to
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Datasets Toys Clothing Office Kitchen Tools

#Users 19, 412 39, 387 4, 905 66, 519 16, 638
#Items 11, 924 23, 033 2, 420 28, 237 10, 217
#Reviews 167, 597 278, 677 53, 228 551, 682 134, 476
Density 0.072% 0.031% 0.448% 0.029% 0.079%

Table 1: Statistics of datasets.

generate two different views G1 and G2. Then we adopt the
InfoNCE loss [Gutmann and Hyvärinen, 2010] to maximize
the agreement of positive pairs compared to negative pairs:

Lssl =
∑

(i,j)∈T

− log

∑
(i′,j′)∈P(i,j)+

exp(h1
i,j

T
h2
i′,j′/τ

)
∑

(i′,j′)∈P(i,j)
exp

(
h1
i,j

T
h2
i′,j′/τ

)
)
,

where h1
i,j and h2

i,j are the interaction features from the two
views, respectively. By dynamically generating positive and
negative pseudo-labels based on the intent similarities, SGDN
provides a self-supervised signal to refine the interaction fea-
tures and further encourage disentanglement.

4.3 Model Optimization
We jointly optimize the recommendation model by combin-
ing the above two losses:

L = Lsup + λLssl, (12)

where λ is a hyperparameter to control the contribution of CL
task towards the overall objective.

4.4 Model Complexity Analysis
For the memory cost, it is notable that we divide the ID em-
bedding into K chunks to keep that the same as previous
works [Liu et al., 2021; Shuai et al., 2022]. The extra param-
eters involved in the DGL module are O(|E| + K × d × d).
For the time cost, the complexity of the DGL module is
O(L ×K × |E| × d

K ) and the complexity of calculating the
CL loss in Eq. (12) is O(B × |E| × d). An alternative to
reduce the time complexity is selecting positive and negative
samples within the batch, reducing the time complexity to
O(B2 × d). Thus the overall time complexity of SGDN is
O((L × |E| + B2) × d), which is comparable with many
GNN-based recommendation methods [Shuai et al., 2022;
Xia et al., 2022b].

5 Experiments
5.1 Experimental Settings
Datasets
Following [Shuai et al., 2022], we evaluate SGDN on the
Amazon review dataset [He and McAuley, 2016]. Toys and
Games, Office Products, Clothing, Home and Kitchen, and
Tools and Home Improvement are the five 5-core subsets se-
lected (shortened as Toys, Office, Clothing, Kitchen, and
Tools, respectively). The rating scores for all the five datasets
range from 1 to 5. Each dataset is randomly split into train-
ing, validation, and test sets with a ratio of 8:1:1. The details
of these datasets are summarized in Table 1.

(a) Clothing (b) Office

Figure 3: Performance w.r.t interaction degrees.

Baselines
We compare SGDN with the SOTA methods, including CNN-
based methods (DeepCoNN [Zheng et al., 2017], TransNet
[Catherine and Cohen, 2017] and DRRNN [Xi et al., 2021]),
attention-based methods (DAML [Liu et al., 2019] and
DRRNN [Xi et al., 2021]), disentanglement-based method
(DGCF [Wang et al., 2020]), and graph-based methods
(RMG [Wu et al., 2019b], and RGCL [Shuai et al., 2022]).

Parameter Settings
The hyperparameters for the baseline models are tuned ac-
cording to the original paper. It is notable that we reimple-
ment DGCF by replacing the BPR loss [Rendle et al., 2012]
with MSE loss to accommodate the rating prediction task. For
SGDN, we use Adam to optimize the parameters with a learn-
ing rate of 0.01. The size of embeddings d for users/items and
reviews is set as 64. We choose the number of message pass-
ing layers L from {1, 2, 3}, the number of latent factors from
{2, 4, 8}, and the dropout ratio from {0.7, 0.8, 0.9}. The tem-
perature hyperparameter τ is tuned from {0.2, 0.5, 1}. The
hyperparameter λ is searched from {0.01, 0.05, 0.1, 0.5}.

Evaluation Metric
Following [Liu et al., 2019], we evaluate the performance by
MSE. Each experiment is repeated five times and the average
performance is reported for each dataset.

5.2 Performance Comparison
Overall Performance Comparison
The comparison results of all methods are presented in Table
2 and the following observations can be made:

• SGDN achieves the best results on every dataset tested and
significantly outperforms the strongest baseline, RGCL, by
an average of 2.5%. The improvements of SGDN relative to
all other baselines can be attributed to: 1) By disentangling
the graph from semantic and structural perspectives, SGDN
is able to model user preferences based on multiple latent
factors more accurately. 2) The intent-aware CL task can
assist SGDN in disentangling the factors and alleviating the
problem of the sparsity interactions.

• DGCF achieves comparable or superior performance in
comparison to many CNN-based or attention-based base-
lines despite its ignoring review information, which demon-
strates the efficacy of disentangling in review-based recom-
mender systems. Meanwhile, SGDN outperforms DGCF
by a large margin, which validates the efficacy of the graph
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Datasets DeepCoNN TransNet DRRNN NARRE DAML DGCF RMG RGCL SGDN Improv.
Toys 0.8026 0.7982 0.7884 0.7961 0.7940 0.7943 0.7901 0.7771 0.7603∗ 2.2%
Clothing 1.1184 1.1141 1.1035 1.1064 1.1065 1.1002 1.1064 1.0858 1.0466∗ 3.6%
Office 0.7426 0.7419 0.7306 0.7408 0.7358 0.7345 0.7348 0.7228 0.7075∗ 2.2%
Kitchen 1.0914 1.0879 1.0769 1.0835 1.0814 1.0798 1.0783 1.0732 1.0528∗ 1.9%
Tools 0.9356 0.9348 0.9249 0.9304 0.9295 0.9301 0.9288 0.9241 0.9010∗ 2.5%

Table 2: Comparison results on the five datasets in terms of MSE. The best and second-best results are highlighted with boldface and
underlined. * indicates SGDN significantly outperforms the best baseline with p < 0.05 using student t-test on the dataset.

Datasets Toys Clothing Office
RG 0.7853 1.1024 0.7293
DGL Variant 1 0.7857 1.0987 0.7287
DGL Variant 2 0.7765 1.0748 0.7193
DGL Variant 3 0.7797 1.0850 0.7246
DGL 0.7721 1.0637 0.7152
DGL+ICL-NP 0.7668 1.0542 0.7128
SGDN 0.7603 1.0466 0.7075

Table 3: Ablation studies on the DGL and ICL modules.

(a) K (b) Kp

(c) L (d) λ

Figure 4: Impact of key hyperparameters in SGDN.

disentangling mechanism in SGDN and highlights the im-
portance of review data in disentangling.

Performance Comparison in Alleviating Data Sparsity
To verify the robustness of SGDN against sparsity issue, we
partition users into distinct groups according to their inter-
action numbers in the training set (e.g., 5-10). Then we re-
port the MSE of DGL, SGDN in comparison to the SOTA
models RGCL and RG (RGCL minus the CL tasks) for each
group. Figure 3 demonstrates that, compared to RG, DGL
is more robust to the sparsity issue, allowing for more ef-
fective use of review information to disentangle latent fac-
tors in user-item interactions. In addition, SGDN improves
upon RGCL by selecting proper positive and negative sam-
ples based on user’s interaction intents in the CL task. Con-

sequently, SGDN achieves the highest performance across all
groups, demonstrating the efficacy of our proposed CL task.

5.3 Ablation Studies
In this section, we conduct ablation research on the two mod-
ules in SGDN to comprehend their functions more deeply.
Impact of the DGL module. To validate the efficacy of
DGL, we compare it with RG, the SOTA graph learning
model. In addition to RG, we also compare DGL to its three
variants: 1) Variant 1 calculates the coefficient sk,(l)i,j in a uni-

form manner, i.e., sk,(l)i,j = 1
K . 2) Variant 2 calculates s

k,(l)
i,j

based on the semantic information, i.e., sk,(l)i,j = seki,j . 3)

Variant 3 calculates sk,(l)i,j based on the structural information,

i.e., sk,(l)i,j = st
k,(l)
i,j . The results are shown on the top of Table

3. The key observations are as follows:
First, Variant 1 almost has no performance improvements

compared to RG because it fails to model the intent distri-
butions among interactions. Second, we observe a decrease
in the performance of Variant 2 and 3 compared to DGL,
demonstrating that integrating semantic and structural infor-
mation allows for a comprehensive exploration of the distri-
butions of latent factors in interactions. Third, DGL has a
significant improvement over RG, validating the efficacy of
its disentanglement in user’s intents.
Impact of the ICL module. To validate the efficacy of the
proposed CL task, we remove the positive and negative sam-
pling strategy in the ICL module (named ICL-NP) and com-
pare it with SGDN. The results are summarized at the bottom
of Table 3. We observe that adding self-supervised task can
alleviate the sparsity issue and improve the overall effect of
DGL. Moreover, SGDN consistently outperforms DGL+ICL-
NP, highlighting the efficacy of learned intent distributions in
identifying the positive and negative samples.

5.4 Hyperparameter Studies
In this section, we evaluate the effect of key hyperparameters
(# of latent factors K, # of positive samples Kp, # of message
passing layers L, and importance hyperparameter of CL task
λ) in SGDN and show the evaluation results in Figure 4.
• The value of K is examined in {1, 2, 4, 8}. We find that

SGDN performs the worst when K = 1, indicating that
modeling the user characteristics as a whole is insufficient
to capture user behavioral patterns. Increasing the factor
number from 1 to 4 significantly enhances the model per-
formance. However, excessive disentanglement leads to
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Factor k1
r = 1 sk1,L

i,j = 0.642
I feel like this printer has the capabilities of a large office copier printer, but on a slightly
smaller scale for home use.

r = 3 sk1,L
i,j = 0.591

This product is okay, but i had a difficult time getting it to stay open. i don’t think it would
be very beneficial in my business.

r = 5 sk1,L
i,j = 0.580 It has double pockets to hold papers and this size is good for me in this type of binder.

Factor k2
r = 1 sk2,L

i,j = 0.638
When i got this pencil sharpener, the black plastic housing literally fell off the unit and a small
white plastic piece and another black plastic gear fell onto the kitchen countertop.

r = 3 sk2,L
i,j = 0.593

Print quality seems to be OK, but there ’s no way to tell the printer whether you are using plain
paper of glossy paper. Plain paper prints look washed out, premium paper prints look good.

r = 5 sk2,L
i,j = 0.554

It’s solidly made and stands up to regular use pretty darn well. The result is crisp laser printing
on a home office budget.

Factor k3
r = 1 sk3,L

i,j = 0.657
My screen shows fraud not real hp brands the sent me back one. Others have found same
problems and many of the ink tanks don’t fit.

r = 3 sk3,L
i,j = 0.592

This product almost delivers on its promises one. But the individual packets of labels easily
detached from the main package.

r = 5 sk3,L
i,j = 0.571

Making photo prints uses a lot of ink. This helps address that problem. Same quality prints
as standard capacity cartridge.

Factor k4
r = 1 sk4,L

i,j = 0.613
In contrast to the high quality pictures you get from canon machines in the same price range,
epson’s inks are only fade resistant and they don’t tell you how long they’ll actually last.

r = 3 sk4,L
i,j = 0.636

For a relatively inexpensive laminator, this does an OK job. But the lack of guides on this unit
is a real problem.

r = 5 sk4,L
i,j = 0.539

I needed to purchase several different cartridges, and the pricing from amazon was favorable,
so I made this purchase.

Table 4: Examples of reviews corresponding to each latent factor on Office. The key information is highlighted with red.

small performance degradation, which might be attributed
to too fine-grained factors and limited expressiveness.

• The value of Kp is tuned in the range from 1 to 100. Fig-
ure 4(b) show the results. With the increase of the positive
examples, the performance of SGDN almost remains stable
on the three datasets when Kp < 50. However, too large
KP might lead to the quality drop due to misidentifying the
interactions with dissimilar intents as positive samples.

• We investigate the impact of message passing layer num-
ber by setting L ∈ {1, 2, 3, 4} and present the results in
Figure 4(c). Clearly, SGDN is able to distill useful higher-
order information from multi-hop neighbours according to
the significant improvements by increasing L from 1 to 2.
While continuing the model depth, the improvements are
not that obvious or even slightly degrade. This indicates
that second-order connectivity might be sufficient to extract
factor-relevant information.

• We also study the impact of λ ∈ {0.01, 0.05, 0.1, 0.5, 1}
that weighs the contribution of CL task. As shown in Fig-
ure 4(d), the performances of SGDN first increase and then
decrease on the three datasets, following a under- to over-
fitting pattern. Generally, SGDN is not very sensitive when
λ is tuned in a reasonable range (e.g. 0.05-0.1).

5.5 Explainability Studies
To better interpret the latent semantics of the learned factor
graphs, we explain the reasons behind user ratings by pre-
senting the reviews of high-confidence interactions. In par-
ticular, we conduct experiments on Office with factor number
K = 4 and layer number L = 2. For each factor k, we ran-
domly select one review with score sk,Li,j > 0.5 for rating 1,

3, 5, respectively. This indicates that factor k dominates user
i’s rating on item j. We present the reviews and associated
scores in Table 4 and have observations as follows:

• By jointly analyzing the reviews of the same latent factor,
we find that, despite being written for different items and
ratings, they all have inherent semantic connections. For
example, the reviews of factor k1 reflect user ratings based
on how well the product meets their needs, such as good for
me and beneficial in my business. The reviews for factor k2
are all about the quality and durability of the products, such
as quality seems to be OK and solidly made.

• By jointly analyzing the reviews across multiple factors,
we find that, SGDN is capable of modeling the interactions
from multiple perspectives. In general, we character k1, k2,
k3, and k4 as demand-supply match, quality, integrity and
cost performance, respectively. This verifies our hypothesis
that different uses’ ratings on different items are driven by
distinct latent factors.

6 Conclusion

This paper proposes a novel framework, SGDN, which fo-
cuses on exploring and disentangling the latent factors be-
hind user-item interactions for better and more explainable
review-based recommendation. Specifically, we design a dis-
entangled graph learning module to factorize the user-item
rating graph and learn disentangled user/item representations.
Then an intent-aware contrastive learning task is designed to
alleviate the sparsity issue and encourage disentanglement.
Experiments on five benchmark datasets validate the superior
performance and interpretability of SGDN.
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