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Abstract
Recently, Zero-Shot Node Classification (ZNC) has
been an emerging and crucial task in graph data
analysis. This task aims to predict nodes from un-
seen classes which are unobserved in the training
process. Existing work mainly utilizes Graph Neu-
ral Networks (GNNs) to associate features’ proto-
types and labels’ semantics thus enabling knowl-
edge transfer from seen to unseen classes. How-
ever, the multi-faceted semantic orientation in the
feature-semantic alignment has been neglected by
previous work, i.e. the content of a node usually
covers diverse topics that are relevant to the seman-
tics of multiple labels. It’s necessary to separate
and judge the semantic factors that tremendously
affect the cognitive ability to improve the generality
of models. To this end, we propose a Knowledge-
Aware Multi-Faceted framework (KMF) that en-
hances the richness of label semantics via the ex-
tracted KG (Knowledge Graph)-based topics. And
then the content of each node is reconstructed to a
topic-level representation that offers multi-faceted
and fine-grained semantic relevancy to different la-
bels. Due to the particularity of the graph’s instance
(i.e., node) representation, a novel geometric con-
straint is developed to alleviate the problem of pro-
totype drift caused by node information aggrega-
tion. Finally, we conduct extensive experiments on
several public graph datasets and design an appli-
cation of zero-shot cross-domain recommendation.
The quantitative results demonstrate both the effec-
tiveness and generalization of KMF with the com-
parison of state-of-the-art baselines.

1 Introduction
The standard task of node classification [Kipf and Welling,
2017; Wu et al., 2023a] predicts the labels of unlabeled ones
on a graph, assuming that graph structure information reflects
some affinities among nodes. In recent years, an emerging

Figure 1: An overview of coarse knowledge transfer and multi-
faceted knowledge transfer for zero-shot node classification. For se-
mantic relevancy, a thicker dashed line indicates stronger relevancy.

and more difficult task, zero-shot node classification [Wang
et al., 2021], is proposed to predict the unlabeled nodes from
unseen classes which are unobserved in the training process.
This research paradigm is more conducive to catching up with
the rapid growth of newly emerging classes in dynamic and
open environments. For instance, the system of a scholar
database tries to recognize a new research topic in citation
networks without high cost and time-consuming annotations.

It is not easy to achieve the zero-shot learning for graph-
structure data due to the complex relationships among spe-
cial samples (nodes). Existing studies [Wang et al., 2021;
Yue et al., 2022] mainly propose to use graph neural networks
to construct node’s representation, which associates proto-
types and labels’ semantics thus enabling knowledge trans-
fer from seen to unseen classes. Different from the power-
ful GNNs used in traditional node classification, some gener-
alization techniques are incorporated in this novel situation.
Specifically, DGPN [Wang et al., 2021] follows the princi-
ples of locality and compositionality for zero-shot model gen-
eralization. DBiGCN [Yue et al., 2022] makes the semantic
consistency from the perspective of nodes and classes.

Although existing approaches classify nodes via establish-
ing the mapping function from feature space to label seman-
tic space, they ignore the multi-faceted and fine-grained se-
mantic orientation in the knowledge transfer process. In fact,
the content of a node covers diverse topics and is therefore
relevant to the semantics of multiple labels, which is key to
breaking the shackles of semantic confusion and promoting
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the generalization of models [Wu et al., 2020]. As shown in
Figure 1(a), when the model maps the representation vector
of a node to the semantic space, it often encounters a dilemma
that the distances between the vector and several label se-
mantics are similar, leading to difficulty in classification. For
the more discriminative strategy in Figure 1(b) proposed in
this paper, we construct diverse sub-representations for the
graph’s nodes and build corresponding fine-grained semantic
relevancy (orientation) with multiple labels’ semantics. With
these weighted semantic orientations, the model mines the
major influencing factors to correctly judge the node’s cat-
egory, i.e., C2 in Figure 1(b). Meanwhile, the explicit rel-
evancy to the unseen class is also learned within training,
which alleviates the bias that the trained model prefers seen
classes. It can be seen that multi-faceted learning has the po-
tential to acquire better classification accuracy and general-
ization in the ZNC task.

To achieve the high-quality zero-shot learning of multi-
faceted knowledge transfer on graph data, there are some
challenges that must be overcome on the path. First, it is hard
to generate reasonable sub-representations which are aligned
with diverse semantics of labels from the original content of
nodes. We introduce a knowledge-aware topic mining al-
gorithm for this issue. Specifically, the labels (e.g., “ma-
chine learning”, “database”) are viewed as anchors on the
given knowledge graph (we use ConceptNet [Speer et al., ]
in our work). Since semantics are distributed on the knowl-
edge graph in a structured and spatial form, we obtain sev-
eral topic neighborhood sets based on the location of an-
chors. In this way, the original text of each node can be
separated into multiple semantic sets associated with labels
by matching the words of this node with topic sets. Then
the topic-based node representation is embedded by a pre-
trained language model, e.g., BERT [Devlin et al., 2019;
Wu et al., 2023b], and a GNN for topological features mining.
Hence we face the second challenge that the unified graph-
based aggregation for the node usually leads to a node over-
smooth problem, for the multi-faceted framework, we are
also supposed to design a special differentiation enhancement
mechanism. We regard the topic-based sub-representation as
a deletable attribute, and propose a topic-view graph con-
trastive learning strategy to enhance the discrimination of
nodes. Meanwhile, we find the node’s aggregation would ab-
sorb information from the neighbors that are different from
its own category. This diffusion makes prototype drift of each
class in feature subspace, which further affects the alignment
between semantic subspace and feature subspace in ZSL. To
address this last challenge, we propose a geometric constraint
loss that constrains the feature and semantic distribution col-
laboratively from both directions and distances, which can be
easily integrated into our framework.

We conduct sufficient experiments on three real-world
graph datasets. The quantitative results of zero-shot node
classification demonstrate that our proposed Knowledge-
Aware Multi-Faceted framework (KMF) gains state-of-the-
art performance compared with a number of powerful base-
lines. Moreover, we design a zero-shot cross-domain rec-
ommendation application and the learned node representation
shows a good performance on the items with new categories,

which verifies the superiority of multi-faceted representation
learning in improving the model’s generalization capability.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first to in-
troduce the knowledge-aware mechanism into the ZNC
problem, which depicts the topic-level multi-faceted se-
mantic relevancy to promote cognitive ability.

• We adopt the topic-view graph contrastive learning and
geometric constraint loss to address two representation
issues caused by information aggregation of nodes, i.e.,
node over-smooth and prototype drift.

• We experimentally demonstrate the effectiveness of
KMF and further evaluate the generalization of produced
representations on a downstream application.

2 Related Work
2.1 Zero-Shot Learning
Zero-shot learning (ZSL) [Farhadi et al., 2009; Lampert et
al., 2009; Liu et al., 2020a] tries to classify the instance be-
longing to unseen classes. Existing ZSL methods are mainly
limited to CV [Wang et al., 2019b] or NLP [Yin et al., 2019].
In the famous DAP [Lampert et al., 2013] model, an attribute
classifier is first learned from source classes and then applied
to unseen classes. The representative mapping-based meth-
ods [Frome et al., 2013; Norouzi et al., 2014] calculate the
distances between object features and class features. Here
class attributes or class semantic descriptions (CSDs) [Lam-
pert et al., 2013] like “wing” and “fur” enable cross-class
knowledge transfer. The classifier is trained to recognize
these CSDs and then infer the CSDs of an unseen object
to compare the results with those unseen classes to predict
its label. Specifically, the classic and effective model ES-
ZSL [Romera-Paredes and Torr, 2015] adopts a bilinear com-
patibility function to directly model the relationships among
features, CSDs, and labels. WDVSc [Wan et al., 2019]
adds different types of visual structural constraints to the
prediction. Besides, some knowledge-based approaches are
used to capture class relevancy recently [Wang et al., 2018a;
Kampffmeyer et al., 2019; Liu et al., 2020b; Geng et al.,
2021]. Although [Wang et al., 2018b] also considers the
zero-shot setting in graph scenarios, they focus on graph em-
bedding, not node classification.

2.2 Node Classification
Early studies [Zhu et al., 2003; Zhou et al., 2003] gener-
ally handle node classification by capturing the graph struc-
ture information via shallow models. Recently, GNN and its
applications [Scarselli et al., 2008; Hamilton et al., 2017;
Wu et al., 2021; Wang et al., 2019a; Han et al., 2023], es-
pecially graph convolutional networks [Henaff et al., 2015],
have activated researchers’ motivation because of the the-
ory simplicity and model efficiency [Bronstein et al., 2017;
Chiang et al., 2019]. GNNs usually propagate information
from each node to its neighborhoods with a designed filter
at each aggregation layer. Some powerful models attempt to
advance this line including GAT [Velickovic et al., ], GC-
NII [Chen et al., 2020], etc. Nevertheless, the traditional
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line assumes that every class in the graph obtains some la-
beled nodes. The inability of recognizing unseen classes is
one of the major challenges. Few studies explore this issue.
DGPN [Wang et al., 2021] creates locality and composition-
ality for zero-shot model generalization. DBiGCN [Yue et al.,
2022] jointly constrains representations of nodes and classes
to make semantic consistency. However, they both neglect the
necessity of multi-faceted features exacting for fine-grained
knowledge transfer, which reduces the upper bound of the
model’s cognitive ability. In this paper, we propose a multi-
faceted framework for the zero-shot node classification prob-
lem from a knowledge-driven view.

3 Methodology
3.1 Preliminary
Problem Formalization. Let G = (V,E) denote a graph,
where V denotes the set of n nodes {v1, . . . , vn} , and E
denotes the set of edges among these n nodes. Given the con-
tent of words group Wv = {w1, w2, ..., w|v|} belonging to
each node v. The class set in this graph is C = {Cs ∪ Cu}
where Cs is the seen class set and Cu is the unseen class set
satisfying Cs∩Cu = ∅. Supposing all training nodes are from
seen classes Cs, the goal of zero-shot node classification is to
classify the rest of testing nodes whose label set is Cu.
Common-Sense Knowledge Graph. We propose to use the
common-sense knowledge graph to enhance the multi-faceted
semantic representation. Some knowledge-enhanced docu-
ment tasks [Liu et al., 2021; Harrando and Troncy, 2021]
assume that entities in textual data can be linked to corre-
sponding entities in a KG. For example, news articles usu-
ally contain knowledge entities in Satori [Gao et al., 2018]
such as celebrities or organizations. These entities are usu-
ally the key message conveyed by the article. Actually,
there are not so many conventional entities (proper or spe-
cific nouns, e.g., “Christmas”, “UCLA”, “Paris”, “Trump”) in
graph data. We leverage ConceptNet [Speer et al., ], a large-
scale KG containing the statement of common-sense knowl-
edge, to exact the common-sense entities (concepts) from the
node content. The entities in KG represent concepts (words
and phrases, e.g., /c/en/time series, /c/en/pattern,
/c/en/Data mining) linked together by semantic relations
such as /r/IsA, /r/RelatedTo, /r/Synonym.

3.2 Knowledge-Aware CSDs Construction
For zero-shot node classification, a useful strategy is acquir-
ing high-quality class semantic descriptions (CSDs) as aux-
iliary data, for transferring supervised knowledge from seen
classes to unseen classes. Existing work [Wang et al., 2021]
proposes two types of CSDs: i) label-CSDs, the word/phrase
embedding of class labels by pre-trained language models,
i.e., the embedding of “Physics”, or “Database”. ii) text-
CSDs, the document embedding generated from some class-
related descriptions, like a paragraph describing this class.
We argue that both of these two modes have their nonneg-
ligible limitations. Label-CSDs are not informative enough
and text-CSDs generally contain much noise. To overcome
the weaknesses, we first propose KG-Aware CSDs, a high-
quality semantic description with filtered external knowledge.

Figure 2: We generate the label’s topic neighborhoods by querying
a common-sense KG. For each node, its topic-view phrase sets with
individual semantic orientations are extracted from the content.

Considering the thin label- or text-CSDs are difficult to
cover the rich semantics of representative topics, or do-
mains [Wang et al., 2021]. Our proposed solution promotes
the coverage of each CSD for its corresponding domain. The
underlying assumption is that words belonging to a certain
topic are part of a vocabulary that is semantically related to
its humanly-selected candidate label, e.g., a document about
the topic of “Database” will likely mention words that are
semantically related to “Database” itself, such as “data”, “ef-
ficient”, and “system”. To this end, we use ConceptNet to
produce a list of candidate words related to the labels we are
interested in, keeping only the English concepts for the En-
glish datasets. In other words, we generate a “topic neighbor-
hood” for each topic label which contains all the semantically
related concepts/entities. Each label is presented by a single
word or short phrase (e.g. “Data Augmentation”, “Informa-
tion Retrieval”). We query ConceptNet via API1 for entities
that are directly connected to the given label.

The topic neighborhood is created by querying entities that
are N hops away from the label node as shown in Figure 2.
Inspired by [Harrando and Troncy, 2021], every entity is then
given a score that is based on the Cosine similarity between
the label and the entity computed using their embeddings with
BERT. This score represents the relevance of any term in the
neighborhood to the main label, and would also allow us to
filter the noisy neighborhood. In the case of a label that has
multiple tokens (e.g. the topic “Arts, Culture, and Entertain-
ment”) and cannot be linked into the KG, we just take the
union of all word components’ neighborhoods, weighted by
the maximum similarity score if the same concept appears
in the vicinity of multiple label components. We propose
the coverage- and filtering-based strategy to vary the size of
neighborhoods and reduce noise:

• Coverage. We vary the number of hops R. The higher
R is, the bigger the generated neighborhoods become;

• Filtering. We filter out entities in each hop under Soft
Cut (Top P %): we only keep the top P % entities in the
neighborhood, ranked on their similarity score.

For each class c ∈ C, the generated entities set is Tc =
{w1, w2, ..., w|Tc|}, where |Tc| denotes the size of topic
neighborhood, wi is a word belonging to Tc. The KG-Aware

1https://github.com/commonsense/conceptnet5/wiki
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CSD of each class is the pooling of its topic neighborhood,

Sc =
1

|Tc|

|Tc|∑
i=1

ai · fb(wi), wi ∈ Tc, c ∈ C, (1)

where Sc ∈ Rdb , fb(·) denotes the function of BERT em-
bedding. And, ai = 1.0 ∗ (α)ri is the attenuation weight of
wi, where 0 ≤ α ≤ 1 is a fixed attenuation coefficient, expo-
nential ri ∈ {0, 1, 2, ..., R} is the number of hops from wi to
label c, i.e., the further a term is from the label vicinity, the
lower is its contribution to the score.

3.3 Multi-Faceted Node Representation Learning
With the guidance of generated label topics, we design a
framework of topic-level node representation learning to ex-
act multi-faceted semantic orientations that transfer fine-
grained knowledge from unseen classes to seen classes.

Topic-Level Node Representation
Our high-precision model should capture multi-faceted se-
mantic orientations behind the content. Meanwhile, the align-
ment with multiple semantics of labels is supposed to main-
tain within the training and testing procedure. We define the
multi-faceted embedding of each node v as a matrix hv ∈
R|C|×db . Each row of hv is associated with a db dimensional
vector that illustrates the semantic relevancy to a certain label
topic. Given the content Wv = {w1, w2, ..., w|v|} of node v.
To obtain the fine-grained embedding hc

v , we first calculate
the overlap between Wv and Tc. Following the assumption
that the topic neighborhood covers the related concepts of this
topic, the calculated overlap set Oc

v = {w1, w2, ...} describes
the focused point and orientation on topic c, for the content
of node v. Similar to Eq. (1), the weighted embedding hc

v is
acquired by a simple and efficient pooling as follows:

hc
v =

1

|Oc
v|

|Oc
v|∑

i=1

ai · fb(wi), wi ∈ Oc
v, c ∈ C, (2)

where hc
v ∈ Rdb . For the notation ai and fb(·), please refer

to the end of Section 3.2.
Considering the different distributions of semantic orien-

tations, we regard the sizes of {Oc
v|c ∈ C} as weight co-

efficients while aggregating the compositionality of embed-
dings. So the compositional embedding of node v, Hv =∑C

c
|Oc

v|
|Ov|h

c
v , where Ov =

⋃C
c Oc

v . Expanding this equation,

Hv = 1
|Ov|

∑C
c

∑|Oc
v|

i=1 ai ·fb(wi). Since 1
|Ov| is a global mean

that has no impact on the weight distribution of semantic ori-
entations, the actual impact factor

∑|Oc
v|

i=1 ai of size-based co-
efficients approach is enough to incorporate the overlapping
scale and relevance degree (the distance from label to overlap-
words in the topic neighborhood) simultaneously.

Additionally, we further consider the too-large value de-
viation issue of

∑|Oc
v|

i=1 ai for different semantic orienta-
tions. We replace |Oc

v|
|Ov| by a more smooth softmax coefficient

exp(|Oc
v|/τ)∑

c′∈C exp(|Oc′
v |/τ) , where the larger temperature parameter τ

results in a more smooth probability distribution [Hinton et
al., 2015]. Therefore, the compositional embedding of node
v is defined as follows:

Hv =

C∑
c

exp(|Oc
v|/τ)∑

c′∈C exp(|Oc′
v |/τ)

hc
v, v ∈ V. (3)

To make the final representation capture the crucial topol-
ogy information, we develop a concise and effective learning
mode of gated message passing. Specifically, the composi-
tional embedding Hv is viewed as the initial state H

(0)
v and

the aggregation method for neighborhoods in each layer of
message passing is presented as follows:

H
(l+1)
v = σ

(
ξ
(l)

W
(l)
H H

(l)
v + (1 − ξ

(l)
)

1

|N (v)|
∑

u∈N(v)

W
(l)
H H

(l)
u

)
, (4)

where ·(l) denotes related parameters in the l-th layer (0 <
l ≤ L), σ = 1

1+e−x is the sigmoid activation function,
0 < ξ(l) ≤ 1 is a gated training parameter to control the
updated degree, W (l)

H ∈ Rd(l)
g ×d(l)

g is a weight matrix, i.e.,
the filter in graph neural networks. Along this line, the out-
put node representation HG

v = H
(L)
v ∈ Rdb mines the ten-

dentious compositionality of multi-faceted semantics and the
structural knowledge of neighborhoods.

Topic-View Graph Contrastive Learning
The representations of nodes tend to be over-smoothing after
several times of information aggregation, that is, the repre-
sentations of interacting nodes converge to a similar vector,
resulting in lower discrimination. In a zero-shot learning task,
the less differentiated object representations are more likely
to lead to the hubness issue in the semantic subspace. For our
learning paradigm with multi-faceted semantics, we design a
special topic-view graph contrastive learning module to en-
hance the node representation. We figure the node content
is composed of several topics, and our basic motivation is to
mask a few topics of nodes in the graph to produce a topic-
view new graph that samples positive pairs and negative pairs.
Compared with existing solutions for node over-smoothing,
our topic-view contrastive learning can further enhance the
importance of topic embeddings to the representation compo-
sition. We then specify the method details and contributions.

Similar to the salt-and-pepper noise in image processing,
we add noise to nodes’ topic components by randomly mask-
ing a fraction of components with zero vectors. For each node
v in the graph, we first sample a random vector m̃ ∈ {0, 1}|C|
where each dimension of it is drawn from a Bernoulli dis-
tribution independently, i.e., m̃c ∼ Bern(1 − pmc ), ∀c ∈ C.
Then, the generated topic-view node features H̃v is computed
by:

H̃v =

C∑
c

exp(|Õc
v|/τ)∑

c′∈C exp(|Õc′
v |/τ)

· hc
v ◦ m̃c, v ∈ V, (5)

where ◦ is the element-wise multiplication, pmc is the prob-
ability of removing hc

v which reflects the importance of the
c-th topic component to the node feature, |Õc

v| = |Oc
v| · m̃c.

We calculate the mask probability pmc according to the nor-
malization on the semantic orientation weights,

pmc = min

(
smmax − smc
smmax − µm

s

· pm, pτ

)
, (6)

where smc = log
∑|Oc

v|
i=1 ai, s

m
max and µm

s are the maximum
and the average value of smc , respectively, pm is the hyper-
parameter that controls the overall magnitude of feature aug-
mentation, and pτ < 1 is a cut-off probability, used to trun-
cate the probabilities since extremely high removal probabil-
ities will lead to overly corrupted node features.
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After message passing, a symmetric entropy loss is used to
optimize the distribution of each positive contrastive pair,

L
(
H

G
v , H̃

G
v

)
= −

(
logφ

(
H

G
v , H̃

G
v

)
+

q∈ΦQ∑
q ̸=v

log
(
1 − φ

(
H

G
v , H

G
q

)))
,

L
(
H̃

G
v , H

G
v

)
= −

(
logφ

(
H̃

G
v , H

G
v

)
+

q∈ΦQ∑
q ̸=v

log
(
1 − φ

(
H̃

G
v , H̃

G
q

)))
,

(7)

where Q negative embeddings ΦQ obtained by random sam-

pling from other nodes, φ
(
HG

v , H̃G
v

)
= σ

(
HG

v · H̃G
v

)
de-

notes the critic function and σ is the sigmoid nonlinearity
function. While training, the loss for contrastive learning is

Lcl =
1

|V s|
∑
v∈V s

(
L
(
HG

v , H̃G
v

)
+ L

(
H̃G

v , HG
v

))
, (8)

where V s is the set of seen nodes in training data. The train-
ing process makes node representations discriminative with
both characteristics of alignment and uniformity, i.e., similar
or homologous representations will be close, but the unique
features of each one will be retained adequately. What’s
more, for those nodes that miss some information about a
topic, the contrastive loss for the positive pair encourages
the attribute completion by exacting neighborhoods’ features.
For instance, some short texts may not explicitly mention all
the topics involved, e.g., the data mining node with cross
fields in the scholar network which is linked by papers’ ab-
stracts, corresponding to the node where we are masked out
of some topics. By approximating the original node feature
in the positive pair, the model forces the masked node to fo-
cus on completing the implied topics from the collaborative
information of its neighborhoods. The node over-smoothing
problem is also solved at the same time.

3.4 Multi-Faceted Geometric Constraints
Unlike conventional ZSL tasks in computer vision, there is a
severe issue of prototype drift of the graph-based node rep-
resentations, which is more obvious in our complex fine-
grained learning. In general, the prototype of a class of sam-
ples can be represented by their centroid, i.e., the prototype
Hp

c indicates the mean value of representations HG
v belong-

ing to class c. Since the generated node representation con-
tains updated information from neighborhoods via message
passing, the sample will inevitably incorporate feature infor-
mation of other classes. The distribution of prototypes will
drift, which disturbs the alignment between prototypes and la-
bel semantics. To alleviate this problem, we propose a multi-
faceted geometric constraint. We correct the distribution of
prototypes via different geometric properties from a spatial
perspective. In the semantic subspace, we propose to achieve
an alignment learning between prototypes and label seman-
tics by two properties, that is, distance and relative direction,

Ld = argmin
M

p
d

1

|Cs|(|Cs| − 1)/2

( ∑
0<i<j≤|Cs|

∣∣∣|Mp
d,i,j − M

l
d,i,j | − dτ

∣∣∣),
Lr = argmin

M
p
r

1

|Cs|(|Cs| − 1)/2

( ∑
0<i<j≤|Cs|

∣∣∣|Mp
r,i,j − M

l
r,i,j | − rτ

∣∣∣),
(9)

where Ld and Lr are constraint losses of distance and relative

direction. Mp
d,i,j =

√∑db

k=0(H
p
i,k −Hp

j,k)
2 calculates the

Dataset Nodes Edges Classes Features Word Embedding
DBLP 17,725 52,914 4 1,617 1,024
M10 10,310 77,218 10 932 1,024

Cora E 2,708 5,429 7 904 1,024

Table 1: The statistics of datasets.

Euclidean distance between the prototype of class i and j,

M l
d,i,j =

√∑db

k=0(Si,k − Sj,k)2) calculates the Euclidean
distance between the CSD of class i and j, and the distance
approximation is restricted by a hyperparameter threshold dτ .
Similarly, Mp

r,i,j =
Hp

i ·H
p
j

|Hp
i |·|H

p
j |

calculates the Cosine similarity

between the prototype of class i and j, M l
r,i,j =

Si·Sj

|Si|·|Sj |
calculates the Cosine similarity between the CSD of class i
and j, and the relative direction approximation is restricted by
a hyperparameter threshold rτ . During the training stage, the
mapping network of node representations is encouraged to
gradually align the consistency between prototypes and label
semantics by the geometric constraints.

3.5 Objective Function
We regard the output layer of graph neural network in Eq. (4)
as the map function which maps the node representation into
our semantic space. In this space, we compute the prediction
score ζvc of node v w.r.t. a seen class c ∈ Cs as:

ζvc = sim(HG
v , Sc) = HG

v · Sc. (10)
The inference for unseen classes follows the operation as

well as Eq. (10). The ground-truth label of node v is yv ∈
{0, 1}Cs

, and the loss of node classification is defined as:

Lc = − 1

|V s|
∑
v∈V s

1

|Cs|
∑
c∈Cs

yv(c)ln(ŷv(c)), (11)

where ŷv(c) = softmax(ζvc) = exp(ζvc)∑
c′∈Cs exp(ζvc′ )

, V s is the
set of seen nodes in training data. Finally, our overall model
jointly optimizes the networks by integrating the classifica-
tion loss (Eq. (11)), the contrastive learning loss (Eq. (8)),
and the loss of geometric constraints (Eq. (9)) as follows:

L = Lc + λ1Lcl + λ2(Ld + Lr), (12)
where λ1 and λ2 are trade-off hyper-parameters to con-

trol the influence of contrastive learning and geometric con-
straints. The construction of label topics and multi-faceted
words assignment can be pre-computed in the offline stage.

4 Experiments
4.1 Experimental Settings
Datasets. We conduct experiments on three public real-world
scholar datasets, DBLP, M10 [Pan et al., 2016], and Cora E
(Cora Enrich) [Bojchevski and Günnemann, ]. The nodes,
edges, and labels in these three represent articles, citations,
and research areas, respectively. Compared with other ac-
cessible graph data, these datasets provide classification la-
bels and raw text. We remove meaningless conjunctions and
prepositions such as “of”, “for”, “and”, etc. Following [Pan
et al., 2016], we only keep words that occur more than 20
times in a dataset to avoid noise. Note that, due to the differ-
ence in information collection strategy and vocabulary, our
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Models Class Split I Class Split II
Cora E M10 DBLP Cora E M10 DBLP

RandG 22.14 33.12 29.13 26.22 41.33 46.32
DAP 25.44 38.86 33.15 30.32 47.12 52.45

ESZSL 27.03 37.14 35.45∗ 38.65 55.42 51.37
WDVSc 29.17 38.15 32.74 35.14 45.14 48.98
DGPN 33.65∗ 42.23∗ 35.17 46.35∗ 62.51∗ 56.12∗

DBiGCN 30.63 38.79 33.29 41.12 57.84 52.79
KMF 36.15 44.13 38.65 50.30 64.13 59.88

Improve ↑ +7.43% +4.50% +9.03% +8.52% +2.60% +6.70%

Table 2: Zero-shot node classification accuracy (%) on datasets,
where ∗ indicates the best result among baselines.

datasets are not consistent with the datasets with the same
names in previous studies, such as Cora. We also offer the
word embedding matrix produced by BERT. The statistics of
our processed datasets are listed in Table 1.
Baselines. We compare KMF with three types of baselines.
i). RandomGuess (RandG), i.e., randomly guessing an un-
seen label, is introduced as the naive baseline. ii). The rep-
resentative and powerful ZSL approaches for object recogni-
tion include DAP [Lampert et al., 2013], ESZSL [Romera-
Paredes and Torr, 2015], and WDVSc [Wan et al., 2019]. We
carefully adjust their implementation for adapting to our task.
iii). The state-of-the-art models on zero-shot node classifica-
tion, i.e., DGPN [Wang et al., 2021], DBiGCN [Yue et al.,
2022]. We do not use some KG models [Wang et al., 2018a;
Liu et al., 2020b] since the number of categories is not
enough to build a large network for relation learning, which
leads to poor results in the existing work mentioned above.
Implementation Details. In the experiments, ConceptNet is
used for capturing knowledge concepts of labels and topic
neighborhoods. We tune the hyperparameters of KMF and
baselines by hyperopt [Bergstra et al., 2013] to maintain fair
competition. The embedding size of ei produced by BERT is
1,024. The radius of topic neighbors R = {0, 1, 2, 3}. We set
the layer L = [0, 1, ..., 4] of GCN for compositional embed-
ding, the dimension of hidden state and output db = 1024,
the maximum of N (v) is set to 10, and the sampling number
Q = [0, 5, 10, 15, 20] of negative contrastive pairs in graph
contrastive learning. The magnitude parameters pm, pτ ∼
uniform[0.1, 0.5] in the topic mask sampling. In the geomet-
ric constraints, dr, rτ ∼ uniform[0.1, 0.5] as well. For other
hyperparameters, we set the attenuation coefficient α = 0.8,
temperature τ = 10, filtering soft cut %P = 25%, and trade-
off λ1,2 ∼ uniform[0.1, 0.5] according to the feedback of ex-
perimental performance. We adopt Adam [Kingma and Ba,
2015] with a learning rate of 0.001 to optimize our model.

We design two seen/unseen class split settings like [Wang
et al., 2021]. We randomly adopt some classes as seen classes
and the rest classes as unseen ones 3 times and calculate av-
erage results. Class Split I: all the seen classes are used for
training, and all the unseen classes are used for testing. The
[ train/val/test ] class split for Cora E, M10, and DBLP are
[3/0/4], [5/0/5], and [2/0/2]. Class Split II: the seen classes
are partitioned into train and validation parts, and the unseen
classes are still used for testing. The [ train/val/test ] class
split for Cora E, M10, and DBLP are [2/2/3], [3/3/4], and
[2/2/2]. Since the class number of DBLP is only 4, based
on the setting of Class Split I, we randomly cut 20% nodes

33
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35.321
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34.03
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36.15
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KMF-K KMF-T KMF-C KMF-G KMF KMF-a KMF-t

(a) Split I on Cora_E (b) Split I on M10 (c) Split I on DBLP

(d) Split II on Cora_E (e) Split II on M10 (f) Split II on DBLP

Figure 3: The ablation studies of KMF on three datasets under Class
Split I and II. Each module contributes to the overall performance.

belonging to unseen classes to create the validation set.

4.2 Zero-Shot Node Classification
We conduct the zero-shot node classification task on our three
datasets. The experimental results of Accuracy (ACC) are
reported in Table 2. Overall, our proposed KMF model
achieves the best performance among all baselines. KMF out-
performs the most powerful baseline in each Class Split with
7.0% and 5.94% average relative accuracy improvements,
compared with the increasing degrees of previous models,
KMF expresses an obvious breakthrough in this difficult task.
And KMF obtains the best ACC of 36.15% and 50.30% on the
Cora E dataset under the settings of Class Split I and Class
Split II respectively, which are great improvements on this
dataset that the best scores among previous baselines are only
33.65% and 46.35%. Further analyzing the performance of
baselines, we find that the performance of models using only
graph neural networks or applying zero-shot learning frame-
work is relatively close, and difficult to distinguish which
learning mode is better. The fusion model of the above two
modes, i.e., KMF, DBiGCN, and DGPN, performs well in
most groups, reflecting this fusion paradigm’s superiority. To
sum up, the experimental results present both the effective-
ness and strong generalization of learned knowledge-aware
multi-faceted representation in zero-shot learning of nodes.

4.3 Ablation Studies
To demonstrate the necessity of each proposed module,
we carefully design and conduct the ablation experiments.
Specifically, there are 6 sub-models KMF-K, KMF-T, KMF-
C, KMF-G, KMF-a, KMF-t, and the complete model KMF.
KMF-K refers to the variant that KMF uses the text-CSDs
rather than the enhanced KG-Aware CSDs. KMF-T uses the
KG-aware CSDs but removes the module of topic construc-
tion, which regards the embedding of node content as the
node feature of a GCN. KMF-C, KMF-G does not consider
the contrastive learning module, and the geometric constraint
module, respectively. KMF-a and KMF-t are both more fine-
grained variants. The former does not use the attenuation
weight ai of wi, while the latter removes the temperature pa-
rameter τ . As shown in Figure 3, all tested parts contribute
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(a) L on Cora_E (b) L on M10 (c) L on DBLP

(d) R on Cora_E (e) R on M10 (f) R on DBLP

Figure 4: The tune-up experiments of the parameters, i.e., GCN
layer L and radius R of topic neighborhoods under Class Split I.

(a) KMF on Cs (b) KMF on Cs∪Cu (c) DGPN on Cs∪Cu

Figure 5: The t−SNE visualization of representations of KMF and
the representative approach DGPN on Cora E.

to the final performance, which evidently demonstrates their
effectiveness. What’s more, we find that the lack of multi-
faceted representation modeling, i.e, KMF-T, leads to max-
imum performance loss. It shows that our motivation is the
key to achieving accurate zero-shot node classification.

4.4 Hyper-Parameter Tune-up
In this section, we present the effect of two key hyper-
parameters that are most important to our proposed model in
the experiments: the radius R of topic neighborhoods and the
number L of aggregation layers of GCN. Here we also test
the sub-models KMF-C, KMF-G, KMF-K, and KMF-T men-
tioned in Section 4.3. The best result of each hyper-parameter
setting is illustrated in Figure 4. From the perspective of the
global trend, with the increase of R and L, the classification
accuracies of our models in most settings improve steadily at
firstly and gradually decrease after reaching the peak. To sum
up, L = 2 can achieve good results in most cases, and R = 2
is the same. The model with R = 2 and L = 2 is good and
robust enough to deal with various situations.

4.5 Representations Visualization Analysis
We try to demonstrate the intuitive changes of node repre-
sentations after incorporating knowledge-aware multi-faceted
representations. Therefore, like previous work [Li et al.,
2020; Yu et al., 2022], we utilize t-SNE [Maaten and Hinton,
2008] to transform feature representations (node embedding)
of KMF and the representative approach DGPN into a 2-
dimensional space to make an intuitive visualization. Here we
visualize the node embedding of Cora E (actually, the change

Models Class Split I Class Split II
AUC HR@10 MRR@10 AUC HR@10 MRR@10

DAP 62.15 39.1 22.3 70.33 44.4 30.6
ESZSL 60.64 35.6 20.4 66.22 42.9 27.1
WDVSc 62.37 39.5 22.4 67.45 43.1 28.7
DGPN 63.12∗ 40.9∗ 23.1∗ 71.31∗ 46.1∗ 31.5∗

DBiGCN 61.68 38.4 21.2 68.32 43.7 29.1
KMF 65.19 41.8 26.4 73.27 50.4 33.3

Improve ↑ +3.28% +2.20% +14.29% +2.75% +9.33% +5.71%

Table 3: Zero-shot cross-domain recommendation results (%) on
DBLP, where ∗ indicates the best result among baselines.

of representation visualization is similar in other datasets),
where different colors denote different classes. According to
Figure 5(a) and 5(b), the model obtains the cognitive ability
to recognize unseen classes. And, there is a phenomenon that
the visualization of KMF is more distinguishable than DGPN.
The embedding learned by KMF presents a high intra-class
similarity and divides nodes into different classes with dis-
tinct boundaries. On the contrary, the inter-margins of DGPN
clusters are not distinguishable enough.

4.6 Zero-Shot Cross-Domain Recommendation

We design a zero-shot cross-domain recommendation appli-
cation to further evaluate the generality of our representation.
We choose DBLP due to its large number of nodes. Given a
paper, the item-to-item task aims to recommend correct cita-
tions (papers) to it, which can be viewed as a link prediction.
Each class denotes a domain in our work and the class c is de-
fined as a target (unseen) class. All edges (linked pairs) with
the node belonging to c are divided into the testing set, and
others form the training set. For each training/testing linked
pair, we generated 5/100 fake linked pairs, i.e., replacing its
citation randomly. We report three measures of ranking qual-
ity: Area Under Curve (AUC), Hit Ratio (HR@10), and Mean
Reciprocal Rank (MRR@10). Each class would be treated as
the target class once, and we report the average result in Ta-
ble 3. Our KMF model achieves the best performance among
all groups, which reflects the superior generality of our repre-
sentation in such open-world downstream applications.

5 Conclusion

In this paper, we proposed a multi-faceted learning approach
for zero-shot node classification, which first introduced the
paradigm of knowledge-based feature enhancement into the
emerging research area. Our model, KMF, expanded the se-
mantic coverage of each label by constructing its knowledge-
based topics. Then the overlap between the label topic and
the node content was computed to generate a topic-level rep-
resentation that offered multi-faceted semantic relevancy to
multiple labels. We further considered the hard issue of pro-
totype drift caused by message passing and designed a geo-
metric constraint loss to align the semantic space of proto-
types and labels. Sufficient comparison experiments on pub-
lic datasets evaluated the effectiveness and generalization of
KMF. In the future, we plan to introduce the generative model
to further alleviate the model bias.
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