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Abstract
Open knowledge graph (OpenKG) link predic-
tion aims to predict missing factual triples in the
form of (head noun phrase, relation phrase, tail
noun phrase). Since triples are not canonicalized,
previous methods either focus on canonicalizing
noun phrases (NPs) to reduce graph sparsity, or
utilize textual forms to improve type compatibil-
ity. However, they neglect to canonicalize rela-
tion phrases (RPs) and triples, making OpenKG
maintain high sparsity and impeding the perfor-
mance. To address the above issues, we propose
a Canonicalization-Enhanced Known Fact-Aware
(CEKFA) framework that boosts link prediction
performance through sparsity reduction of RPs and
triples. First, we propose a similarity-driven RP
canonicalization method to reduce RPs’ sparsity
by sharing knowledge of semantically similar ones.
Second, to reduce the sparsity of triples, a known
fact-aware triple canonicalization method is de-
signed to retrieve relevant known facts from train-
ing data. Finally, these two types of canonical in-
formation are integrated into a general two-stage
re-ranking framework that can be applied to most
existing knowledge graph embedding methods. Ex-
periment results on two OpenKG datasets, Re-
Verb20K and ReVerb45K, show that our approach
achieves state-of-the-art results. Extensive experi-
mental analyses illustrate the effectiveness and gen-
eralization ability of the proposed framework.

1 Introduction
Open knowledge graph (OpenKG) stores factual triples auto-
matically extracted from text corpus by open information ex-
traction (OpenIE) approaches, such as ReVerb [Fader et al.,
2011] and CALMIE [Saha and others, 2018]. These triples
are in the form of (head noun phrase, relation phrase, tail
noun phrase), e.g., (Bill Gates, be the founder of, Microsoft).
OpenKG is highly adaptable and can be easily exploited by
new domain-specific corpora since no pre-specified ontolo-
gies are required. However, OpenKG may not be suitable

*Corresponding author

for directly used by an end task owing to their sparsity and
incompleteness. Therefore, tasks such as OpenKG canon-
icalization [Lin and Chen, 2019; Dash et al., 2021] and
OpenKG linking [Dubey et al., 2018; Liu et al., 2021] are
studied to reduce graph sparsity, while OpenKG link predic-
tion task [Gupta et al., 2019; Chandrahas and Talukdar, 2021]
is proposed to reduce graph incompleteness. Since OpenKG
linking may be unavailable when bootstrapping OpenKG
from a domain-specific corpus that lacks pre-defined entities
and relations, we focus on utilizing OpenKG canonicaliza-
tion for graph sparsity reduction to improve the performance
of OpenKG link prediction.

Unlike curated knowledge graph (CKG), e.g., Free-
base [Bollacker et al., 2008], OpenKG is extremely sparse
since noun phrases (NPs) and relation phrases (NPs) are
not canonicalized. As a result, severe long-tail problems
exist in embedding-based link prediction methods, such as
TransE [Bordes et al., 2013] and ConvE [Dettmers et al.,
2018], where embeddings of infrequent phrases are poorly
learned due to insufficient training. Recently, OpenKG link
prediction starts to receive more and more attention owing
to its efficient learning ability in high-sparsity situations.
CaRe [Gupta et al., 2019] utilizes NPs’ canonical clusters to
share NP embeddings and encodes RPs’ semantic meanings
by GRU [Cho et al., 2014]. OKGIT [Chandrahas and Taluk-
dar, 2021] employs a pre-trained BERT [Devlin et al., 2019]
to provide type guidance for NPs. OKGSE [Xie et al., 2022]
learns separate parts of embedding for NP and its cluster, and
captures knowledge among NPs’ neighboring triples. Never-
theless, there are still two limitations that hinder the perfor-
mance of OpenKG link prediction.

First, previous methods have not taken into account RP
canonicalization explicitly. The number of RPs can reach tens
of thousands because of their diverse expressions, yet many
of them may refer to the same semantic, such as “be a close
friend of” and “become good friend with” shown in Fig. 1.
In order to correlate these RPs, CaRe [Gupta et al., 2019]
encodes tokens of RPs initialized with glove vectors [Pen-
nington et al., 2014]. However, there is clearly a semantic
gap between glove embeddings and randomly initialized NP
embeddings, and it neglects to canonicalize RPs explicitly by
sharing their semantics.

Second, triple canonicalization, which directly groups
semantically similar triples, has been ignored by existing
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Figure 1: Comparison of OpenKG w/o and w/ canonical information, where nodes are NPs, edges are RPs, and the green marker is the
tail NP in missing fact (Gates, be co-chair of, ?). (a) OpenKG is sparse, where similar NPs/RPs are stored separately due to the lack of
canonicalization. (b) The sparsity of OpenKG can be reduced by taking into account the canonicalization of NPs (dashed ellipses), RPs (red
dashed arrows), and their composed triples, so that the knowledge of related but distinct NPs, RPs, and triples can be shared.

works. Prior approaches [Kolluru et al., 2021; Lovelace et
al., 2021] use textual information from triples that consist of
query and promising candidate tails for re-ranking in CKG.
However, directly applying these methods to OpenKG fails to
utilize knowledge from triples with similar semantics, where
relevant known triples can provide helpful contextual infor-
mation for predicting the missing tail. Taking Fig. 1(b) as an
example, it will be easier to infer the tail NP of (Gates, be co-
chair of, ?) is “Bill & Melinda Gates Foundation” by sharing
known triple knowledge from (Bill Gates, be the founder of,
Microsoft) and (Bill Gates, ex-wife, Melinda).

To tackle these issues, we propose a Canonicalization-
Enhanced Known Fact-Aware (CEKFA) framework, which
improves OpenKG link prediction through sparsity reduction
of RPs and triples. First, we propose a similarity-driven RP
canonicalization method to collect semantically similar RPs
for each RP as its canonical information. Second, we in-
troduce a known fact-aware triple canonicalization method
through retrieving known facts associated with the query
from training data as its canonical triples. Finally, a gen-
eral two-stage framework consisting of a canonicalization-
enhanced encoder and a known fact-aware re-ranker is pro-
posed to utilize these two kinds of canonical information for
link prediction. The advantages of our approach are that the
proposed canonicalization methods require neither predefined
knowledge bases for OpenKG linking nor several external
tools for generating various side information [Vashishth et al.,
2018; Liu et al., 2021], and can be easily adapted to different
query encoding models such as TransE [Bordes et al., 2013],
ComplEx [Trouillon et al., 2016], ConvE [Dettmers et al.,
2018] and so on. In summary, Our main contributions are:

• We propose a two-stage re-ranking framework named
CEKFA to boost the performance of OpenKG link pre-
diction through reducing the sparsity of RPs and triples.

• We develop novel and effective similarity-driven RP
canonicalization and known fact-aware triple canonical-
ization methods for sparsity reduction.

• We achieve state-of-the-art results on two OpenKG
datasets, ReVerb20K and ReVerb45K, and obtain dif-
ferent degrees of improvement when CEKFA is ap-
plied to five typical query encoding models. Abla-

tion studies and extensive analyses demonstrate the ef-
fectiveness and scalability of our framework. Source
codes and datasets of this paper are available at
https://github.com/wylResearch/CEKFA.

2 Related Work
2.1 OpenKG Link Prediction
Knowledge graph embedding (KGE) methods have been
commonly explored for the link prediction problem in CKG,
typically including distance-based models [Bordes et al.,
2013; Lin et al., 2015; Sun et al., 2019], semantic match-
ing models [Trouillon et al., 2016; Zhang et al., 2019],
and neural network-based models [Dettmers et al., 2018;
Schlichtkrull et al., 2018].

However, link prediction for OpenKG is a relatively under-
explored area. CESI [Vashishth et al., 2018] focuses on ob-
taining multiple side information of NPs and RPs for em-
bedding learning built on HolE [Nickel et al., 2016], so as
to perform canonicalization task instead of link prediction.
Based on ConvE [Dettmers et al., 2018], CaRe [Gupta et
al., 2019] takes the canonicalization of NPs into account
to enhance NP embeddings, and learns RP embeddings by
GRU [Cho et al., 2014]. Instead of concentrating on canoni-
calization, OKGIT [Chandrahas and Talukdar, 2021] employs
pre-trained BERT [Devlin et al., 2019] to improve the type
compatibility of tail NPs. [Broscheit et al., 2020] provides an
OpenKG benchmark called OLPBENCH, and employs Com-
plEx [Trouillon et al., 2016] to learn embeddings initialized
by LSTM [Hochreiter and Schmidhuber, 1997]. OKGSE[Xie
et al., 2022] learns cluster-segregated NP embeddings en-
hanced by neighboring contexts and type compatibility. Un-
like the above methods, we focus on reducing the sparsity of
RPs and triples through obtaining their canonical information
to improve link prediction performance, which requires nei-
ther predefined relations for OpenKG linking nor additional
side information for OpenKG canonicalization [Vashishth et
al., 2018; Liu et al., 2021].

2.2 Re-ranking for Link Prediction
By exploiting textual information, re-ranking promising can-
didates through PLMs brings performance gains for link pre-
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diction in CKG [Kolluru et al., 2021; Lovelace et al., 2021].
CEAR [Kolluru et al., 2021] applies BERT [Devlin et al.,
2019] as a re-ranker to score promising candidates together
by concatenating textual forms of the query and all candidate
tail entities into one input sentence. [Lovelace et al., 2021]
develops a student network based on BERT [Devlin et al.,
2019] with the textual concatenation of query and a candi-
date tail as input, which is distilled from their ranking model.
Different from them, we not only utilize query along with tail
candidates but also retrieve useful known facts related to the
query from training set to assist in re-scoring, which is able
to reduce the triple sparsity by sharing knowledge of similar
triples and provide contextualized information.

2.3 Retrieving from Training Data
Lately, several methods show that explicitly retrieving from
training data is useful for several NLP tasks [Gu et al., 2018;
Khandelwal et al., 2020; Wang et al., 2022]. [Wang et
al., 2022] develops a model pipeline that retrieves knowl-
edge from training data for tasks such as summarization, ma-
chine translation, language modeling, and question answer-
ing, where the model input is concatenated with the retrieved
content obtained by BM25 [Robertson and Zaragoza, 2009].
To the best of our knowledge, we are the first to retrieve train-
ing data for scoring promising candidates at the re-ranking
stage for OpenKG link prediction.

3 CEKFA: The Proposed Framework
To solve the problems of failing to utilize the canonical in-
formation of RPs and triples for OpenKG link prediction, we
propose the Canonicalization-Enhanced Known Fact-Aware
(CEKFA) framework, shown in Fig. 2. First, we introduce
two different canonicalization methods for sparsity reduction
of RPs and triples in Sec. 3.2. To exploit the obtained canon-
ical information, we design a canonicalization-enhanced en-
coder that utilizes canonicalization of both NPs and RPs to
learn dense embeddings for scoring a triple in Sec. 3.3, and
a known fact-aware re-ranker that adopts triple canonicaliza-
tion to re-score promising candidates in Sec. 3.4.

3.1 Problem Formulation
Let G = (E ,R,F) be an OpenKG, where E is the set of noun
phrases (NPs), R is the set of relation phrases (RPs), and
F = {(eh, r, et)|eh ∈ E , r ∈ R, et ∈ E} is the set of facts.
Here, eh and et are the head NP and tail NP in a factual triple.
Each NP e ∈ E and RP r ∈ R is a sequence of tokens, de-
noted as xe = (xe1, x

e
2, . . . , x

e
le
) and xr = (xr1, x

r
2, . . . , x

r
lr
),

respectively, where le and lr are the numbers of tokens in NP
e and RP r. Given a query (eh, r, ?), the link prediction task
aims at inferring the tail NP et in missing fact (eh, r, et) by
learning the triple score representing the holding probability.

3.2 Sparsity Reduction for RP and Triple
To reduce the sparsity of RPs and triples for OpenKG link
prediction, two canonicalization methods, namely similarity-
driven RP canonicalization and known fact-aware triple
canonicalization, are proposed.

Similarity-driven RP Canonicalization
Prior methods like CaRe [Gupta et al., 2019] fail to explicitly
canonicalize RPs, resulting in knowledge of similar RPs can-
not be shared. Considering this, we propose to retrieve similar
RPs for each RP as its canonical information, which does not
require an existing knowledge base for OpenKG linking.

First, to obtain the semantic representation of RPs, each
of them is constructed into an input sequence. Take RP rj
as an example, its input sequence srj is set as “[ENT1] xrj
[ENT2]”, where “[ENT1]” and “[ENT2]” are two introduced
tokens. Then, a pre-trained language model SBERT [Reimers
and Gurevych, 2019] is employed to encode the input and
obtain its dense sentence representation, denoted as function
fSBERT . Finally, to get the canonical RPs for rj , a retrieval
system Srp is adopted to match its representation against all
other RPs in R and return the Top-Mrp most similar ones:

Srp(rj ,R) = {r1, . . . , rMrp
} = Nr(rj) (1)

where Mrp is a hyperparameter and Nr(rj) is the canonical
neighbor RPs of rj . The semantic similarity simrp

j,u between
rj and ru ∈ R is computed as the cosine similarity between
their sentence representations:

simrp
j,u = cos(fSBERT (s

rj ), fSBERT (s
ru)) (2)

where sru is the input sequence of ru.

Known Fact-aware Triple Canonicalization
Prior works ignore the sparsity reduction of triples in
OpenKG, and they fail to utilize relevant known triples for
providing useful hints. Triple canonicalization aims to re-
trieve these relevant triples with respect to the query, so as to
deliver contextualized information for guiding the prediction
of unseen queries. Motivated by [Wang et al., 2022], we pro-
pose to canonicalize a query by retrieving similarly-expressed
known facts from training data.

First, we index all known factual triples in the training set
to a dictionary, i.e., C = {(k, v)}, where the key k is the token
concatenation of head NP and RP, and the value v is the token
concatenation of head NP, RP, and tail NP. For instance, the k
and v for a triple (eh, r, et) are expressed as:

k = [xeh , xr], v = [xeh , xr, xet ] (3)
where [] means concatenation, and xeh , xr, xet are tokens of
eh, r and et, respectively.

For a query (eh, r, ?), we identify known facts with similar
query as its canonical triples, so as to provide clues for pre-
dicting the missing tail et. We match the key of the query,
written as kq = [xeh , xr], against keys of all known facts,
and return the Top-Mtriple most similar ones along with their
values through a retrieval system Striple:

Striple(kq, C) = {(k1, v1), . . . , (kMtriple
, vMtriple

)} (4)
where Mtriple is a hyperparameter. Striple is built based on
SBERT [Reimers and Gurevych, 2019] as Srp (Eq. (1)), in
which the similarity simtriple

i,j between any two keys ki and
kj can be formulated as follows:

simtriple
i,j = cos(fSBERT (ki), fSBERT (kj)) (5)

At last, the canonical triples Ntriple(eh, r, ?) for (eh, r, ?)
are set to the values in the retrieved results Striple(kq, C):

Ntriple(eh, r, ?) = {v1, . . . , vMtriple
} (6)
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Figure 2: Overview of the proposed CEKFA framework. The left part shows the canonicalization-enhanced encoder for scoring a query
triple (eh, r, et) composed of (eh, r, ?) and a candidate tail NP et, which reduces graph sparsity by taking advantage of canonicalization for
NPs and RPs (shown in shaded ellipse). The right part displays the process of the known fact-aware re-ranker for re-scoring predicted Top-K
tail NPs, which utilizes triple canonicalization to reduce the sparsity of triples for providing contextualized hints.

3.3 Canonicalization-Enhanced Encoder

The canonicalization-enhanced encoder aims to sufficiently
exploit the canonical information of NPs and RPs to score
a triple (eh, r, et), which consists of four modules: (1) pre-
trained semantic embedding, of which embeddings are ini-
tialized with rich semantics rather than at random; (2) NP
canonicalization encoding, which updates NP embeddings
utilizing NPs’ canonical information; (3) RP canonicaliza-
tion encoding, which applies RPs’ canonical information to
update RP embeddings; (4) query encoding, which captures
the interaction of a query triple and obtains its score.

Pre-trained Semantic Embedding
We employ pre-trained language models to encode the tex-
tual forms of NPs and RPs as initialization, which can iden-
tify similar NPs/RPs and give meaningful representations for
long-tailed ones. For each NP/RP, its textual sequence is sent
to the pre-trained BERT [Devlin et al., 2019], and the output
hidden states at the last layer are mean pooled to form the ini-
tialized embedding, denoted as function fBERT . Then, ini-
tializing NP ei ∈ E and RP rj ∈ R to get their embeddings
ei ∈ Rd and rj ∈ Rd can be written as ei = fBERT (x

ei)
and rj = fBERT (x

rj ), where d is the embedding dimension,
xei and xrj are token sequences of ei and rj , respectively.

NP Canonicalization Encoding
In order to densify the OpenKG by leveraging NP canoni-
calization, we follow CaRe [Gupta et al., 2019] to employ
a Local Averaging Network, which is a non-parametric mes-
sage passing network, for updating NP embeddings. For each
NP ei, let Ne(ei) be its canonical neighbor NPs, namely NPs
belonging to the same entity as ei, which are first aggregated
to obtain its canonical neighbor vector eni ∈ Rd as follows:

eni =
1

| Ne(ei) |
∑

eu∈Ne(ei)

eu (7)

Then, ēi ∈ Rd is obtained by averaging ei and the canonical
neighbor vector eni , i.e., ēi = (ei + eni )/2, which entails
information about NPs linked to an entity.

RP Canonicalization Encoding
Taking one step further, we take into account the RP canoni-
calizationNr(rj) obtained in Eq. (1). The embedding of rj is
updated in the same way as NPs, where its canonical neighbor
vector rnj ∈ Rd of RP rj is first calculated from Nr(rj):

rnj =
1

| Nr(rj) |
∑

ru∈Nr(rj)

ru (8)

Then r̄j ∈ Rd is averaged from rj and rnj , i.e., r̄j = (rj +
rnj )/2, so that it carries the knowledge of RPs similar to rj .

Query Encoding
Query encoding intends to encode a query triple (eh, r, et) to
obtain its triple score ψ(eh, r, et), notated as the score func-
tion SF . We utilize the updated embeddings that are en-
hanced by canonicalization, i.e. ēh, r̄, ēt, as inputs to SF :

ψ(eh, r, et) = SF (ēh, r̄, ēt) (9)

Note that most KGE models could be leveraged to imple-
ment SF , such as distance-based models like TransE [Bor-
des et al., 2013], semantic matching models like Com-
plEx [Trouillon et al., 2016], and neural network-based mod-
els like ConvE [Dettmers et al., 2018]. For instance, the score
function based on ConvE [Dettmers et al., 2018] is:

SF (ēh, r̄, ēt)ConvE = f(vec(f(g(ēh, r̄) ∗ ω))W )ēt (10)

where g is a operation of reshaping embeddings into a 2D
matrix, ω is convolutional filters, f is a non-linear function,
vec is a operation of reshaping a tensor into a vector, and W
is a linear transformation matrix.

Model Training and Inference
For training the canonicalization-enhanced encoder, we take
the same loss function as the KGE method adopted in the
query encoding module. Taking the encoder built on ConvE
as an example, the logistic sigmoid function σ is first applied
to triple score ψ to obtain its ranking probability p1:

p1 = σ(ψ(eh, r, et)) (11)

Then the loss for triple (eh, r, et) is calculated following Bi-
nary Cross Entropy (BCE):

loss(eh,r,et) = −(y · log(p1) + (1− y) · log(1− p1)) (12)
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where y is the label of (eh, r, et), which is 1 if (eh, r, et) ∈ F
and 0 otherwise.

During the inference stage, the Top-K potential candidate
tail NPs to query (eh, r, ?) are obtained by calculating the
scores of triples consisting of (eh, r, ?) and all NPs.

3.4 Known Fact-Aware Re-Ranker
Prior CKG link prediction methods perform re-ranking with
the query and predicted candidates as inputs, but fail to uti-
lize canonical information of triples. To reduce triple sparsity
in OpenKG, the known fact-aware re-ranker is proposed to
re-score candidates by additionally exploiting query-related
canonical triples for providing explicit contextualized hints.

We employ DistilBERT [Sanh et al., 2019] followed by a
classification head, which is a two-layer fully-connected neu-
ral network, to implement re-ranking, namely model M. For
query (eh, r, ?) and one of its candidate tail NPs et, they are
concatenated into a query triple sentence xq,t, i.e., xq,t =
[xeh , xr, xet ]. Instead of using the query triple sentence alone
for prediction, we adopt canonical triplesNtriple(eh, r, ?) ob-
tained in Eq. (6) to help re-score by concatenating them into
a known factual sentence xv , i.e., xv = [v1; . . . ; vMtriple

].
Then it is combined with the query triple sentence xq,t as an
input pair fed into M:

p2 = σ(M(xq,t, xv)) (13)

where p2 is the re-ranking probability of triple (eh, r, et).

Model Training and Inference
For each query (eh, r, ?) in the training set, we use the
ground-truth tail NPs to form the sentence pairs as positive
samples, and extract the Top-Mneg negative candidate tail
NPs predicted by canonicalization-enhanced encoder to form
negative samples, where Mneg is a hyperparameter. During
training, we filter out the query itself from the retrieved re-
sults. The known fact-aware re-ranker is fine-tuned by mini-
mizing the BCE loss of p2 and its label as in Eq. (12).

At inference stage, we re-rank Top-K candidate tail NPs
through ensembling scores produced from canonicalization-
enhanced encoder and known fact-aware re-ranker. For
query (eh, r, ?), the ranking probability p1 for one of its Top-
K candidate tail NPs et is first scaled to p′1 by the maximum
ranking probability among the Top-K candidates:

p′1 =
p1

max p
(1:K)
1

(14)

where p(1:K)
1 is the ranking probabilities of the Top-K candi-

dates for query (eh, r, ?). At last, the final score p̂(eh, r, et)
for (eh, r, et) is merged as:

p̂(eh, r, et) = αp′1 + (1− α)p2 (15)

where α ∈ [0, 1] is a score composition weight.

4 Experimental Setup
4.1 Dataset
We evaluate our approach on ReVerb20K and ReVerb45K
datasets following CaRe [Gupta et al., 2019], which are cre-
ated through ReVerb Open KB [Fader et al., 2011]. Details of

Dataset ReVerb20K ReVerb45K

#NPs 11,065 27,008
#RPs 11,058 21,623
#Gold NP Clusters 10,897 18,626
#Average NPs Per Cluster 1.02 1.45
#Train 15,499 35,970
#Validation 1,550 3,598
#Test 2,325 5,395

Table 1: Dataset statistics.

Dataset d K Mrp Mtriple Mneg α

ReVerb20K 768 10 5 3 10 0.5
ReVerb45K 768 10 10 3 3 0.3

Table 2: Optimal values of hyperparameters.

these datasets are shown in Tab. 1, where “Gold NP Clusters”
is the gold canonical clusters of NPs extracted through Free-
base entity linking information [Gabrilovich et al., 2013].
Inverse RPs are introduced for both datasets by adding the
phrase “inverse of” to each RP. For more details, we refer
readers to the related papers.

4.2 Experimental Settings
We use canonical clusters of NPs provided in CaRe [Gupta et
al., 2019]. The pre-trained all-mpnet-base-v2 model is ap-
plied for fSBERT in sparsity reduction for RP and triple.
The pre-trained BERT-base-uncased model is employed for
fBERT in pre-trained semantic embedding. The pre-trained
distilbert-base-uncased model is utilized to implement M in
known fact-aware re-ranker. Note that we experiment with
multiple pre-trained models and choose the above settings be-
cause of their good performance and high efficiency. We set
the embedding dimension d = 768, and the number of re-
ranking tail NPs K = 10. The value of Mrp, Mtriple, and
Mneg are all selected from {1, 3, 5, 7, 10}. The optimal set-
tings of hyperparameters for both datasets are listed in Tab. 2.

For training the canonicalization-enhanced encoder
(Sec. 3.3), we use the self-adaptive optimization method
Adam [Kingma and Ba, 2014]. Here we report the training
settings of the best-performing CEKFA[ResNet] framework,
which will be introduced later. Both datasets use a batch size
of 128 and an initial learning rate of 0.0001 with a scheduler
that reduces the learning rate by a decay factor of 0.5 when
the value of MRR has stopped improving for 2 epochs. The
model is trained for a maximum of 500 epochs, which would
be terminated if the MRR metric of the validation set has not
improved within 10 epochs.

After training the canonicalization-enhanced encoder
(Sec. 3.3), we freeze its parameters and then fine-tune the
known fact-aware re-ranker (Sec. 3.4) for a maximum of
5 epochs with a batch size of 16, where the best model is
chosen based on the accuracy of validation set. We employ
AdamW [Loshchilov and Hutter, 2017] optimizer using a lin-
ear decay learning rate scheduler with a weight decay of 0.01
and a linear warm-up with 10% of the training data, where
the initial learning rate is 2× 10−5.
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Model
ReVerb20K ReVerb45K

MRR MR Hits@1 Hits@3 Hits@10 MRR MR Hits@1 Hits@3 Hits@10

TransE [Bordes et al., 2013] 0.138 1150.5 0.034 0.201 0.316 0.202 1889.5 0.122 0.243 0.346
ComplEx [Trouillon et al., 2016] 0.038 4486.5 0.017 0.043 0.071 0.068 5659.8 0.054 0.071 0.093
R-GCN‡ [Schlichtkrull et al., 2018] 0.122 1204.3 - - 0.187 0.042 2866.8 - - 0.046
ConvE [Dettmers et al., 2018] 0.262 1483.7 0.203 0.287 0.371 0.218 3306.8 0.166 0.243 0.314
KG-BERT [Yao et al., 2019] 0.047 420.4 0.014 0.039 0.105 0.123 1325.8 0.070 0.131 0.223
RotatE [Sun et al., 2019] 0.065 2861.5 0.043 0.069 0.108 0.141 3033.4 0.110 0.147 0.196
SpacESS [Nayyeri et al., 2020] 0.206 2577.9 0.162 0.229 0.292 0.141 3144.0 0.106 0.149 0.205
PairRE [Chao et al., 2021] 0.213 1366.2 0.166 0.229 0.296 0.205 2608.4 0.153 0.228 0.302
ResNet [Lovelace et al., 2021] 0.224 2258.4 0.188 0.240 0.292 0.181 3928.9 0.150 0.196 0.242
BertResNet-ReRank [Lovelace et al., 2021] 0.272 1245.6 0.225 0.294 0.347 0.208 2773.4 0.166 0.227 0.281

CaRe† [Gupta et al., 2019] 0.318 973.2 - - 0.439 0.324 1308.0 - - 0.456
OKGIT† [Chandrahas and Talukdar, 2021] 0.359 527.1 0.282 0.394 0.499 0.332 773.9 0.261 0.363 0.464
OKGSE† [Xie et al., 2022] 0.372 487.3 0.291 0.408 0.524 0.342 771.1 0.274 0.371 0.473

CEKFA[TransE] 0.316 795.0 0.249 0.346 0.425 0.265 1460.1 0.204 0.296 0.365
CEKFA[ComplEx] 0.328 512.0 0.265 0.359 0.433 0.303 1203.4 0.239 0.332 0.422
CEKFA[ConvE] 0.386 383.1 0.307 0.423 0.525 0.354 630.9 0.273 0.392 0.504
CEKFA[RotatE] 0.339 575.4 0.264 0.373 0.463 0.297 1111.1 0.216 0.340 0.447
CEKFA[PairRE] 0.378 358.0 0.301 0.415 0.516 0.330 766.0 0.247 0.373 0.483
CEKFA[ResNet] 0.387 416.7 0.310 0.427 0.515 0.369 884.5 0.294 0.409 0.502

Table 3: Link prediction results on OpenKG datasets. Best results are in bold and second best results are underlined. [†]: results are taken
from corresponding original paper. [‡]: results are taken from [Gupta et al., 2019].

At inference stage, Top-10 candidate tail NPs predicted
by the canonicalization-enhanced encoder are re-scored by
known fact-aware re-ranker, and the score composition
weight α is picked from [0,1] that achieves the best MRR
on validation set with an increment of 0.1. All experiments
are conducted in Pytorch and on one 16G Tesla V100 GPU.

4.3 Baselines
We implement CEKFA with five typical KGE methods
in CKG, including TransE [Bordes et al., 2013], Com-
plEx [Trouillon et al., 2016], ConvE [Dettmers et al., 2018],
RotatE [Sun et al., 2019], and PairRE [Chao et al., 2021],
denoted as “CEKFA[*]”. We also adopt ResNet [He et al.,
2016] following [Lovelace et al., 2021] as the query encoding
module to implement CEKFA, notated as “CEKFA[ResNet]”.

We compare CEKFA with: (1) KGE methods in CKG:
TransE [Bordes et al., 2013], ComplEx [Trouillon et al.,
2016], R-GCN [Schlichtkrull et al., 2018], ConvE [Dettmers
et al., 2018], KG-BERT [Yao et al., 2019], RotatE [Sun et
al., 2019], SpacESS [Nayyeri et al., 2020], PairRE [Chao et
al., 2021], the two-stage method [Lovelace et al., 2021] (de-
noted as BertResNet-ReRank), and the query encoding mod-
ule in it (denoted as ResNet); (2) KGE methods in OpenKG:
CaRe [Gupta et al., 2019], OKGIT [Chandrahas and Taluk-
dar, 2021], and OKGSE [Xie et al., 2022].

4.4 Evaluation Metrics
We evaluate CEKFA on the link prediction task following
CaRe [Gupta et al., 2019], which evaluates the rank of canon-
ical clusters of NPs under filtered setting [Bordes et al.,
2013]. Standard ranking metrics are utilized: Mean Rank
(MR), Mean Reciprocal Rank (MRR), Hits at 1 (Hits@1),
Hits at 3 (Hits@3), and Hits at 10 (Hits@10).

5 Experimental Results
5.1 Main Results
Link prediction results of CEKFA against various baselines
are shown in Tab. 3. CEKFA[ResNet] outperforms all base-
lines on MRR, Hits@1, and Hits@3, indicating that it per-
forms best on accurate metrics. Compared to methods
in OpenKG (the second field in Tab. 3), CEKFA[ResNet]
achieves absolute improvements of 1.5% and 2.7% for MRR,
1.9% and 2.0% for Hits@1 on ReVerb20K and ReVerb45K
respectively, which confirms the effectiveness of canonicaliz-
ing RPs and triples for OpenKG link prediction.

Unsurprisingly, most KGE methods in CKG show rela-
tively poor performance when applied directly to OpenKG
(the first field in Tab. 3), with the best MRR and Hits@1
on ReVerb20K and ReVerb45K implemented by BertResNet-
ReRank and ConvE, respectively. Notably, KG-BERT per-
forms moderately in MRR and Hits@1, but well in MR met-
ric, with a similar phenomenon observed when applied to
CKG [Wang et al., 2021]. This is mainly because KG-BERT
only encodes the textual knowledge of triples and neglects to
learn the structural information, which makes it good at se-
lecting NPs/entities with the right semantics as candidates,
but unable to accurately predict the target owing to ambiguity
problem. Therefore, when N is slightly large, it achieves good
Hits@N (i.e., Top-N recall), but performs poorly for small N,
resulting in poor MRR and good MR.

Comparing the first and third fields in Tab. 3, it is clear
that the results of KGE models are improved by different de-
grees after being integrated with CEKFA. Interestingly, after
applying CEKFA, ResNet obtains greater improvements than
ConvE and achieves the best results, with absolute improve-
ments of 16.3% and 18.8% for MRR, 12.2% and 14.4% for
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Model
ReVerb20K ReVerb45K

MRR MR Hits@1 Hits@3 Hits@10 MRR MR Hits@1 Hits@3 Hits@10

CEKFA[TransE] 0.316 795.0 0.249 0.346 0.425 0.265 1460.1 0.204 0.296 0.365
-KFARe 0.285 795.1 0.208 0.318 0.425 0.227 1460.3 0.149 0.268 0.365
-KFARe-RPCE 0.234 1034.1 0.159 0.264 0.372 0.211 1517.4 0.146 0.241 0.330

CEKFA[ComplEx] 0.328 512.0 0.265 0.359 0.433 0.303 1203.4 0.239 0.332 0.422
-KFARe 0.302 512.0 0.232 0.330 0.433 0.284 1203.4 0.210 0.321 0.422
-KFARe-RPCE 0.292 525.8 0.221 0.320 0.425 0.278 1242.6 0.207 0.310 0.410

CEKFA[ConvE] 0.386 383.1 0.307 0.423 0.525 0.354 630.9 0.273 0.392 0.504
-KFARe 0.370 387.6 0.290 0.407 0.525 0.338 631.0 0.256 0.374 0.504
-KFARe-RPCE 0.369 468.5 0.290 0.404 0.516 0.324 689.3 0.243 0.358 0.484

CEKFA[RotatE] 0.339 575.4 0.264 0.373 0.463 0.297 1111.1 0.216 0.340 0.447
-KFARe 0.323 575.5 0.246 0.355 0.463 0.279 1111.2 0.188 0.333 0.447
-KFARe-RPCE 0.307 529.4 0.222 0.347 0.457 0.266 1095.4 0.172 0.321 0.437

CEKFA[PairRE] 0.378 358.0 0.301 0.415 0.516 0.330 766.0 0.247 0.373 0.483
-KFARe 0.360 358.0 0.275 0.400 0.516 0.316 766.0 0.223 0.366 0.483
-KFARe-RPCE 0.342 406.9 0.256 0.382 0.502 0.297 789.0 0.205 0.349 0.466

CEKFA[ResNet] 0.387 416.7 0.310 0.427 0.515 0.369 884.5 0.294 0.409 0.502
-KFARe 0.372 416.8 0.296 0.403 0.515 0.354 884.6 0.277 0.392 0.502
-KFARe-RPCE 0.362 441.1 0.279 0.398 0.509 0.333 892.2 0.255 0.370 0.484

CEKFA[ResNet] TripleOnlyReranking 0.370 416.8 0.294 0.402 0.515 0.353 884.6 0.275 0.392 0.502
CEKFA[ResNet] BM25Retrieving 0.383 416.7 0.307 0.420 0.515 0.361 884.6 0.285 0.402 0.502

Table 4: Link prediction results for ablation and variants of CEKFA. Best results for each field are in bold.

Hits@1 on ReVerb20K and ReVerb45K respectively. This in-
dicates the effectiveness of employing deeper convolutional
networks to capture the interactions between dense embed-
dings with rich semantics. Moreover, CEKFA obtains up to
29.0% and 23.5% absolute improvements for MRR metric on
ReVerb20K and ReVerb45K (CEKFA[ComplEx]). Even with
the smallest boost, CEKFA obtains 12.4% (CEKFA[ConvE])
and 6.3% (CEKFA[TransE]) in MRR on these two datasets
respectively, suggesting the effectiveness and generalization
ability of the proposed framework.

5.2 Ablation and Variants Study
Ablation study of the proposed canonicalization methods
in CEKFA is presented in Tab. 4. We find that: (1) For
CEKFA[ResNet], removing the known fact-aware re-ranker
(-KFARe) decreases the MRR by 1.5% on both datasets.
And for CEKFA[*] constructed from different KGE meth-
ods, the removal of KFARe leads to maximum decreases
of 3.1% and 3.8% for MRR, 4.1% and 5.5% for Hit@1 on
ReVerb20K and ReVerb45K respectively, both of which are
built on TransE. It illustrates the crucial role of triple canon-
icalization to share knowledge of related triples. (2) For
CEKFA[ResNet]-KFARe, removing RP canonicalization en-
coding (-RPCE) further reduces the MRR by 1.0% and 2.1%
on ReVerb20K and ReVerb45K. For CEKFA[*]-KFARe, the
absence of RPCE leads to maximum reductions of 5.1% and
2.1% for MRR, 4.9% and 2.2% for Hit@1 on ReVerb20K and
ReVerb45K, which are integrated with TransE and ResNet,
respectively. This implies the effectiveness of RP canonical-
ization in sharing knowledge of similar RPs to reduce their
high sparsity. Overall, the results show that leveraging RP

and triple canonicalization helps to reduce their sparsity and
enhance the performance of CKG methods.

In addition, to investigate the effectiveness of known fact-
aware re-ranker, two variants are further developed. From
the results shown at the bottom of Tab. 4, we can observe that:
(1) Re-ranking by query triple sentence xq,t without known
factual sentence xv (CEKFA[ResNet] TripleOnlyReranking)
gives no gains, and even results in a drop of 0.1%∼0.2%
in MRR on both datasets. It indicates that known facts
composed of canonical triples are indispensable to the
triple re-ranking stage which performs triple canonicalization
and provides contextualized hints. (2) Retrieving relevant
known facts by BM25 (CEKFA[ResNet] BM25Retrieving)
that learns sparse representations performs worse than by
SBERT that learns dense representations. It is primarily ow-
ing to the ability of SBERT to better handle complex sen-
tences with the same semantics but different expressions.

5.3 Sparsity Analyses
Sparsity of RPs
To intuitively understand the sparsity reduction of RPs, we
compare the canonical neighbors of several randomly chosen
RPs obtained from CEKFA[ResNet] with CESI [Vashishth et
al., 2018], which performs OpenKG canonicalization task.
Results are displayed in Tab. 5, where only the Top-3 canon-
ical neighbor RPs are reported for each RP. It can be seen
that RP canonicalization obtained from CEKFA[ResNet] is
semantically similar, rather than only superficially similar,
e.g., the canonical neighbor RPs obtained for “was an inmate
at”. Besides, we obtain specific canonicalization for each RP
instead of clustering them, which is flexible and highly fault-
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(c) CEKFA

Figure 3: Comparison of the t-SNE visualization about RP embeddings obtained by CaRe [Gupta et al., 2019], OKGIT [Chandrahas and
Talukdar, 2021] and our CEKFA[ResNet]. Among them, only CEKFA[ResNet] utilizes RP canonicalization to enhance embedding learning.
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Figure 4: Effects of re-ranking in CEKFA[ResNet] over different in-degree range of tail NPs. The less the in-degree, the sparser it is.

RPs CESI CEKFA[ResNet]

was an inmate at
was an engineer at was imprisoned at
was an exile in was jailed in
is an institution in was imprisoned in

was jailed in
was arrested in was arrested in
is currently jailed in was imprisoned in
is arrested in is currently jailed in

is not mentioned
again in

is not really in makes no mention of
is not just in is no mention of
is not only in fails to mention

Table 5: Canonical neighbor RPs obtained by CESI [Vashishth et
al., 2018] and CEKFA[ResNet]. Error canonical RPs are in red.

tolerant. For example, in CESI, “was an engineer at” is incor-
rectly clustered with “was an inmate at”, resulting in all RPs
in this cluster having wrong canonicalization information.

Furthermore, for comparison of the learned RP embed-
dings with and without canonicalization, we project the high-
dimensional embedding to a 2-dimensional space using t-
SNE [Van der Maaten and Hinton, 2008] for visualization.
Owing to the lack of gold canonicalization of RPs, we ran-
domly select six RPs with different semantics in experi-
ments, and for each RP we manually choose two more RPs

with the same semantics. Fig. 3 displays the results of
CEKFA[ResNet] compared against CaRe [Gupta et al., 2019]
and OKGIT [Chandrahas and Talukdar, 2021], where RP
canonicalization is not considered in CaRe and OKGIT. It can
be seen that RPs with the same semantic are well clustered
by CEKFA[ResNet]. Besides, CEKFA[ResNet] can distin-
guish RPs that have similar tokens but different semantics,
e.g., “split from” and “is basically split into”.

Sparsity of Triples
To visualize the effect of triple sparsity reduction for predict-
ing NPs with different sparse levels, Fig. 4 shows the im-
provements brought by the known fact-aware re-ranker based
on the in-degree of tail NPs in test triples. We find that the
performance across all sparse levels of tail NPs can be im-
proved by re-ranking with known facts to reduce the sparsity
of query triples. Noticeably, re-ranking with triple canonical-
ization brings a significant performance boost of 23.10% in
ReVerb45K when tail NPs are “extremely sparse”, i.e., their
in-degree in the training data is 0. It indicates that canonical
triples can provide query-related contextualized hints, espe-
cially in predicting unseen NPs.

To analyze the improvements to known fact-aware re-
ranker brought by known factual sentences consisting of
canonical triples, we present in Tab. 6 the Top-3 candidate
tail NPs predicted by CEKFA[ResNet] before and after re-
ranking for several query pairs, as well as the Top-3 retrieved
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query gold tail NP canonical triples CEKFA[ResNet]-KFARe CEKFA[ResNet]

(chi minh city, is the
biggest city of, ?) vietnam

chi minh city is the largest city in vietnam;
chi minh city is also popularly known as saigon;
chi minh city was the capital of south vietnam;

vietnamese vietnam
vietnam vietnamese
china south vietnam

(phil gramm, went to
work for, ?) ub

phil gramm is also an officer of ub;
gramm was married to wendy gramm;
phil is the creator of pretty good privacy;

obama ub
bush ub financial service inc
clinton obama

(simon, inverse of
was called, ?) peter

simon was growing to be simon peter;
simon had mixed judaism;
bartholomew was another name for nathanael;

jesus jesus
david archuleta peter
archuleta joseph

(levitra, is available
in, ?) europe

levitra is taken with lortab;
levitra is approved in europe;
levitra is similar to viagra;

germany germany
india europe
china china

Table 6: Comparison of tail NPs predicted by CEKFA[ResNet] before and after re-ranking. Target tail NPs are in bold.

Inference Time (#samples/s) TransE ComplEx ResNet

baseline ([*]) 239 257 643
CEKFA[*]-KFARe 211 245 568

Relative Change TransE ComplEx ResNet

relative efficiency change -11.72% -4.67% -10.53%
relative performance change +12.37% +276.47% +95.58%

Table 7: Comparison of inference times, and relative changes in
time and performance for three baseline methods before and after
applying the canonicalization-enhanced encoder (denoted as [*] and
CEKFA[*]-KFARe) on ReVerb45K dataset.

canonical triples. It can be found that known facts in the train-
ing data related or similar to the query pair can be retrieved
as canonicalization, even if their tokens are superficially less
similar, e.g., “simon was growing to be simon peter” can be
retrieved for query (simon, inverse of was called, ?). More-
over, better inferences can be made with the support of canon-
ical triples. For instance, “phil gramm is also an officer of ub”
provides contextual information for query (phil gramm, went
to work for, ?), which leads to correct prediction.

5.4 Time Complexity
We analyze the additional time complexity of CEKFA com-
pared to baselines during the inference process in each stage.
For canonicalization-enhanced encoder, the increased time
complexity is O(T (Mnp +Mrp)), coming from the canon-
icalization encoding of NP and RP in each triple, where T
is the number of triples, Mnp and Mrp are the average num-
ber of canonical neighbors for each NP and RP (Mnp < 2,
Mrp ≤ 10). As for the known fact-aware re-ranker, the time
complexity is O(TK), stemming from encoding each query
with one of its top-K candidate tails.

Tab. 7 compares the inference times of three baseline
methods before and after applying the canonicalization-
enhanced encoder, as well as the relative changes in time
and performance. It can be seen that the canonicalization-

enhanced encoder built on baseline method without re-
ranking stage (CEKFA[*]-KFARe) achieves performance
gains by 12.37%∼276.47%, which only decreases the in-
ference time by 4.67%∼11.72%. Although the time cost
increases, which comes from the canonicalization encoding
of NP and RP, it is much less than the performance bene-
fits brought by the canonicalization-enhanced encoder. As
for known fact-aware re-ranker (KFARe), we compare its
efficiency in CEKFA[ResNet] with the re-ranking stage of
BertResNet-ReRank [Lovelace et al., 2021], where the num-
ber of samples predicted per second on ReVerb45K is 61
and 151, respectively. The relatively slow re-ranking time in
CEKFA is reasonable since we include the canonical triples
as part of the input, which increases the encoding time.

6 Conclusion

In this paper, we propose a Canonicalization-Enhanced
Known Fact-Aware (CEKFA) framework for OpenKG link
prediction by reducing the sparsity of RPs and triples. For
RP sparsity reduction, a similarity-driven RP canonicaliza-
tion method is introduced to collect semantically similar RPs
as canonical information. To reduce the sparsity of triples,
a known fact-aware triple canonicalization method is de-
veloped by retrieving query-related known facts to provide
contextualized hints. These two kinds of canonical knowl-
edge are integrated into the canonicalization-enhanced en-
coder and known fact-aware re-ranker for link prediction. Ex-
periments show that CEKFA outperforms previous baselines
on two OpenKG datasets, ReVerb20K and ReVerb45K, and
extensive analyses suggest the effectiveness and generaliza-
tion ability of the proposed approach.
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