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Abstract
Recent years have witnessed the great potential of
attention mechanism in graph representation learn-
ing. However, while variants of attention-based
GNNs are setting new benchmarks for numerous
real-world datasets, recent works have pointed out
that their induced attentions are less robust and gen-
eralizable against noisy graphs due to lack of direct
supervision. In this paper, we present a new frame-
work which utilizes the tool of causality to provide
a powerful supervision signal for the learning pro-
cess of attention functions. Specifically, we esti-
mate the direct causal effect of attention to the final
prediction, and then maximize such effect to guide
attention attending to more meaningful neighbors.
Our method can serve as a plug-and-play module
for any canonical attention-based GNNs in an end-
to-end fashion. Extensive experiments on a wide
range of benchmark datasets illustrated that, by di-
rectly supervising attention functions, the model
is able to converge faster with a clearer decision
boundary, and thus yields better performances.

1 Introduction
Graph-structured data is widely used in real-world domains,
such as social networks [Zhang and Chen, 2018], recom-
mender systems [Wu et al., 2022b], and biological molecules
[Gilmer et al., 2017]. The non-euclidean nature of graphs has
inspired a new type of machine learning model, Graph Neu-
ral Networks (GNNs) [Kipf and Welling, 2016; Defferrard et
al., 2016; Du et al., 2022]. Generally, GNN iteratively up-
dates features of the center node by aggregating those of its
neighbors and has achieved remarkable success across vari-
ous graph analytical tasks. However, the aggregation of fea-
tures between unrelated nodes has long been an obstacle for
GNN, keeping it from further improvement.

Recently, Graph Attention Network (GAT) [Veličković et
al., 2017] pioneered the adoption of the attention mechanism,
a well-established method with proven effectiveness in deep
learning [Vaswani et al., 2017], into the neighborhood aggre-
gation process of GNNs to alleviate the issue. The key con-
cept behind GAT is to adaptively assign importance to each
neighbor during the aggregation process. Its simplicity and

effectiveness have made it the most widely used variant of
GNN. Following this line, a myriad of attention-based GNNs
have been proposed and have achieved state-of-the-art perfor-
mance in various tasks [Sun et al., 2021; Zhang et al., 2022;
Ying et al., 2021; Brody et al., 2021].

Nevertheless, despite the widespread use and satisfying
results, in the past several years, researchers began to re-
think if the learned attention functions are truly effective
[Kim and Oh, 2022; Wang et al., 2019; Wu et al., 2022a;
Knyazev et al., 2019; Liu et al., 2021; Wang et al., 2021]. As
we know, most existing attention-based GNNs learn the atten-
tion function in a weakly-supervised manner, where the atten-
tion modules are simply supervised by the final loss function,
without a powerful supervising signal to guide the training
process. And the lack of direct supervision on attention might
be a potential cause of a less robust and generalizable atten-
tion function against real-world noisy graphs [Sui et al., 2022;
Knyazev et al., 2019; Li et al., 2022; Wang et al., 2019;
Ye and Ji, 2021; Huang et al., 2023]. To address this prob-
lem, existing work enhances the quality of attention through
auxiliary regularization terms (supervision). However, con-
cerns have been raised that these methods often rely heav-
ily on human-specified prior assumptions about a specific
task, which limits their generalizability [You et al., 2020;
Wu et al., 2022a]. Additionally, the auxiliary regularization
is formulated independently of the primary prediction task,
which may disrupt the original optimization target and cause
the model to “switch” to a different objective function during
training [Kim and Oh, 2022; You et al., 2020].

Recently, causal inference [Pearl, 2009] has attracted many
researchers in the field of GNNs by utilizing structural causal
model (SCM) [Cinelli et al., 2019] to handle distribution shift
[Zhao et al., 2022] and shortcut learning [Feng et al., 2021].
In this paper, we argue that the tool of causal inference has
also shed light on a promising avenue that could supervise
and improve the quality of GNN’s attention directly, while in
the meantime we will not make any assumptions about spe-
cific tasks or models, and the supervision signal for attention
implicitly aligns well with the primary task. Before going
any deeper, we first provide a general schema for the SCM
of attention-based GNNs in Figure 1, which uses nodes to
represent variables and edges to indicate causal relations be-
tween variables. As we can see, after a high-level abstraction,
there are only three key factors in SCM, including the node
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Figure 1: Structural causal model of attention-based GNNs

features X , attention maps A, and the model’s final predic-
tion Y . Note that in causal language, X , A, and Y also de-
notes the context, treatment, and outcome respectively. For
edges in SCM, the link X → A represents that the attention
generation relies on the node’s features (i.e., context decides
treatment). And links (X,A) → Y indicate that the model’s
final prediction is based on both the node’s features X and
the attention A (i.e., the final outcome is jointly determined
by both context and treatment).

In order to provide a direct supervision signal and fur-
ther enhance the learning of attention functions, the first step
would be finding a way to measure the quality of attention
(i.e., quantifying what to improve). Since there are no uni-
fied criteria on the way of measurement, researchers usu-
ally propose their own solution according to the tasks they
are facing, and this is very likely to introduce the unfavor-
able human-intervened prior assumptions [You et al., 2020].
For example, CGAT [Wang et al., 2019] believes that bet-
ter attention should focus more on one-hop neighbors. While
this assumption surely works on homophilous graphs, it will
suffer from huge performance degradation in heterophilous
scenarios. Our method differs a lot from existing work in
that we introduce SCM to effectively decouple the direct
causal effect of attention on the final prediction (i.e., link
A → Y ), and use such causal effect as a measurement for
the quality of attention. In this way, it is the model and
data that decide if the attention works well during training
instead of human-predefined rules. And this has been shown
to be non-trivial in various machine learning fields because
what might seem reasonable to a human might not be con-
sidered the same way by the model [Kumar et al., 2010;
Wang et al., 2022b]. Another drawback of existing attention
regularization methods, as previously mentioned, is the de-
viation from primary tasks. SuperGAT [Kim and Oh, 2022]
uses link prediction to improve the attention quality for node
classification, but as the author claims in the paper, there is an
obvious trade-off between the two tasks. In this paper, we al-
leviate this problem by directly maximizing the causal effect
of attention on the primary task (i.e., strengthening the causal
relation A → Y ). Under mild conditions, we can deem the
overall optimization is still towards the primary objective, ex-
cept that we additionally provide a direct and powerful signal
for the learning of attention in a fully-supervised manner.

In summary, this paper presents a Causal Supervision for
Attention in graph neural networks (abbreviated as CSA in
the following paragraphs). CSA has strong applicability be-
cause no human-intervened assumptions are made on the tar-
get models or training tasks. And the supervision of CSA can
be easily and smoothly integrated into optimizing the primary
task to performing end-to-end training. We list the main con-

tributions in this paper as follows:

• We explore and provide a brand-new perspective to directly
boost GNN’s attention with the tool of causality. To the
best of our knowledge, this is a promising direction that
still remains unexplored.

• We propose CSA, a novel causal-based supervision frame-
work for attention in GNNs, which can be formulated as
a simple yet effective external plug-in for a wide range of
models and tasks to improve their attention quality.

• We perform extensive experiments and analysis on CSA
and the universal performance gain on standard benchmark
datasets validates the effectiveness of our design.

2 Related Work
Attention-based Graph Neural Networks. Modeling pair-
wise importance between elements in graph-structured data
dates back to interaction networks [Battaglia et al., 2016;
Hoshen, 2017] and relational networks [Santoro et al., 2017].
Recently GAT [Veličković et al., 2017] rose as one of the
representative work of attention-based GNNs using self-
attention [Vaswani et al., 2017]. The remarkable success of
GAT in multiple tasks has motivated many works focusing on
integrating attention into GNN [Thekumparampil et al., 2018;
Zhang et al., 2018; Wang et al., 2022a; Zhang et al., 2020;
Gao and Ji, 2019; Hou et al., 2022]. Lee et al. have also con-
ducted a comprehensive survey [Lee et al., 2019] on various
types of attention used in GNNs.
Causal Inference in Graph Neural Network. Causality
[Pearl, 2014] provides researchers new methodologies to de-
sign robust measurements, discover hidden causal structures
and confront data biases. A myriad of studies has shown that
incorporating causality is beneficial to graph neural network
in various tasks. [Zhao et al., 2022] makes use of counterfac-
tual links to augment data for link prediction improvement.
[Sui et al., 2022] performs interventions on the representa-
tions of graph data to identify the causally attended subgraph
for graph classification. [Feng et al., 2021] on the other hand,
applies causality to estimate the causal effect of node’s local
structure to assist node classification.
Improving Attention in GAT. There is a great number of
work dedicated to improving attention learning in GAT. [Kim
and Oh, 2020] enhances attention by exploiting two attention
forms compatible with a self-supervised task to predict edges.
[Brody et al., 2021] introduces a simple fix by modifying the
order of operations in GAT. [Wang et al., 2019] develops an
approach using constraint on the attention weights according
to the class boundary and feature aggregation pattern. In ad-
dition, causality also plays a role in boosting the attention of
GATs recently. [Wu et al., 2022a] estimates the causal ef-
fect of edges by intervention and regularizes edges’ attention
weights according to their causal effects.

3 Preliminaries
We start by introducing the notations and formulations of
graph neural networks and their attention variant. Let G =
{V, E} represents a graph where V = {vi}ni=0 is the set of
nodes and E ∈ V×V is the set of edges. For each node v ∈ V ,
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Figure 2: Deriving causal effects through counterfactual

it has its own neighbor set N(v) = {u ∈ V | (v, u) ∈ E}
and its initial feature vector x0

v ∈ Rd0

, where d0 is the origi-
nal feature dimension. Generally, GNN follows the message-
passing mechanism to perform feature updating, where each
node’s feature representation is updated by aggregating the
representations of its neighbors and then combining the ag-
gregated messages with its ego representation [Xu et al.,
2018]. Let ml

v ∈ Rdl

and xl
v ∈ Rdl

be the message vec-
tor and representation vector of node v at layer l, we formally
define the updating process of GNN as:

ml
v = AGGREGATE

({
x
(l−1)
j , ∀j ∈ N(v)

})
xl
v = COMBINE

(
xl−1
v ,ml

v

)
,

where AGGREGATE and COMBINE are aggregation
functions (e.g., mean, LSTM) and combination function (e.g.,
concatenation), respectively. The design of these two func-
tions is what mostly distinguishes one type of GNN from the
other. GAT [Veličković et al., 2017] augments the normal
aggregation with the introduction of self-attention. The core
idea of self-attention in GAT is to learn a scoring function
that computes an attention score for every node in N(v) to
indicate their relational importance to node v. In layer l, such
process is defined by the following equation:

e
(
xl
vi
, xl

vj

)
= σ

(
(al)⊤ ·

[
W l xl

vi
∥W l xl

vj

])
,

where (al,W l), σ are learnable matrices and activation func-
tion (e.g., LeakyReLU) respectively, and ∥ denotes vector
concatenation. The attention scores are then normalized
across all neighbors vj ∈ N(vi) using softmax to ensure con-
sistency:

αl
ij =

exp
(
e
(
xl
vi
, xl

vj

))
∑

vj∈N(vi)
exp

(
e
(
xl
vi
, xl

vj

))
Finally, GAT computes a weighted average of the features
of the neighboring nodes as the new feature of vi, which is
demonstrated as follows:

xl+1
vi

= σ

(∑
vj∈N(vi)

αl
ijW

l xl
vj

)
.

4 Casual-based Supervision on GNN’s
Attention

In this section, we first introduce how the causal effect of
attention can be derived from the structural causal model of

attention-based GNNs. Specifically, this is done with the help
of the widely used counterfactual analysis in causal reason-
ing. After that, with the obtained causal effects, we elaborate
three candidate schemes to incorporate with the training of
attention-based GNNs to improve their quality of attention.

4.1 Causal Effects of Attention
As previously mentioned, the first step towards improving
attention lies in measuring the quality of existing attention.
However, since deep learning models usually exhibit as black
boxes, it is generally infeasible to directly assess their at-
tention qualities. Existing works mainly address this issue
by introducing human priors to build pre-defined rules for
some specific models and tasks. Yet, it has been a long
debate on whether human-made rules share consensus with
deep learning models during training [Kumar et al., 2010;
Ribeiro et al., 2016]. Fortunately, the recent rise of causal in-
ference technology has offered effective tools to help us think
beyond the black box and analyze causalities between model
variables, which leads us to an alternative way to directly uti-
lize the causal effect of attention to measure its quality. Since
the obtained causal effects are mainly affected by the model
itself, it is a more accurate and unbiased measurement of how
well the attention actually learns.

We first give a brief review of the formulation of attention-
based graph neural network in causal languages, as shown in
Figure 2(a). The generated attention map A is directly af-
fected by node feature X . And the model prediction Y is
jointly determined by both X and A. We denote the inferring
process of the model as:

Yx,a = Y (X = x,A = a), (1)

which indicates that model will give value Yx,a if the value
of X and A are set to x and a respectively. In order to pur-
sue the attention’s causal effect, we introduce the widely-used
counterfactual analysis [Pearl, 2022] in causal reasoning.

The core idea of counterfactual causality lies in asking:
given a certain data context (node feature X), what the out-
come (model prediction Y ) would have been if the treatment
(attention map A) had not been the observed value? To an-
swer the imaginary question, we have to manipulate the val-
ues of several variables to see the effect, and this is formally
termed as intervention in causal inference literature, which
can be denoted as do(·). In do(·) operation, we compulsively
select a counterfactual value to replace the original factual
value of the intervened variable. And once a variable is inter-
vened, its all incoming links in the SCM will be cut off and
its value is independently given, while other variables that are
not affected still maintain the original value. In our case, for
example, do(A = a∗) means we demand the attention A to
take the non-real value a∗ (e.g., reverse/random attention) so
that the link X → A is cut-off and A is no longer be af-
fected by its causal parent X . This process is illustrated in
Figure 2(b) and the mathematical formulation is given as:

Yx,a∗ = Y (X = x, do(A = a∗)), (2)

which indicates that after do(·) operation which changes the
value of attention to be a∗, the output value of the model also
changes to Yx,a∗ . Finally, let us consider a case where we
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Figure 3: The schematic of CSA is shown above as a plug-in to
graph attention methods. The a and â indicate the factual and coun-
terfactual attention values, respectively. We subtract the counterfac-
tual classification results from the original classification to analyze
the causal effects of learned attention (i.e., attention quality) and di-
rectly maximize them in the training process towards primary task.

assign a dummy value ã to the attention map so that for each
ego node, all its neighbors share the same attention weights,
the feature aggregation of the graph attention model will then
degrade to an unweighted average. In this case, according
to the theory of causal inferences [VanderWeele, 2016], the
Total Direct Effect (TDE) of attention to model prediction can
be obtained by computing the differences of model outcome
Yx,a and Yx,ã, which is formulated as follows:

TDE = Yx,a − Yx,ã. (3)

It is worth noting that the induction of attention’s causal
effect does not exert any assumptions and constraints, which
lays a solid foundation for our wide applicability on any graph
attention models.

4.2 Supervision on Attention with Causal Effects
We have already demonstrated the derivation of attention’s
causal effect in the previous section. In this part, we will
discuss how to utilize the obtained causal effect for atten-
tion quality improvement. Previous works that make use of
an auxiliary task to regularize attention usually suffered from
performance trade-off between the primary task and auxiliary
task. In this work, we alleviate this problem by directly maxi-
mizing the causal effect of attention on the primary task. The
overall schema of this part is shown in Figure 3.

Consider a simple case where we conduct the node clas-
sification task with a standard L-layer GAT. For each layer
l, we have the node representations X l−1 ∈ Rn×dl−1

from
the previous layer as input. Then, we perform feature ag-
gregation and updating with factual attention map Al to ob-
tain the factual output feature X l = f(X l−1, Al). Similarly,
when we intervene the attention maps of layer l (e.g., assign-
ing dummy values using do(·) operation), we can get a coun-
terfactual output feature X̂ l. We further employ a learnable

matrix W l ∈ Rc×dl

(c denotes the number of classes) to get
the node’s factual predicted label Y l

pred and counterfactual
predicted label Ŷ l

pred using the corresponding features from
layer l. Therefore, the causal effect of attention at layer l is
obtained as: Y l

pred− Ŷ l
pred. To this end, we can use the causal

effect as a supervision signal to explicitly guide the attention
learning process. The new objective of the CSA-assisted GAT
model can be formulated as:

L=
∑
l

λlLce(Y
l

effect, y)+Lothers, (4)

where y is the ground-truth label, Lce is the cross-entropy
loss, λl is the coefficient to balance training, and Lothers rep-
resents the original objective such as standard classification
loss. Note that Equation.(4) is a general form of CSA where
we compute additional losses for each GAT layer to supervise
attention directly. However in practice it is not necessary, and
we found that simply selecting one or two layers is enough
for CSA to bring satisfying performance improvement.

Moreover, since our aim is to boost the quality of attention,
it is not necessary to estimate the correct causal effect of at-
tention using dummy values. Instead, a strong counterfactual
baseline might even be helpful for the attention quality im-
provement. We hereby further propose three heuristic coun-
terfactual schemes and test them in our experiments. We note
that the exact form of how counterfactual is achieved is not
limited, and our goal here is just to set the ball rolling.
Scheme I: In the first scheme, we utilize the uniform distri-
bution to generate the counterfactual attention map. Specifi-
cally, the counterfactual attention is produced by

â ∼ U(e, f), (5)

where e and f are the lower and upper boundaries. In this
case, the generated counterfactual could vary from very bad
(i.e., mapping all unrelated neighbors) to very good (i.e.,
mapping all meaningful neighbors). This is a similar process
to the Randomized Controlled Trial [Stolberg et al., 2004]
where all possible treatments are enumerated. We hope that
maximizing causal effects computed over all possible treat-
ments can lead to a robust improvement of attention.
Scheme II: Scheme I is easy and straightforward to apply.
However due to its randomness, a possible concern is that if
most of the generated counterfactual attentions are inferior to
the factual one, then we will only have very small gradient
on attention improvements. Therefore we are actually moti-
vated to find “better” counterfactuals to spur the factual one to
evolve. Heuristically, given that MLP is a strong baseline one
several datasets (e.g., Texas, Cornell, and Wisconsin), we em-
ploy an identical mapping to generate the counterfactual at-
tention, which only attends to the ego-node instead of neigh-
bors. Specifically, the counterfactual attention map is equal
to the identity matrix I:

â ∼ I (6)

Scheme III: Our last schema can be considered as an exten-
sion of Schema II. Since the fast development of GAT family
has introduced to us some variants that already outperform
MLP in many datasets, using counterfactuals derived from
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Texas Wisconsin Actor Squirrel Chameleon Cornell Crocodile
H(G) 0.11 0.21 0.22 0.22 0.23 0.3 0.26
#Nodes 183 251 7,600 5,201 2,277 183 11,631
#Edges 295 466 191,506 198,493 31,421 280 899,756
#Classes 5 5 5 5 5 5 6
#Features 1703 1703 932 2089 2325 1703 500
MLP 81.32 ± 6.22 84.38 ± 5.34 36.09 ± 1.35 28.98 ± 1.32 46.21 ± 2.89 83.92 ± 5.88 54.35 ± 1.90
SGCN 56.41 ± 4.29 54.82 ± 3.63 30.50 ± 0.94 52.74 ± 1.58 60.89 ± 2.21 62.52 ± 5.10 51.80 ± 1.53
GCN 55.59 ± 5.96 53.48 ± 4.75 28.40 ± 0.88 53.98 ± 1.53 61.54 ± 2.59 60.01 ± 5.67 52.24 ± 2.54
H2GCN 84.81 ± 6.94 86.64 ± 4.63 35.83 ± 0.96 37.95 ± 1.89 58.27 ± 2.63 82.08 ± 4.71 53.10 ± 1.23
APPNP 81.93 ± 5.77 85.48 ± 4.58 35.90 ± 0.96 39.08 ± 1.76 57.80 ± 2.47 81.92 ± 6.12 53.06 ± 1.90
GPR-GNN 79.44 ± 5.17 84.46 ± 6.36 35.11 ± 0.82 32.33 ± 2.42 46.76 ± 2.10 79.91 ± 6.60 52.74 ± 1.88
GAT 55.21 ± 5.70 52.80 ± 6.11 29.04 ± 0.66 40.00 ± 0.99 59.32 ± 1.54 61.89 ± 6.08 51.28 ± 1.79
+CSA-I 56.17 ± 5.32 53.23 ± 6.28 29.03 ± 0.79 40.51 ± 0.98 60.73 ± 1.35 62.75 ± 6.32 51.67 ± 1.62
+CSA-II 58.21 ± 4.79 54.35 ± 6.54 29.71 ± 0.74 41.02 ± 1.23 61.31 ± 1.13 64.26 ± 5.21 52.20 ± 1.74
+CSA-III 58.04 ± 5.27 53.98 ± 6.30 29.72 ± 0.86 41.38 ± 1.19 61.20 ± 1.37 63.58 ± 6.03 52.13 ± 1.83
FAGCN 82.54 ± 6.89 82.84 ± 7.95 34.85 ± 1.24 42.55 ± 0.86 61.21 ± 3.13 79.24 ± 9.92 54.35 ± 1.11
+CSA-I 82.65 ± 7.11 83.37 ± 7.79 34.77 ± 0.95 42.55 ± 0.74 61.86 ± 2.98 80.01 ± 9.72 54.44 ± 1.18
+CSA-II 83.29 ± 6.80 83.11 ± 8.26 34.88 ± 0.86 42.58 ± 0.93 61.74 ± 3.39 81.35 ± 9.68 54.45 ± 1.23
+CSA-III 84.72 ± 6.71 84.23 ± 7.21 35.12 ± 0.98 43.38 ± 1.02 62.52 ± 3.20 80.94 ± 9.77 55.16 ± 0.97
WRGAT 83.62 ± 5.50 86.98 ± 3.78 36.53 ± 0.77 48.85 ± 0.78 65.24 ± 0.87 81.62 ± 3.90 54.76 ± 1.12
+CSA-I 83.69 ± 5.63 87.23 ± 3.94 36.55 ± 0.93 49.46 ± 0.74 65.36 ± 1.05 81.88 ± 3.93 54.86 ± 1.31
+CSA-II 83.76 ± 5.61 87.02 ± 3.55 36.47 ± 0.74 48.93 ± 0.89 65.33 ± 0.92 82.76 ± 3.67 54.97 ± 1.23
+CSA-III 84.88 ± 5.23 87.86 ± 3.77 36.89 ± 0.72 49.43 ± 0.88 66.02 ± 1.01 82.43 ± 4.00 55.33 ± 1.18

Table 1: Classification accuracy on heterophily datasets. CSA-I, CSA-II, and CSA-III indicate our three counterfactual schemes respectively.

the behavior of MLP does not seem to be a wise choice for
these GAT variants to improve their attentions. Inspired by
the self-boosting concept [Pi et al., 2016] widely used in ma-
chine learning, we leverage the historical attention map as the
counterfactual to urge the factual one keep refining itself. The
specific formulation is written as follows:

â ∼ Ahist, (7)

where Ahist denotes the historical attention map (e.g., the at-
tention map from the last update iteration).

5 Experiment
In this section, we conduct extensive node classification ex-
periments to evaluate the performance of CSA. Specifically,
we 1) validate the effectiveness of CSA on three popular GAT
variants using a wide range of datasets, including both ho-
mophily and heterophily scenarios; 2) compare CSA with
other attention improvement baselines of GAT to show the su-
periority of our method; 3) show that CSA can induce better
attention that improve the robustness of GAT; 4) test CSA’s
sensitivity to hyper-parameters; 5) analyze the influences of
CSA in feature space; and 6) examine the performances of
some special cases of CSA.

5.1 Datasets
For heterophily scenario, we select seven standard bench-
mark datasets: Wisconsin, Cornell, Texas, Actor, Squirrel,
Chameleon, and Crocodile. Wisconsin, Cornell, and Texas
collected by Carnegie Mellon University are published in We-
bKB1. Actor [Pei et al., 2020] is the actor-only subgraph

1http://www.cs.cmu.edu/ webkb/

sampling from a film-director-actor-writer network. Squir-
rel, Chameleon, and Crocodile are datasets collected from the
English Wikipedia [Rozemberczki et al., 2021]. We summa-
rize the basic attributions for each dataset in Table 1. H(G)
is the homophily ratio [Zhu et al., 2020], where H(G) → 1
represents extreme homophily and vice versa.

For homophily scenario, two large datasets released by
Open Graph Benchmark (OGB)2 [Hu et al., 2020]: ogbn-
products and ogbn-arxiv, are included in our experiments, to-
gether with two small-scale homophily graph datasets: Cora
and Citeseer [McCallum et al., 2000]. Similarly, the attribu-
tion of the dataset is summarized in Table 2.

5.2 Experimental Setup
We employ popular node classification models in our experi-
ments as the baselines: GCN [Kipf and Welling, 2016], GAT
[Veličković et al., 2017], SGCN [Wu et al., 2019], FAGCN
[Bo et al., 2021], GPR-GNN [Chien et al., 2020], H2GCN
[Zhu et al., 2020], WRGAT [Suresh et al., 2021], APPNP
[Gasteiger et al., 2018] and UniMP [Shi et al., 2020]. We
also present the performance of MLPs, serving as a strong
non-graph-based baseline. Due to page limit, we only select
four models: GAT, FAGCN, WRGAT and UniMP to exam-
ine the effectiveness of CSA. These models ranges from the
classic ones to the latest ones, and are considered as repre-
sentatives for state-of-the-art node classification models. One
thing to be noted here is that for all these models, we imple-
ment CSA only in their first layers to avoid excessive compu-
tational cost.

In our experiments, each GNN is run with the best hyperpa-
rameters if provided. We set the same random seed for each

2https://ogb.stanford.edu/
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Models Cora CiteSeer ogbn-products ogbn-arxiv
H(G) 0.81 0.74 0.81 0.66
#Nodes 2,708 3,327 2,449,029 169,343
#Edges 5,278 4,467 61,859,140 1,166,243
#Classes 7 7 47 40
#Features 1433 3703 100 128
GAT 86.21 ± 0.78 75.73 ± 1.23 77.02 ± 0.63 70.96 ± 0.14
+CSA-I 86.16 ± 0.95 76.81 ± 1.29 77.28 ± 0.69 71.08 ± 0.14
+CSA-II 86.89 ± 0.64 76.53 ± 1.18 77.44 ± 0.63 71.05 ± 0.14
+CSA-III 87.86 ± 0.87 77.72 ± 1.25 78.36 ± 0.72 71.20 ± 0.16
UniMP 86.89 ± 0.90 75.14 ± 0.68 81.37 ± 0.47 72.92 ± 0.10
+CSA-I 87.47 ± 0.87 75.89 ± 0.73 81.55 ± 0.62 72.94 ± 0.10
+CSA-II 85.62 ± 0.73 75.87 ± 0.72 81.39 ± 0.47 72.96 ± 0.10
+CSA-III 88.64 ± 1.28 77.61 ± 0.82 82.24 ± 0.63 73.08 ± 0.11

Table 2: Classification accuracy on homophily datasets.

Models Texas Cornell ogbn-arxiv
GAT 55.21± 5.70 61.89± 6.08 70.96± 0.14
+CSA (Last) 57.83± 4.65 63.52± 5.34 71.08± 0.15
+CSA (Pure) 55.79± 5.05 61.97± 5.18 70.96± 0.14
+CSA (Ours) 58.21 ± 4.79 64.26 ± 5.21 71.20 ± 0.16

Table 3: Comparison with the heuristic causal strategies.

model and dataset for reproducibility. The reported results
are in the form of mean and standard deviation, calculated
from 10 random node splits (the ratio of train/validation/test
is 48%/32%/20% from [Pei et al., 2020]). Our experiments
are conducted on a GPU server with eight NVIDIA DGX
A100 graphics cards, and the codes are implemented using
Cuda Toolkit 11.5, PyTorch 1.8.1 and torch-geometric 2.0.1.

5.3 Performance Analysis

Table 1 and Table 2 provide the test accuracy of different
GNNs in different variants of CSA in the supervised node
classification task. A graph’s homophily level is the aver-
age of its nodes’ homophily levels. CSA achieves the best in
terms of the vanilla one across all datasets. In particular, the
highest improved datasets are Texas, Wisconsin, and Cornell.
By observing the performance of MLPs, we can see that the
common ground of those three datasets contains distinguish-
able features and a large part of non-homophilous edges. In
the meanwhile, the performance of CSA is proportional to
the modeling ability. The mechanism behind CSA is to ex-
tend the causal effect between nodes representation and final
prediction. Therefore, CSA owns limited performance when
the node’s representations are chaotic. Our experiments high-
light that I) The model, which is already better than MLP,
does not improve much in CSA-II, while CSA-III improves it
relatively more. This is because in those datasets, the graph
structure can provide meaningful information, so that CSA-
III have more advantages. II) The dataset, which has dis-
tinctive features indicated by the performance of MLPs, is
more satisfied CSA-II. Similarly, in this scene, the features
can be more informative. III) The random strategy (CSA-I)
relatively inferior to others, since the distribution is hard to
control and tend to generate worst attention map, whereby
the regularization is vanished.
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Figure 4: Comparison with different GATs promotion strategies.

5.4 Comparison with Attention Promotion
Baselines

We here apply multiple attention promotion baselines: CAL
[Sui et al., 2022], CAR [Wu et al., 2022a], Super [Kim and
Oh, 2022], Constraint interventions [Wang et al., 2019] and
the result is shown in Figure 4. Among them, CAL is a
method for graph property prediction that relies on an alter-
native formulation of causal attention with interventions on
implicit representations. We adapted CAL for node classifica-
tion by removing its final pooling layer. Super is well-known
as SuperGAT, a method seeking to constrain node feature vec-
tors through a semi-supervised edge prediction task. CAR
aligns the attention mechanism with the causal effects of ac-
tive interventions on graph connectivity in a scalable manner.
Constraint method has two auxiliary losses: graph structure-
based constraint and class boundary constraint. The results
on four datasets are shown in Figure 4. While CAL, CAR,
and CSA have related goals of enhancing graph attention us-
ing concepts from causal theory, CAL uses abstract perturba-
tions on graph representation to perform causal interventions,
and CAR employs an edge intervention strategy that enables
causal effects to be computed scalable, while our method does
not exert any assumptions and constraints on GATs, com-
pared with CAL and CAR. Therefore, CSA tends to own good
generalization ability. In terms of SuperGAT and Constraint
method, since there is a trade-off between node classification
and regularization. For example, SuperGAT implies that it
is hard to learn the relational importance of edges by simply
optimizing graph attention for link prediction.

5.5 CSA Provides Robustness
In this section, we systematically study the performance of
CSA on robustness against the input perturbations includ-
ing feature and edge perturbations. Following [Stadler et al.,
2021], we conduct node-level feature perturbations by replac-
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Figure 5: The robust performance on the node and edge perturba-
tions.
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Figure 6: Hyper-parameter analysis on GAT.

ing them with the noise sampled from the Bernoulli distribu-
tion with p = 0.5 and edge perturbations by stochastically
generating the edges. According to the performance shown
in Figure 5, CSA produces robust performance on input per-
turbations. Figure 5 demonstrate that CSA in higher noise
situations achieves more robust results than in lower noise
scenes on both node and edge perturbations with perturbation
percentages ranging from 0% to 40%.

5.6 Hyper-parameter Analysis

We analyze the sensitivity of λ and plot node classification
performance in Figure 6. For λ, there is a specific range that
maximizes test performance in all datasets. The performance
in Texas is the highest when λ is 0.4, but the difference is
relatively small compared to Cora. We observe that there is
an optimal level of causal supervision for each dataset, and
using too large λ degrades node classification performance.
Since Cora owns friendly neighbors, its performance is less
sensitive than Texas. Based on this, we can also see that Texas
relatively needs a larger regularization.

(a) Texas (b) Cornell

Figure 7: Mean Average Distance among node representations of
Last GAT layer.

5.7 Pairwise Distance among Classes

To further evaluate whether the good performance of CSA
can be contributed to the mitigation of lacking supervision,
we visualize the pairwise distance of the node representa-
tions among classes learned by CSA and vanilla GAT. Fol-
lowing [Stadler et al., 2021], we calculate the Mean Average
Distance (MAD) with cosine distance among node represen-
tations for the last layer. The larger the MAD is, the better
the node representations are. Results are reported in Figure 7.
It can be observed that the node representations learned by
CSA keep having a large distance throughout the optimiza-
tion process, indicating relief of lacking supervision issues.
On the contrary, GAT suffers from severely indistinguishable
representations of nodes.

5.8 Comparison with Heuristic Causal Strategies.

To validate the effectiveness of CSA, we compare it with
two heuristic causal designs (Last and Pure) that 1) directly
estimate the total causal effect by subtracting between the
model’s and the counterfactual’s output in the final layer; 2)
replace the attention with the static aggregate weights (i.e.,
each node allocates the same weight). The results are shown
in Table 3. We observe that their performance outperforms
vanilla one, but is still inferior to ours. In terms of Last, the
major difference is whether to explicitly estimate causal ef-
fect or not. In our framework, we plug the MLPs into the
hidden layers to precisely estimate the causal effect for each
layer. Regarding Pure, our strategy can provide more strong
baselines, leading to better regularization.

6 Conclusion

We introduced CSA, a counterfactual-based regularization
scheme that can be applied to graph attention architectures.
Unlike other causal approaches, we first built the causal graph
of GATs in a general way and do not impose any assumptions
and constraints on GATs. Subsequently, we introduce an ef-
ficient scheme to directly estimate the causal effect of atten-
tion in hidden layers. Applying it to both homophilic and
heterophilic node-classification tasks, we found accuracy im-
provements and robustness in almost all circumstances. We
performed three variants of counterfactual attention strategies
and found that they can adapt to different situations, respec-
tively.
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jchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997, 2018.

[Gilmer et al., 2017] Justin Gilmer, Samuel S Schoenholz,
Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural mes-
sage passing for quantum chemistry. In International conference
on machine learning, pages 1263–1272. PMLR, 2017.

[Hoshen, 2017] Yedid Hoshen. Vain: Attentional multi-agent pre-
dictive modeling. Advances in Neural Information Processing
Systems, 30, 2017.

[Hou et al., 2022] Yifan Hou, Jian Zhang, James Cheng, Kaili Ma,
Richard TB Ma, Hongzhi Chen, and Ming-Chang Yang. Measur-
ing and improving the use of graph information in graph neural
networks. arXiv preprint arXiv:2206.13170, 2022.

[Hu et al., 2020] Weihua Hu, Matthias Fey, Marinka Zitnik, Yux-
iao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learn-
ing on graphs. Advances in neural information processing sys-
tems, 33:22118–22133, 2020.

[Huang et al., 2023] Jincheng Huang, Lun Du, Xu Chen, Qiang Fu,
Shi Han, and Dongmei Zhang. Robust mid-pass filtering graph
convolutional networks. In Proceedings of the ACM Web Confer-
ence 2023, pages 328–338, 2023.

[Kim and Oh, 2020] Dongkwan Kim and Alice Oh. How to find
your friendly neighborhood: Graph attention design with self-
supervision. In ICLR, 2020.

[Kim and Oh, 2022] Dongkwan Kim and Alice Oh. How to find
your friendly neighborhood: Graph attention design with self-
supervision. arXiv preprint arXiv:2204.04879, 2022.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling. Semi-
supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[Knyazev et al., 2019] Boris Knyazev, Graham W Taylor, and Mo-
hamed Amer. Understanding attention and generalization in
graph neural networks. Advances in neural information process-
ing systems, 32, 2019.

[Kumar et al., 2010] M Pawan Kumar, Benjamin Packer, and
Daphne Koller. Self-paced learning for latent variable models.
In NIPS, volume 1, page 2, 2010.

[Lee et al., 2019] John Boaz Lee, Ryan A Rossi, Sungchul Kim,
Nesreen K Ahmed, and Eunyee Koh. Attention models in graphs:
A survey. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(6):1–25, 2019.

[Li et al., 2022] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan,
Siqiang Luo, Dongsheng Li, and Weining Qian. Finding global
homophily in graph neural networks when meeting heterophily.
arXiv preprint arXiv:2205.07308, 2022.

[Liu et al., 2021] Meng Liu, Zhengyang Wang, and Shuiwang Ji.
Non-local graph neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[McCallum et al., 2000] Andrew Kachites McCallum, Kamal
Nigam, Jason Rennie, and Kristie Seymore. Automating the con-
struction of internet portals with machine learning. Information
Retrieval, 3:127–163, 2000.

[Pearl, 2009] Judea Pearl. Causality. Cambridge university press,
2009.

[Pearl, 2014] Judea Pearl. Interpretation and identification of causal
mediation. Psychological methods, 19(4):459, 2014.

[Pearl, 2022] Judea Pearl. Direct and indirect effects. In Proba-
bilistic and Causal Inference: The Works of Judea Pearl, pages
373–392. 2022.

[Pei et al., 2020] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan
Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph con-
volutional networks. arXiv preprint arXiv:2002.05287, 2020.

[Pi et al., 2016] Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu,
Jun Xiao, Yueting Zhuang, et al. Self-paced boost learning for
classification. In IJCAI, pages 1932–1938, 2016.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh, and Car-
los Guestrin. ” why should i trust you?” explaining the predic-
tions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data min-
ing, pages 1135–1144, 2016.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2322



[Rozemberczki et al., 2021] Benedek Rozemberczki, Carl Allen,
and Rik Sarkar. Multi-scale attributed node embedding. Jour-
nal of Complex Networks, 9(2):cnab014, 2021.

[Santoro et al., 2017] Adam Santoro, David Raposo, David G Bar-
rett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, and
Timothy Lillicrap. A simple neural network module for relational
reasoning. Advances in neural information processing systems,
30, 2017.

[Shi et al., 2020] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui
Zhong, Wenjin Wang, and Yu Sun. Masked label prediction: Uni-
fied message passing model for semi-supervised classification.
arXiv preprint arXiv:2009.03509, 2020.

[Stadler et al., 2021] Maximilian Stadler, Bertrand Charpentier, Si-
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