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Abstract
Graph clustering is a longstanding research topic,
and has achieved remarkable success with the deep
learning methods in recent years. Nevertheless, we
observe that several important issues largely remain
open. On the one hand, graph clustering from the
geometric perspective is appealing but has rarely
been touched before, as it lacks a promising space
for geometric clustering. On the other hand, con-
trastive learning boosts the deep graph clustering
but usually struggles in either graph augmentation
or hard sample mining. To bridge this gap, we re-
think the problem of graph clustering from geomet-
ric perspective and, to the best of our knowledge,
make the first attempt to introduce a heterogeneous
curvature space to graph clustering problem. Cor-
respondingly, we present a novel end-to-end con-
trastive graph clustering model named CONGRE-
GATE, addressing geometric graph clustering with
Ricci curvatures. To support geometric clustering,
we construct a theoretically grounded Heteroge-
neous Curvature Space where deep representations
are generated via the product of the proposed fully
Riemannian graph convolutional nets. Thereafter,
we train the graph clusters by an augmentation-
free reweighted contrastive approach where we pay
more attention to both hard negatives and hard pos-
itives in our curvature space. Empirical results on
real-world graphs show that our model outperforms
the state-of-the-art competitors.

1 Introduction
Graph clustering aims to group nodes into different clusters
so that the intra-cluster nodes share higher similarity than
the inter-cluster ones, receiving continuous research attention
[Yin et al., 2017]. The state-of-the-art clustering performance
on graphs has been achieved by deep clustering methods in
recent years [Liu et al., 2023; Wang et al., 2019; Li et al.,
2020]. Meanwhile, we find that several important issues on
deep graph clustering still largely remain open.

The first issue is on the geometric graph clustering. In
the literature, classic concepts such as modularity [Li et al.,
2022], conductance [Duval and Malliaros, 2022] and motifs

[Jia et al., 2019] are frequently revisited. Little effort has
been devoted to clustering from a geometric perspective. In
the Riemannian geometry, Ricci curvatures on the edges can
help determine the cluster boundary [Jost and Liu, 2014],
thereby showing the density and clustering behavior among
the nodes. However, graph clustering has rarely been touched
yet in Riemannian geometry, since it lacks a promising Rie-
mannian space for graph clustering. Most existing graph rep-
resentation spaces present a single curvature radius, indepen-
dent of nodes/edges [Xiong et al., 2022b; Chami et al., 2019;
Law, 2021], and cannot allow for a closer look over the var-
ious curvatures for graph clustering. Also, typical clustering
algorithms in Euclidean space (e.g., K-means) cannot be di-
rectly applied as an alternative, due to the inherent difference
in geometry. Consequently, it calls for a new Riemannian
curvature space, supporting a fine-grained curvature model-
ing for geometric clustering.

The second is on the unsupervised learning. Deep models
are typically trained by the supervisions while graph cluster-
ing is unsupervised by nature. Recently, the contrastive clus-
tering without external supervision draws dramatic attention
[Park et al., 2022; Devvrit et al., 2022; Li et al., 2022]. In the
line of contrastive graph clustering, the issues of augmenta-
tion and hard samples are still unclear in general. Unlike the
easily obtained augmentations on images, graph augmenta-
tion is nontrivial [Hassani and Ahmadi, 2020]. In addition,
the noise injected in this process usually requires a careful
treatment to avoid misleading on graph clustering [Gong et
al., 2022]. Robinson et al. [2021] point out the hardness un-
awareness of typical loss function such as InfoNCE. Hard
negative samples have shown to be effective for graph con-
trastive learning [Xia et al., 2022], but little effort is made to
its counterpart, hard positive samples. In fact, the hard posi-
tives in our context are the border nodes of a cluster, and plays
a crucial role in clustering performance. Unfortunately, hard
sample mining in curvature space largely remains open.

Motivated by the observations above, we rethink the prob-
lem of graph clustering from the geometric perspective, and
make the first attempt to address graph clustering in a novel
Curvature Space, rather than traditional single curvature
ones, with an advanced contrastive loss.

To this end, we propose a novel end-to-end contrastive
graph clustering model in curvature spaces (CONGREGATE),
where we approach graph clustering via geometric clustering
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with Ricci curvatures so that positive Ricci curvature groups
the nodes while negative Ricci departs them in spirit of the
famous Ricci flow. To address the fine-grained curvature
modeling for graph clustering (the first issue), we introduce a
novel Heterogeneous Curvature Space, which is a key inno-
vation of our work. It is designed as the product of learnable
factor manifolds and multiple free coordinates. We prove that
the proposed space allows for different curvatures on differ-
ent regions, and the fine-grained node curvatures can be in-
ferred to accomplish curvature modeling. Accordingly, we
generate deep representations via the product of Graph Con-
volutional Nets (GCNs), where fully Riemannian GCN is de-
signed to address the inferior caused by tangent spaces. To
address the unsupervised learning (the second issue), we pro-
pose a rewighted geometric contrastive approach in our cur-
vature space. On the one hand, our approach is free of aug-
mentation as we contrast across the geometric views gener-
ated from the proposed heterogeneous curvature space itself.
On the other hand, we equip a novel dual reweighting to the
Node-to-Node and Node-to-Cluster contrastive losses to train
the clusters. In this way, we pay more attention to both hard
negatives and hard positives when maximizing intra-cluster
similarity and minimizing inter-cluster similarity.

To sum up, the noteworthy contributions are listed below:

• Problem. We rethink the graph clustering from geo-
metric respective. To the best of our knowledge, we
are the first to introduce the heterogeneous curvature
space, supporting fine-grained curvatures modeling, to
the problem of graph clustering.

• Methodology. We propose an end-to-end CONGREGATE
free of graph augmentation, in which we approach geo-
metric graph clustering with the reweighting contrastive
loss in the proposed heterogeneous curvature space,
paying attention to hard positives and hard negatives.

• Experiments. We evaluate the superiority of our model
with 19 strong competitors on 4 datasets, examine the
proposed components by ablation study, and further dis-
cuss why Ricci curvature works.

2 Preliminaries
In this section, we first introduce the necessary fundamentals
of Riemannian geometry for better understanding our work,
and then formulate the studied problem in this paper. In short,
we are interested in the end-to-end graph clustering in a novel
curvature space.

2.1 Riemannian Geometry
Manifold. A Riemannian manifold (M, g) is a smooth
manifold M endowed with a Riemannian metric g. Every
point x ∈ M is associated with a Euclidean-like tangent
space TxM on which the metric g is defined. The exponen-
tial map projects from the tangent space onto the manifold,
and the logarithmic map does inversely [Lee, 2013].

Curvature. For each point x in the manifold, it is coupled
with a curvature cx describing how the space around x de-
rives from being flat and a corresponding curvature radius

1
|cx| . When cx is equal everywhere in the manifold, it in-
duces a homogeneous curvature space (a.k.a. constant cur-
vature space) with a simplified notation of scalar curvature c.
Concretely, it is said to be hyperbolic H if c < 0, and hy-
perspherical S if c > 0. Euclidean space R is special case
with c = 0. On the contrary, heterogeneous curvature space
refers to a manifold whose curvatures on different regions are
not the same, which is a more practical yet challenging case.

2.2 Problem Formulation
In this paper, we consider the node clustering on attributed
graphs. An attributed graph is described as a triplet of G =
(V , E ,X), where V = {v1, v2, · · · , vN} is the set ofN nodes,
E ⊂ V × V is the edge set, and X ∈ RN×F is the attribute
matrix. Let K denote the number of node clusters. The node-
to-cluster assignment is described as the cluster membership
vector πi ∈ RK attached to node vi. πi is a stochastic vector
adding up to 1, whose k-th element πik is the probability of
vi belonging to cluster k. Now, we formulate the problem of
Geometric Graph Clustering in Generic Curvature Space.

Problem Definition. Given G = (V , E ,X), the goal of our
problem is to learn an encoder f : vi → [zi,πi], ∀v ∈ V
that 1) directly outputs cluster membershipπi (end-to-end) so
that the nodes are more similar to those grouped in the same
cluster than the nodes in different clusters and 2) the node
encodings in the generic curvature space zi ∈M, supporting
the geometric graph clustering.

Distinguishing with the prior works, we rethink the problem
of graph clustering from the geometric perspective, and make
the first attempt to study graph clustering in a novel Curvature
Space, rather than traditional single curvature ones.

Notations. The lowercase x, boldfaced x and uppercase X
denote scalar, vector and matrix, respectively.

3 Methodology: CONGREGATE
We propose an end-to-end contrastive graph clustering model
(CONGREGATE) where we introduce the first curvature space
to graph clustering, a key innovation of our work. In brief, we
directly learn the node clusters by training randomly initial-
ized centroids {φk}k=1,··· ,K in a novel curvature space. φk
is the centroid of cluster k. The soft assignment of node vi
to cluster k is given as πik = Normalize(δ(zi,φk)), where
the similarity δ(zi,φk) = exp(−dP(zi,φk)) and dP is dis-
tance metric in our curvature space. Softmax normalization
is applied so that πi adds up to 1.

We illustrate our model in Figure 1. Concretely, we present
a geometric clustering approach with Ricci curvatures (Sec
3.1), introduce the novel heterogeneous curvature space (Sec
3.2), and train cluster centroids by the proposed reweighted
contrastive loss in our curvature space (Sec 3.3).

3.1 Geometric Clustering with Ricci Curvature
In CONGREGATE, we address graph clustering from a geo-
metric perspective, more concretely, the notion of Ricci cur-
vature, and formulate a novel geometric clustering loss.

We first discuss why Ricci curvature clusters nodes. Let us
begin with its definition [Jost and Liu, 2014; Lin et al., 2011]:
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Figure 1: Illustration of CONGREGATE. (a) We address graph clustering from geometric perspective with Ricci curvatures. (b) We construct a
novel curvature space where we generate deep representations via the product of proposed fRGCNs. (c) Our model is trained by a reweighted
contrastive loss across geometric views (red/magenta/blue) free of augmentation. (d) We obtain clustering results in an end-to-end fashion.

Given a graph with mass distribution mλ
i (·) on vi’s neighbor

nodes, Ricci curvature Ric(i, j) of edge (vi, vj) is defined as

Ric(i, j) = 1−
W (mλ

i ,m
λ
j )

dG(vi, vj)
, (1)

and W (mλ
i ,m

λ
j ) is the Wasserstein distance between the

mass distributions on nodes, where mλ
i (·) is defined as

mλ
i (vj) =

{
λ if vj = vi

1−λ
degreei

if vj ∈ Ni,
(2)

where dG is the length of shortest path on the graph, and λ
is a control parameter. The intuition is that the Ricci curva-
ture of an edge describes the overlap extent between neigh-
borhoods of its two end nodes, and thus signifies the density
among nodes. Specifically, if vi and vj belong to different
clusters, it is costing to move the distribution mλ

i to mλ
j due

to fewer common neighbors. The less overlapped neighbor-
hoods present large W (mλ

i ,m
λ
j ) and negative Ric(i, j). On

the contrary, intra-cluster edges are most positively curved,
and the nodes within the cluster are densely connected.

With the observation above, we connect the Ricci curvature
on edges to the density among the nodes. Then, intra-cluster
density is formulated as summing the Ric(i, j) whose end
nodes belong to the same cluster,

Dintra =
1

|E|
∑

i,j

∑K

k=1
Ric(i, j)πikπjk. (3)

Similarly, the inter-cluster density is given as

Dinter =
1

|E|K
∑

i,j

∑
k1 6=k2

Ric(i, j)πik1
πjk2

. (4)

Consequently, the Ricci loss is defined as follows,

LRic = α0Dinter −Dintra, (5)

where α0 is a weighting coefficient. The rationale of our for-
mulation is that we maximize node density within the cluster
while minimizing the density across different clusters.

Connection to the Famous Ricci Flow. In differential ge-
ometry, the Ricci flow approach is to divide a smooth mani-
fold into different regions based on the Ricci curvature. The
regions of large positive curvature shrink in whereas regions
of very negative curvature spread out [Chen and Zhu, 2005].
Analogy to the smooth manifold, we divide a graph into dif-
ferent node clusters where positive Ricci curvature groups the
nodes and negative Ricci departs them.

Ni et al. [2019]; Sia et al. [2019] leverage Ricci curvatures
to group nodes, but they do not consider the end-to-end clus-
tering in a curvature space, essentially different from our set-
ting. We are the first to introduce the curvature space to the
problem of graph clustering to the best of out knowledge.

3.2 Constructing Heterogeneous Curvature Space
We are facing a challenging task: constructing a new curva-
ture space for the geometric graph clustering. Most existing
graph curvature spaces present as a single curvature radius
(either the typical hyperbolic, spherical and Euclidean spaces
or the recent ultrahyperbolic and quotient manifolds [Xiong
et al., 2022b; Law, 2021]). However, rather than a single cur-
vature, geometric clustering requires a closer look over the
various fine-grained curvatures on the graph.

A core contribution of our work is that we introduce a novel
heterogeneous curvature space, bridging this gap. In a nut-
shell, it is a product space of learnable factor manifolds and
multiple free coordinates, as shown in Fig 1 (b).

A Novel Product Manifold
We introduce the intuition of our idea before the formal the-
ory. The graph curvature spaces above are restricted by a
fixed norm, thus yielding a single curvature radius. We enrich
the curvatures by producting a single radius space with mul-
tiple free coordinates that do not have any norm restriction.
(A more theoretical rationale based on rotational symmetry
[Giovanni et al., 2022] is given in Appendix.) Our heteroge-
neous curvature space PH is constructed as follows,

PH = ⊗Mm=0Mcm,dm
m , Mc0,d0

0 := Rd0 , c0 = 0, (6)
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where ⊗ denotes the Cartesian product. It is a product of M
restricted factors and a free factor of d0 free coordinates. In
the product space, a point z ∈ PH is thus expressed as the
concatenation of its factors zm ∈ Mcm,dm

m with the combi-
national distance metric of d2

P(x,y) =
∑
m d

2
cm(xm,ym).

A restricted factorMcm,dm
m is defined on the manifold,{

z =

[
zt
zs

] ∣∣∣∣ 〈z, z〉cm =
1

cm
, zt ∈ R, zs ∈ Rdm

}
, (7)

with the metric inner product 〈z, z〉cm = sgn(cm)z2
t +z>s zs,

where sgn is the sign function. cm and dm denote the cur-
vature and dimension, respectively. The induced norm re-
striction is given as ‖z‖2cm = 〈z, z〉cm . zt is the 1st dimen-
sion, and is usually termed as t-dimension. The north pole
is 0 = (|cm|−

1
2 , 0, · · · , 0). The closed-form distance dcm ,

logarithmic logcmz and exponential maps expcmz are derived
in Skopek et al. [2020]. The free factor Rd0 looks Euclidean
like, but in fact we inject the rotational symmetry in it. The
closed-form distance d0 is given in [Giovanni et al., 2022].
We do not use its logarithmic/exponential maps in our model.

We prove that the proposed PH has heterogeneous curva-
tures, i.e., it allows for different curvatures on the different
regions. Supporting curvature heterogeneity is the foundation
of geometric clustering. We start with the concept below.
Definition (Diffeomorphism [Lee, 2013]). Given two mani-
foldsM1 andM2, a smooth map ϕ :M1 →M2 is referred
to as a diffeomorphism if ϕ is bijective and its inverse ϕ−1 is
also smooth. M1 andM2 are said to be diffeomorphic and
denoted asM1 'M2 if there exists a ϕ connecting them.
Proposition 1 (Curvature Heterogeneity). ∀d0 > 1, ∀cm,
there exists a diffeomorphism of PH ' (⊗Mm=1Mcm,dm

m ⊗
M0,d)⊗RS where a point zi’s curvature is a map ψ((zi)[S],
c1, · · · , cM ) w.r.t. its location with the differential operator

−2∂2
SSρ

ρ
+

1− (∂2
Sρ)2

ρ2
, (8)

for some smooth ρ and (zi)[S] is the coordinate of RS , where
M0,d⊗RS = Rd0 and RS is the axis for rotational symmetry.

Proof. Please refer to the Appendix.

Fine-grained Curvature Modeling for Graph Clustering
Here, we derive the fine-grained node-level curvature in our
product space. With the definition of Diffeomorphism above
and Proposition 1, the curvature ci of zi ∈ PH can be derived
from the map (ϕ ◦ ψ)((zi)[S], c1, · · · , cM ) and the differen-
tial operator on ρ. That is, zi’s curvature is inferred via a
map regarding the curvatures of factor manifold c1, · · · , cM
and its coordinate of rotation symmetry (zi)[S]. In our con-
struction, (zi)[S] is given in the 1st dimension of the zi’s free
factor (z0

i )[1]. We employ a multilayer perceptron (MLP) to
approximate the map. The estimated curvature c̄i is given as,

c̄i = MLP ([(z0
i )[1], c1, · · · , cM ]>). (9)

In the graph domain, node curvature Ric(i) is defined by
averaging the Ricci curvature in its neighborhood, in analogy
to tracing around the tangent space of the manifold. That

is, the node-level curvature on the graph is formulated as
Ric(i) = 1

degreei

∑
j∈Ni

Ric(i, j), where degreei is the de-
gree of vi and Ni denotes the 1-hop neighborhood of node i.
Then, we propose a node-level curvature consistency loss as

LCurv =
1

N

∑
i
|Ric(i)− c̄i|2, (10)

so that curvatures of factor manifolds are jointly learnt with
the model via the fine-grained curvature modeling.

Till now, we construct the heterogeneous curvature space
modeling the fine-grained curvatures of the graph. Thereby,
the constructed curvature space supports geometric graph
clustering with the Ricci loss, which requires a closer look
over the various Ricci curvatures on the graph (Eqs. 3-5).

Remarks. The advantages of our design are 1)PH supports
node-level curvature modeling for geometric clustering, and
its factors has learnable curvatures, different from the product
manifolds in Gu et al. [2019]; Wang et al. [2021]. 2) PH as a
whole owns the closed form expression of geometric metrics
inherited from its factor manifolds. 3) PH decomposes itself
into (M +1) different geometric views corresponding to each
factor (i.e., M restricted views and 1 free view).

Generate Deep Representations in the Product Manifold
Thanks to the product construction, encoding in the hetero-
geneous curvature space is transformed into encoding in each
factor manifold. Most of the Riemannian GCNs involve the
tangent space out of the original manifold, and recent studies
observe the inferior of tangential methods [Dai et al., 2021].

To bridge this gap, we design a fully Riemannian GCN
(fRGCN) for the restricted factorMc,d, whose novelty lie in
that all the operations are fully Riemannian for any c, i.e., no
tangent space is involved. We design the manifold preserving
operators of fRGCN as follows.

Feature Transformation. First, we formulate a general-
ized Lorentz Transformation (gLT ) for dimension transfor-
mation, inspired by the classic LT. The transformMc,dm →
Mc,dn is done via the matrix left-multiplication with the
transform matrix derived as follows,

gLT c,dm→dnz (W ) =

[
wt 0>

0 W

]
. (11)

Recall that z = [zt zs]
> ∈ Mc,dm . In gLT , wt is re-

sponsible to scale zt while W transforms zs. We derive the

closed-form t-scaling as wt = 1
zt

√
sgn(c)

(
1
c − `(W , zs)

)
and `(W , zs) = ‖Wzs‖2.

Now, we prove that the transformed feature with gLT re-
sides in the target manifold.

Proposition 2 (Manifold Preserving). ∀z ∈ Mc,dm , ∀c,
gLT c,dm→dnz (W )z ∈Mc,dn holds for anyW ∈ Rdn×dm .

Proof. Refer to our concurrent work [Sun et al., 2023].

Note that, the classic LT works with a fixed dimension. Re-
cently, Dai et al. [2021] optimize with orthogonal constraint
unfriendly to deep learning. Chen et al. [2022] restrict in neg-
ative curvature. That is, all of them cannot satisfy our need.
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Second, we add the bias for gLT and obtain the linear layer
in the manifold of any curvature c as follows,

LLc(W , z, b) =

[
wtzt

Wzs + b

]
, (12)

where b is the bias and `(W , zs) = ‖Wzs + b‖2. It is easy
to check that LLc is manifold preserving.

Attentive Aggregation. The encoding of i is updated as the
weighted geometric centorid over the set N̄i, the neighbors of
i and itself, i.e., arg minhi∈M

∑
j∈N̄i

νijd
2
c(hi,hj), ∀c and

νij denotes the attentive weight. For any c, we derived the
closed form solution hi = AGGc({hj , νij}|j ∈ N̄i),

AGGc({hj , νij}|j ∈ N̄i) = 1√
|c|

∑
j∈N̄i

νijhj∣∣∣‖∑j∈N̄i
νijhj‖c

∣∣∣ .
(13)

The attentive weights νij is the importance of j in the aggre-
gation over N̄i. We define the attentive weights based on the
distance in the manifold, νij = Softmax(−τdc(hj ,hi) −
γ), where τ is an inverse temperature and we add a bias γ.
It is easy to check that the centroid in Eq. (13) lives in the
manifold, ∀c, and thus AGGc is manifold preserving.

Note that, Einstein midpoint formulates an arithmetic mean
in the manifold but lacks geometric interpretation. Fréchet
mean elegantly generalizes from Einstein midpoint but does
not offer any closed form solution [Chen et al., 2022]. Our
closed form solution in Eq. (13), generalizing to any curva-
ture, is the geometric centroid of squared distance.

The Free Factor. Linear layer LL0 is done via replacing
LLc with a free wt ∈ R. Attentive aggregation is defined
as AGG0({hj , νij}|j ∈ N̄i) =

∑
j∈N̄i

νijhj where atten-
tive weights νij is computed based on distance d0. They are
manifold preserving as there is no norm restriction in Rd0 .

3.3 Learning by Reweighted Geometric
Contrasting

In this subsection, we train the graph clusters with a con-
trastive loss in the proposed curvature space. Specifically,
we propose a Reweighted Geometric Contrasting (RGC) ap-
proach, in which we contrast across different geometric views
with a novel dual reweighting, as shown in Fig 1 (c).

Augmentation-Free Geometric Contrast
The augmentation is nontrivial for graph contrastive learn-
ing, and requires special design for clustering [Gong et al.,
2022]. Instead, our CONGREGATE is free of augmentation
where we take advantage of the carefully designed PH for
contrastive learning. Thanks to the product construction, PH
itself owns different geometric views as remarked in Sec. 3.2.
The contrast strategy is that we contrast each restricted view
inMcm,dm

m with the free view in Rd0 , and vice versa.
The remaining challenge is how to contrast between differ-

ent manifolds, i.e.,Mcm,dm
m and Rd0 . The difference in both

curvature and dimension blocks the application of typical
similarity functions. We propose to bridge this gap by gLT
and bijection ψM→R of Diffeomorphism. (Recall that we
have already provided an effective mathematics tool for di-
mension transformation, gLT .) Specifically, we introduce an

Algorithm 1: Training CONGREGATE

Input: Graph G, #(Clusters)=K, #(Factors)=(M+1)
Output: Encoder f , Cluster centroids {φk}k=1,··· ,K

1 Preprocessing: Compute Ricci curvatures on G;
2 while not converging do
3 Create geometric views [z0 z1 · · · zM ]← fRGCN;
4 for each restricted view zm,m ∈ [1,M ] do
5 /* Contrast with the free view z0 */
6 Node-to-Node contrast based on Eq. (17);
7 Node-to-Cluster contrast based on Eq. (18);
8 end
9 Train {φk}k=1,··· ,K by optimizing J in Eq. (20);

10 end

image of restricted view ẑm that is comparable with the free
view. First, we employ gLT to transform zm intoMcm,d0−1

m
whose ambient space is Rd0 . Second, we apply the diffeo-
morphism bijection and thus the image is given as follows,

ẑm = ψM→R(gLT
cm,dm→(d0−1)
zm (W)zm), (14)

where parameter W characterizes gLT , and logcm0 (·) is uti-
lized as the bijection since its differentiable inverse exists
logcm0 (expcm0 (z)) = z. Note that ẑmi ∈ Rd0 . Then, we
define the similarity as a bilinear critic with parameter S,

Sim(zm, z0) = (ẑm)>Sz0. (15)

Our formulation of Eq. (15) does not introduce additional
tangent space, and its advantage is examined in Sec. 4.3.

Dual Reweighting in Curvature Space
A drawback of the popular InfoNCE loss is hardness un-
awareness (equally treating the hard sample pairs and the
easy ones), limiting the discriminative ability [Robinson et
al., 2021]. To address this issue, we propose a dual reweight-
ing, paying more attention to both hard negatives and hard
positives for contrastive learning in curvature space.

First, we specify the hard samples in the context of graph
clustering where cluster assignment offers pseudo labels. In-
tuitively, the nodes assigned to different clusters but sharing
large similarity are referred to as hard negatives, while the
border nodes sharing small similarity to the cluster centroid
are hard positives. Second, we model the hardness by com-
paring cluster assignment (pseudo label) and representation
similarity, and formulate the dual reweighting as follows,

W(zmi , z
0
j ) = |πi>πj − Sim(ẑmi , z

0
j )|β (16)

where the control coefficient β is a positive integer, and
W(zmi , z

0
j ) up-weights both hard positives and hard nega-

tives while down-weighting the easy ones.
Recently, Sun et al. [2022a] design a Riemannian reweigh-

ing for node embedding only and thus fail to consider clus-
ters. Liu et al. [2023] select hard positives in Euclidean space
while we need to handle different manifolds. Both of them
cannot meet our need and motivate our design of Eq. (16).
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Node-to-Node & Node-to-Cluster Contrasting
The RGC loss consists of Node-to-Node and Node-to-Cluster
contrasting, where we contrast different geometric views with
the dual reweighting and Sim function in generic curvature
space. First, we define Node-to-Node contrast loss as follows,

I(Zm,Z0) = −
∑N

i=1
log

eW(zm
i ,z

0
i )Sim(zm

i ,z
0
i )∑N

j=1 e
W(zm

i ,z
0
j )Sim(zm

i ,z
0
j )
.

(17)
Second, we contrast node encoding of one view with cluster
centroids of another view, and formulate the Node-to-Cluster
contrast loss as follows,

I(Zm,Φ0) = −
∑N

i=1
log

eW(zm
i ,φ

0
ki

)Sim(zm
i ,φ

0
ki

)∑K
k=1 e

W(zm
i ,φ

0
k)Sim(zm

i ,φ
0
k)
,

(18)
where node vi is assigned to cluster ki. Here, inW(zmi ,φ

0
ki

),
the inner product term is simplified as [πi]ki the probability of
vi assigned to cluster ki. Thus, we have RGC loss as follows,

LRGC =
∑M

m=1

∑
X∈{Z0,Φ0}

(I(Zm,X) + I(X,Zm)).

(19)
In our curvature space, intra-cluster node similarity is maxi-
mized as they positively contrast to the same centroid, while
inter-cluster nodes are separated by negative contrast. Mean-
while, more attention is paid to the similar cluster centorids
(hard negatives) and the nodes residing in the cluster border
(hard positives), thanks to dual reweighting of Eq. (16).

Overall Loss. Finally, the overall loss of CONGREGATE is
formulated as follows,

J = LRic + α1LCurv + α2LRGC , (20)

where α1 and α2 are weighting coefficients. In this way, we
end-to-end train node encodings and cluster centorids, so that
the nodes in the graph are clustered in the proposed heteroge-
neous curvature space.

Complexity Analysis
We summarize the training process of CONGREGATE in Al-
gorithm 1, in which Eq. (19) is the most costly, yielding the
computational complexity of O(2M |V|2 + 2MK|V|). Note
that, the computational complexity is similar to typical con-
trastive methods [Veličković et al., 2019; Hassani and Ah-
madi, 2020]. The Ricci curvatures only need to be computed
once as a pre-processing, and can be effectively obtained sim-
ilar to Ni et al. [2019]; Ye et al. [2020].

4 Experiment
In this section, we evaluate our model with 19 baselines on
4 public datasets, aiming to answer the following research
questions (RQs),

- RQ1: How does the proposed CONGREGATE perform?

- RQ2: What are the effects of the proposed components?

- RQ3: Why does Ricci Curvature work?

Datasets Edge Type # Nodes # Edges # Classes
Cora citation 2, 708 5, 429 7

Citeseer citation 3, 327 9, 104 6
MAG-CS co-author 18, 333 163, 788 15

AMAP co-purchase 7, 487 119, 043 8

Table 1: The statistics of the datasets

4.1 Experimental Setups

Datasets & Baselines. To evaluate the proposed model, we
choose 4 public datasets, i.e., Cora and Citeseer [Devvrit
et al., 2022], and larger MAG-CS [Park et al., 2022] and
Amazon-Photo [Li et al., 2022]. We give the statistics of the
datasets in Table 1.

We focus on deep graph clustering with no labels avail-
able. Thus, both the strong deep clustering methods (DC)
and self-supervised learning methods (SS) are included as
Euclidean Baselines for a comprehensive evaluation. There
are 13 strong DC methods and 5 SS methods, summarized
in Table 2. Specifically, SS methods are GAE, VGAE [Kipf
and Welling, 2016], ARGA [Pan et al., 2020], and the re-
cent contrastive ones, DGI [Veličković et al., 2019] and MV-
GRL [Hassani and Ahmadi, 2020]. DC methods are DAEGC
[Wang et al., 2019], SDCN [Bo et al., 2020], AGE [Cui et
al., 2020], GMM-VGAE [Hui et al., 2020], AGCN [Peng
et al., 2021], GDCL [Zhao et al., 2021], S3GC [Devvrit et
al., 2022], CGC [Park et al., 2022], gCooL [Li et al., 2022],
HostPool [Duval and Malliaros, 2022], AGC-DRR [Gong et
al., 2022], FT-VGAE [Mrabah et al., 2022] and HSAN [Liu
et al., 2023]. There exists few Riemannian Baselines (R).
Note that, recent Riemannian GNNs do not have clustering
ability, as typical clustering algorithms cannot be directly ap-
plied/incorporated owing to the inherent difference in geom-
etry. Instead, we choose a recent shallow model, RicciCom
[Ni et al., 2019]. We are the first to bridge Riemannian space
and graph clustering to our knowledge.

Evaluation Metric. We employ 3 popular evaluation met-
rics, i.e., Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI) and Accuracy (ACC) [Devvrit et al., 2022;
Li et al., 2022; Mrabah et al., 2022].

Reproducibility. In our model, the number of restricted
factors M and their dimensions need to be configured for an
instantiation, while the factors’ curvatures are jointly learnt
with the model. In fRGCN, the convolutional layer is stacked
twice. The parameters living in the factor (e.g., W in gLT ,
and the centroid in the factors) are optimized via Rieman-
nian Adam [Kochurov et al., 2020]. The grid search is
performed over search spaces for the hyperparameters, e.g.,
learning rate: [0.001, 0.003, 0.005, 0.008, 0.01], dropout rate:
[0.0, 0.1, 0.2, 0.3, 0.4]. We utilize a 2-layer MLP to approx-
imate the fine-grained curvature. In RGC loss, hyperpa-
rameter β of the reweighting is 2 as default. If input fea-
tures live in the Euclidean space, we use the inverse bi-
jection ψ−1

M→R in Eq. (14) to map the Euclidean input to
a factor manifold. Further details and code are provided
https://github.com/CurvCluster/Congregate.
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Method Cora Citeseer MAG-CS Amazon-Photo
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

GAE 61.3 (0.8) 44.4 (1.1) 38.1 (0.9) 61.4 (0.8) 34.6 (0.7) 33.6 (1.2) 63.2 (2.6) 69.9 (0.6) 52.8 (1.5) 71.6 (2.5) 62.1 (2.8) 48.8 (4.6)
VGAE 64.7 (1.3) 43.4 (1.6) 37.5 (2.1) 61.0 (0.4) 32.7 (0.3) 33.1 (0.5) 60.4 (2.9) 65.3 (1.4) 50.0 (2.1) 74.3 (3.6) 66.0 (3.4) 56.2 (4.7)

DGI 72.6 (0.9) 57.1 (1.7) 51.1 (3.0) 68.6 (1.3) 43.5 (1.2) 44.5 (1.9) 60.0 (0.6) 65.9 (0.4) 50.3 (0.9) 57.2 (1.9) 37.6 (0.3) 26.4 (0.3)
ARGA 71.0 (2.5) 51.1 (0.5) 47.7 (0.3) 61.1 (0.5) 34.4 (0.7) 33.4 (1.2) 47.9 (6.0) 48.7 (3.0) 23.6 (9.0) 69.3 (2.3) 58.4 (2.8) 44.2 (4.4)

MVGRL 70.5 (3.7) 55.6 (1.5) 48.7 (3.9) 62.8 (1.6) 40.7 (0.9) 34.2 (1.7) 61.6 (3.3) 65.4 (1.9) 49.2 (5.3) 41.1 (3.2) 30.3 (3.9) 18.8 (2.3)

DAEGC 70.4 (0.4) 52.9 (0.7) 49.6 (0.4) 64.5 (1.4) 36.4 (0.9) 37.8 (1.2) 48.1 (3.8) 60.3 (0.8) 47.4 (4.2) 76.0 (0.2) 65.3 (0.5) 58.1 (0.2)
SDCN 35.6 (2.8) 14.3 (1.9) 7.8 (3.2) 65.9 (0.3) 38.7 (0.3) 40.2 (0.4) 51.6 (5.5) 58.0 (1.9) 46.9 (8.1) 53.4 (0.8) 44.9 (0.8) 31.2 (1.2)

AGE 73.5 (1.8) 57.6 (1.4) 50.1 (2.1) 69.7 (0.2) 44.9 (0.5) 45.3 (0.4) 59.1 (1.7) 66.7 (0.3) 51.1 (2.8) 75.9 (0.7) 65.4 (0.6) 55.9 (1.3)
GMM 71.5 (0.2) 53.1 (2.1) 47.4 (0.6) 67.5 (0.9) 40.7 (1.1) 42.4 (0.5) 67.2 (2.6) 72.8 (0.7) 56.1 (1.9) 75.5 (0.3) 68.1 (0.7) 57.9 (0.9)

AGCN 72.2 (3.6) 54.7 (1.3) 48.9 (2.7) 68.8 (0.2) 41.5 (0.3) 43.8 (0.3) 54.2 (5.2) 59.4 (2.1) 49.2 (6.5) 45.2 (1.0) 41.6 (1.1) 36.6 (0.2)
GDCL 70.8 (0.5) 56.6 (0.4) 48.1 (0.7) 66.4 (0.6) 39.5 (0.4) 41.1 (1.0) 53.9 (3.1) 60.3 (0.8) 48.8 (5.1) 43.8 (0.8) 37.3 (0.3) 21.6 (0.5)
S3GC 74.2 (3.0) 58.9 (1.8) 54.4 (2.5) 68.8 (1.7) 44.1 (0.9) 44.8 (0.6) 65.4 (2.3) 77.6 (0.6) 61.9 (2.4) 71.8 (0.2) 63.7 (0.8) 45.8 (1.0)
CGC 73.1 (2.2) 57.0 (0.9) 49.3 (1.8) 69.6 (0.6) 44.6 (0.1) 46.0 (0.6) 69.3 (4.0) 79.3 (1.2) 64.4 (3.7) 75.2 (0.1) 64.1 (1.2) 51.7 (0.6)

gCooL 72.0 (1.6) 58.3 (0.2) 56.9 (0.9) 71.5 (1.0) 47.3 (0.8) 46.8 (1.5) 70.7 (1.5) 78.6 (1.0) 66.0 (1.6) 72.7 (0.6) 63.2 (0.0) 52.4 (0.2)
HostPool 71.8 (0.8) 60.5 (1.0) 58.5 (1.1) 70.9 (0.5) 50.2 (0.3) 45.9 (0.7) 67.5 (2.1) 79.0 (0.6) 67.1 (1.2) 69.4 (0.1) 59.8 (1.0) 45.5 (0.7)

AGC-DRR 40.6 (0.6) 18.7 (0.7) 14.8 (1.6) 68.3 (1.8) 43.3 (1.4) 45.3 (2.3) 71.2 (0.8) 71.2 (0.8) 65.8 (3.1) 76.8 (1.5) 66.5 (1.2) 60.1 (1.6)
FT-VGAE 77.4 (1.1) 61.0 (0.5) 58.2 (1.3) 70.8 (0.5) 44.5 (0.1) 46.7 (0.7) 73.3 (1.0) 69.5 (0.5) 67.9 (2.2) 78.1 (1.0) 69.8 (0.7) 59.3 (0.8)

HSAN 77.1 (1.6) 59.2 (1.0) 57.5 (2.7) 71.2 (0.8) 45.1 (0.7) 47.1 (1.1) 72.8 (1.0) 77.3 (0.9) 68.2 (1.7) 77.0 (0.3) 67.2 (0.3) 58.0 (0.5)

RiccCom 55.6 (0.3) 58.1 (1.1) 48.9 (0.9) 67.3 (1.2) 46.2 (0.8) 44.9 (0.6) 69.1 (3.2) 71.6 (1.2) 65.2 (0.8) 58.3 (2.3) 62.9 (0.9) 57.4 (0.9)
Congregate 78.5 (1.0) 63.2 (0.5) 59.3 (1.2) 72.7 (0.6) 50.9 (0.3) 48.3 (1.0) 73.3 (0.7) 80.8 (1.3) 69.5 (1.1) 79.7 (1.8) 71.3 (0.5) 60.9 (1.1)

Table 2: Clustering results of 20 methods on Cora, Citerseer, MAG-CS and Amazon-Photo in terms of NMI, ARI and ACC (%). Standard
derivation is given in brackets. The best results are highlighted in bold, and the runner up underlined.

4.2 RQ1: Main Results
The clustering results on all the datasets in terms of NMI,
ARI and ACC are reported in Table 2. We perform 10 inde-
pendent runs, and report the mean value with standard devia-
tion for fair comparisons. The number of clusters K is set as
the number of real classes on each dataset. For the encoding-
clustering baselines, we apply K-means to obtain the results.
In Table 2, our CONGREGATE is instantiated with 4 factor
manifolds whose dimensionality are {32, 32, 16, 16}, and it
consistently achieves the best results among 19 competitors
on 4 datasets. The reasons are two-fold. 1) We take advantage
of the proposed curvature space and the consensus clustering
from different geometric views. 2) We learn high discrimina-
tive encodings and cluster centroids in an end-to-end fashion.

4.3 RQ2: Ablation Study
We investigate on how each proposed component contributes
to the success of our CONGREGATE: i) fRGCN for model-
ing graph fully Riemannianly, ii) ϕ ◦ gLT for contrasting be-
tween different manifolds and iii) the dual reweighting inW
for paying attention to hard samples.

To evaluate the effectiveness of fRGCN, we introduce a
variant which replaces fRGCN with a GAT c. Concretely,
GAT c generalizes GAT [Veličković et al., 2018] in a mani-
fold of curvature c with tangent spaces. We utilize the tan-
gential methods of any c formulated in Skopek et al. [2020].
To evaluate the effectiveness of ϕ◦gLT , we introduce a vari-
ant using Tlogcm0 instead, where the matrix T is given for
dimension transformation. It introduce an additional tangent
space compare to the design in our model. To evaluate the
effectiveness ofW , we introduce two kinds of variants. The
first variant (denoted as −pAware) removes the W on the
numerators of our RGC loss, thus keeping the attention to
hard negatives only. The second variant (denoted as −hard)
eliminates all theW , resulting in an InfoNCE in Riemannian
space without hardness awareness. In addition, we examine
the effect on the number of factor manifolds. To this end, the

Variant Cora Citeseer
ACC NMI ACC NMI

4
fa

ct
or

s CONGREGATE 78.5 (1.0) 63.2 (0.5) 72.7 (0.6) 50.9 (0.3)
−f RGCN 75.9 (0.5) 60.4 (0.2) 72.0 (0.9) 48.3 (0.6)
−ϕ ◦ gLT 77.5 (0.8) 61.7 (0.6) 71.9 (1.3) 47.9 (0.2)
−pAware 77.2 (0.7) 62.1 (0.8) 70.3 (0.5) 49.0 (1.4)
−hard 76.8 (1.1) 61.5 (0.3) 69.8 (0.2) 48.9 (0.5)

5
fa

ct
or

s CONGREGATE 78.1 (0.9) 63.8 (0.4) 73.1 (0.6) 52.4 (0.7)
−f RGCN 76.3 (1.2) 61.9 (0.5) 72.3 (1.0) 49.8 (0.9)
−ϕ ◦ gLT 77.8 (0.6) 62.5 (0.9) 72.8 (0.7) 51.6 (0.4)
−pAware 77.3 (2.2) 63.0 (0.3) 71.2 (1.1) 51.2 (1.0)
−hard 76.5 (1.3) 62.2 (0.7) 70.6 (0.5) 49.5 (0.8)

Table 3: Ablation study on Cora and Citeseer datasets.

variants above are instantiated in product space of 4 factors
and 5 factors, respectively. We report the NMI and ACC of
the clustering results on Cora and Citeseer datasets in Table
2, and find that: i) Our CONGREGATE beats the−fRGCN and
−ϕ◦gLT . It shows that introducing addtional tangent spaces
trends to results in inferior clustering, and thus testifies the ef-
fectiveness of fully Riemannian model. ii) The product space
5 factors outperforms that of 4 factors. Here, the number of
factors corresponds to the number of curvatures. It suggests
that more factor manifolds may benefit the performance, and
the reason is that more factors give further flexibility for the
fine-grained curvature modeling. iii)−posA variant performs
better than −hard, and the proposed RGC loss is the best. It
shows the importance of hard samples, and more attentions
to hard positives (the border nodes) further help the perfor-
mance, which is the reason of our design that we pay more
attentions to both hard positives and hard negatives.

4.4 RQ3: Ricci Curvature & Clustering
We discuss why Ricci curvature works. Empirically, we fur-
ther study the clustering capability of Ricci curvature com-
paring with classic concepts (gCooL with refined modular-
ity, HostPool with motif conductance and RicciCom with
Ricci curvature). We examine the result clusters from mi-
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(d) Cluster Entropy on Citeseer

Figure 2: Visualize density and entropy of the clusters.

croscopic perspective by cluster density and entropy [Li et
al., 2022]. The density is Ek[ Ek

Vk(Vk−1) ], where Ek and Vk
are the number of edges and nodes in cluster k. The en-
tropy is −Ek[

∑
c pk(c) log pk(c)], where pk(c) is the fre-

quency of class (label) c occurred in cluster k. Lower entropy
means better result, i.e., the cluster contains a major class.
The results are visualized in Fig. 2. After a few hundred
epochs, Ricci methods achieves even better density than mod-
uarity/conductance methods. It shows the clustering capa-
bility of Ricci curvature, verifying our motivation. Also, we
have lower entropy than RicciCom. It is because we further
introduce the novel curvature space, supporting fine-grained
curvature modeling for graph clustering.

5 Related Work
Deep Graph Clustering. In the literature, deep graph clus-
tering methods are roughly divided into 3 categories regard-
ing the learning paradigm. 1) Reconstructive methods pro-
vide supervision signal by recovering graph information, and
generate node clusters by applying or incorporating clustering
methods [Duval and Malliaros, 2022; Mrabah et al., 2022].
2) Adversarial methods regulate the generative process by
a discriminator in a min-max game [Jia et al., 2019; Yang
et al., 2020]. 3) Contrastive methods acquire discrimina-
tive representation without labels by pulling positive samples
together while pushing negative samples apart [Park et al.,
2022; Devvrit et al., 2022]. Meanwhile, deep methods are in-
troduced to bipartite graphs [Zhou et al., 2022], signed graphs
[He et al., 2022; Kang et al., 2021], temporal graphs [Yao
and Joe-Wong, 2021], heterogeneous graphs [Khan and Kle-
insteuber, 2022], and etc. Recently, He et al. [2021] present
a novel generative model with EM algorithm; Fettal et al.
[2022] introduce a strong matrix optimization framework.
Distinguishing from the prior studies, we rethink the problem
of graph clustering from the geometric perspective.

Riemannian Graph Representation Learning. Recent
years have witnessed the remarkable success achieved by Rie-
mannian graph learning. As hyperbolic space is well aligned
with hierarchical or power-law graphs, shallow models are
first introduced [Nickel and Kiela, 2017; Suzuki et al., 2019],
and hyperbolic GCNs with different formulations are then
proposed [Chami et al., 2019; Liu et al., 2019; Zhang et
al., 2021]. Beyond hyperbolic space, κ-GCN [Bachmann et
al., 2020] extend GCN to constant-curvature spaces with κ-
sterographical model. Yang et al. [2022] model the graph in
the dual space of Euclidean and hyperbolic ones. Xiong et
al. [2022a,b] study graph learning on a kind of pseudo Rie-
mannian manifold, ultrahyperbolic space. Law [2021] intro-
duce a quotient manifold for graph learning. Both ultrahy-
perbolic and quotient manifolds present a single curvature ra-
dius. Cruceru et al. [2021] study the matrix manifold of Rie-
mannian spaces. Gu et al. [2019]; Wang et al. [2021]; Sun et
al. [2022b] explore node embedding in the product manifold.
Our work is based on the product manifold, but we further
explore the curvature heterogeneity. Sun et al. [2022a]; Yang
et al. [2021]; Sun et al. [2021] consider representation learn-
ing on temporal graphs. Very recently, Giovanni et al. [2022]
investigate in the rotational symmetry of the manifold, but do
not consider fine-grained curvature modeling and learnable
factors, different from our study. However, none of existing
studies focus on graph clustering in Riemannian manifolds to
the best of our knowledge.

6 Conclusion
In this paper, we formulate the problem of geometric graph
clustering, which is the first to introduce the curvature space
allowing for fine-grained curvature modeling to graph clus-
tering. We present an end-to-end CONGREGATE built upon a
novel heterogeneous curvature space that we construct for ge-
ometric graph clustering with Ricci curvatures. Accordingly,
graph clusters are trained by an augmentation-free contrastive
loss, where we pay more attention to both hard positives and
hard negatives in our curvature space. The empirical results
show the superiority of our model.
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