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Abstract
Basket representation plays an important role in
the task of next-basket recommendation. How-
ever, existing methods generally adopt pooling op-
erations to learn a basket’s representation, from
which two critical issues can be identified. First,
they treat a basket as a set of items independent
and identically distributed. We find that items
occurring in the same basket have much higher
correlations than those randomly selected by con-
ducting data analysis on two real datasets. Sec-
ond, although some works have recognized the im-
portance of items repeatedly purchased in multi-
ple baskets, they ignore the correlations among
the repeated items in the same basket, whose im-
portance is shown by our data analysis. In this
paper, we propose a novel Basket Representation
Learning (BRL) model by leveraging the correla-
tions among intra-basket items. Specifically, we
first connect all the items (in a basket) as a hyper-
edge, where the correlations among different items
can be well exploited by hypergraph convolution
operations. Meanwhile, we also connect all the re-
peated items in the same basket as a hyperedge,
whereby their correlations can be further strength-
ened. We generate a negative (positive) view of
the basket by data augmentation on repeated (non-
repeated) items, and apply contrastive learning to
force more agreements on repeated items. Finally,
experimental results on three real datasets show
that our approach performs better than eight base-
lines in ranking accuracy.

1 Introduction
Next basket recommendation (NBR) has been widely used
in a variety of recommendation scenarios [Yu et al., 2016;
Bai et al., 2018], including community group purchases, gro-
cery stores, and so on. It aims to learn accurate user pref-
erence from a user’s historical basket sequence, and then to
recommend a basket of items that the user may purchase next.
Most of the existing NBR methods focus on modeling user
preference from the transition of sequential baskets via typ-
ical neural networks, such as RNN [Le et al., 2019; Schulz
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Figure 1: A toy example to explain our assumptions, where a user
purchased four baskets and we make recommendations accordingly.

et al., 2020; Qin et al., 2021]. Although baskets are taken
as the essential input of RNN, their representation learning
has not attracted much attention in the literature. As a matter
of fact, existing methods generally adopt pooling operations
(max pooling, average pooling) [Hu and He, 2019; Qin et al.,
2021; Shen et al., 2022] to learn a basket’s representation by
combining all the basket members together.

Two critical issues can be identified from the literature.
Firstly, the underlying assumption behind pooling operations
is that all the items in a basket are independent and iden-
tically distributed, which may not hold in real applications.
We assume that it is not random that a number of items ap-
pear in the same basket, and there are positive correlations
among these items, which are valuable for basket represen-
tation learning. Secondly, although some works [Qin et al.,
2021; Ariannezhad et al., 2022; Katz et al., 2022] have recog-
nized the importance of items that are repeatedly purchased
in multiple baskets, they ignore the correlations of repeated
items1 in the same basket. We assume that such kind of item
correlations is even more significant than that of overall intra-
basket items for basket representation learning.

A toy example to explain our assumptions is given in
Fig. 1. Suppose a user purchased 4 baskets in the past, la-
beled as B1, B2, B3 and B4 respectively. We note that:

1We use term ‘repeated items’ exchangeable with term ‘repur-
chased items’ throughout this paper.
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(1) Milk and Bread are repurchased in basket B3, and such
a co-occurrence inspires us that the two repeated items are
somehow correlated in meeting user preference as a bundle.
Hence, when we find Milk is purchased in basket B4, it is
reasonable to predict that the user will buy Bread in the next
time step. (2) Egg is purchased more frequently than many
other items, leaving us a hint for the future suggestion. (3)
Since Milk has been predicted in case (1), we make Cake as
a recommendation since items in baskets B1 and B3 can be
broadly classified into the same category ‘dessert/snacks’, in-
dicating the correlations for all the items in the same basket.

To further validate our assumptions, we conduct data anal-
ysis on two real datasets in Sec. 2. The results show that: (1)
items within a basket have a higher correlation than those ran-
domly selected, validating our first assumption; (2) repeated
items in a basket have a higher correlation than all the items
in the same basket, demonstrating our second assumption.

Hence, this paper proposes a novel Basket Representation
Learning (BRL) model by making use of item correlations
within a basket, especially those of repeated items. Specif-
ically, we first connect all the items (in a basket) as a hy-
peredge, where each item serves as a node. Multiple hyper-
edges construct a hypergraph. Then, the correlations among
items can be well exploited by hypergraph convolution opera-
tions [Yi and Park, 2020]. Meanwhile, we also connect all the
repeated items in the same basket as a hyperedge, whereby
their correlations can be further strengthened by propagating
messages between nodes. Lastly, we generate a negative view
of the basket by randomly replacing repeated items with non-
repeated ones, and a positive view by removing weakly cor-
related items from the basket. Contrastive learning [Zhang
et al., 2021] is then applied to force the agreements more on
repeated items when representing the basket.

The main contributions are summarized as follows:
• We propose two assumptions to focus more on the cor-

relations of intra-baseket items, especially those of re-
peated items. These assumptions are validated by our
data analysis on two real datasets.

• We propose a novel Basket Representation Learning
(BRL) model to realize the two assumptions by applying
hypergraph convolution operations on the hyperedges,
which are constructed by connecting all items and re-
peated items in the same basket. We also designed a
contrastive learning task to highlight more on repeated
items for better basket representation.

• Experimental results on three real datasets demonstrate
that our proposed method can achieve better perfor-
mance in comparison with eight competing models.

2 Assumption Validation
In this section, we will conduct data analysis on two real
datasets to validate our assumptions. Specifically, we first
choose the dataset Instacart(Dunnhumby)2 since it contains
30(20) categories of items. Then, we define the correlation as
the percentage of items within a basket belonging to the same
category, and take the greatest percentage as the correlation

2We defer the dataset description to Sec. 4.1. The TaFeng dataset
is not used since it does not have category information.
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Figure 2: Item correlation within a basket on the Dunnhumby and
Instacart datasets.

if items belong to multiple categories. We denote it as ‘bas-
ket’. As a comparison, we generate the same number of bas-
kets, each of which has the same average number (i.e., 8(7)
as given in Tab. 2) of items as that in two real datasets. All
the items in a generated basket are randomly selected from
the categories users purchased before. After that, we calcu-
late the correlation of the generated baskets. We denote this
baseline as ‘random’. Lastly, we construct a new basket by re-
taining only the repeated items from the original basket, and
compute the percentage of repurchased items that belong to
the same category. For easy discussion, we denote this variant
as ‘repeated items’.

The results are illustrated in Fig. 2. It shows that randomly
selected items have the smallest item correlation, i.e., two
random items have 20%(25%) percentage located in the same
category, given the distribution of categories purchased by
users. Our first assumption is valid since ‘basket’ has a higher
correlation than ‘random’, indicating the importance of items
appearing in the same basket. Furthermore, ‘repeated items’
has an even higher correlation (i.e., 45%(55%)) than the case
of ‘basket’ (i.e., 37%(47%)), implying the validation of our
second assumption. Therefore, both of our assumptions hold
in real applications, which inspires us to make better use of
those correlations for basket representation learning.

3 Our BRL Model
We introduce a number of notations for the sake of discus-
sion. Let I = {i1, i2, i3, . . . , i|I|} denote the set of items and
U = {u1, u2, u3, . . . , u|U |} denote all users, where |I| and
|U | represent the number of items and users, respectively. We
define X ∈ R|I|×d as the embedding matrix corresponding
to items, where d represents the embedding dimension. For
each user u ∈ U , we use Bu = {bu1 , bu2 , bu3 , . . . , bum} to de-
note the historical purchased baskets with length m, where
buk = {ik,1, ik,2, . . . , ik,j , . . . , ik,n} represents the k-th basket
purchased by the user u and ik,j ∈ I . We denote the basket
data of all users as B = [B1, B2, . . . , B|U |]. The task of this
paper is to predict the next basket bum+1 for a given user u.

3.1 Model Overview
This paper propose a novel Basket Representation Learning
(BRL) model by leveraging the correlations among intra-
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Figure 3: Examples of hypergraph construction and the overall framework of the proposed Basket Representation Learning (BRL) model.

basket items for next-basket recommendation. First, as shown
on the left side of Fig. 3, we connect each basket with a hy-
peredge, and at the same time connect the repeated items in
a basket with a hyperedge. Then construct all the basket data
in the same period into a hypergraph (Sec. 3.2). Next, as
shown on the right side of Fig. 3, we perform multi-layer hy-
pergraph convolutions networks (HGCN) on the hypergraph
to explore the correlation between items (Sec. 3.3). Finally,
we perform data augmentation on repeated items to construct
positive and negative views of the anchor basket, and then use
contrastive learning techniques to make anchor basket repre-
sentations more concerned about repeated items (Sec. 3.4).
In addition, the representation of the basket is fed into the
Recurrent Neural Network (RNN) to extract user preferences
and recommend items for the next basket (Sec. 3.4).

3.2 Hypergraph Construction and Representation
Here, we first illustrate how to transform the basket data into
a hypergraph, and how to represent a hypergraph.
Hypergraph Construction. Considering that the character-
istics of an item have a certain timeliness, for example, when
a mobile phone is first released, its user attention is relatively
high, but after one year, the item becomes unpopular. There-
fore, we group the baskets according to the timestamp, as-
suming that the characteristics of an item will not change
within a certain period. To capture the correlations among
intra-basket items, this paper converts all the basket data for
each period into a hypergraph. Specifically, to establish the
connection between the items in the basket and emphasize
the relationship between the repeatedly purchased items, we
first use hyperedges to connect each basket and the repeated
items. An example is shown on the left side of Fig. 3, the ϵt1
(solid green line) is a hyperedge, which represents a basket
data (i.e., items {i2, i5, i6, i7}) of user 1 within the period t.
And the ϵt4 (white dotted line) is also a hyperedge, indicating
that items i1 and i3 in user 2’s latest basket are previously
purchased items. Then, we construct all hyperedges (baskets
and subsets of repeated items) Et = {ϵt1, ϵt2, . . . , ϵt|S|} and re-
lated vertices (item subset) V t ⊂ I in period t into a hyper-
graph Gt, where |S| represents the number of hyperedges.

Let G = {G1, G2, . . . , Gt, . . . , GT } represent a series of hy-
pergraphs, where Gt = {V t, Et} is constructed from all the
baskets purchased during time period t, and T represents the
total number of time periods.
Hypergraph Representation. To facilitate storage and com-
putation of hypergraphs, each hypergraph Gt ∈ G can be
represented by an incidence matrix Ht of size |V t| × |Et|,
where |V t| and |Et| denote the number of vertices and hy-
peredges in the Gt, respectively. When a hyperedge (bas-
ket) ϵ ∈ Et is incident with a vertex (item) i, in other words,
when item i is connected by ϵ, we set Ht

iϵ = 1, otherwise
Ht

iϵ = 0. Each hyperedge ϵ ∈ Et is assigned a positive
weight W t

ϵϵ, and all the weights formulate a diagonal matrix
Wt ∈ R|S|×|S|. Wϵϵ is set to 1 when ϵ ∈ Et is composed of
a basket (e.g., ϵt1 in Fig. 3) and is set to 2 if composed of a
repeated sub-basket (e.g., ϵt4 in Fig. 3). Degree of vertices and
hyperedges Dt ∈ R|V t|×|V t| and Ft ∈ R|S|×|S| are defined
as Dt

ii =
∑|S|

ϵ=1 W
t
ϵϵH

t
iϵ and F t

ϵϵ =
∑|V t|

i=1 Ht
iϵ, respectively.

3.3 Hypergraph Convolutional Network (HGCN)
The core idea of hypergraph convolution [Feng et al., 2019]
is to propagate and aggregate information between neighbor
nodes on the hypergraph structure so that similar nodes can
obtain similar representations (higher correlation). Therefore,
to better explore the correlations among intra-basket items in
this paper, we perform a multi-layer hypergraph convolution
network (HGCN) on the obtained hypergraph Gt ∈ G.

We first obtain the initial representation of the whole item
set X. For hypergraph Gt, given the hyperedges Et and
item’s initial latent representation (or embedding) Xt,(0), we
design L convolutional layers for each period t. Then we
define a convolution operation over the hypergraph, the rep-
resentation update rule for item embeddings at layer (l + 1)
is given by:

x
t,(l+1)
i =

|V t|∑
j=1

|Et|∑
ϵ=1

H̃t
iϵW

t
ϵϵH̃

t
jϵx

t,(l)
j , (1)

where x
t,(l)
j is the representation of the j-th vertex in the (l)-
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th layer, xt,(0)
j ∈ Rd represents the j-th row of Xt,(0). H̃t is

a variant of incidence mathrix Ht and H̃t
jϵ reflects the impor-

tance of item j in the hyperedge ϵ. In other words, each vertex
has a different importance to a hyperedge ϵ. Thus, we draw
on the idea of term frequency–inverse document frequency
(TF-IDF) [Havrlant and Kreinovich, 2017] to evaluate the im-
portance of items within a basket: when item i appears more
frequently in user u’s historical baskets and less frequently in
other baskets, it is considered more important in the current
basket. The formal expression is as follows:

H̃t
iϵ = Ht

iϵ ·
αu
i

αi
, (2)

where u is the creator of hyperedge ϵ, αu
i denotes the user-

wise frequency for a given item i and αi refers to the global
frequency of item i. Ht

iϵ = 0 if item i is not in a hyperedge
ϵ ∈ Et. The detailed calculation rules of αi and αu

i are as:

αi =

∑
B·

j∈B I(B·
j)

|B|
, αu

i =

∑
Bu

j ∈Bu I(Bu
j )

|Bu|
, (3)

where |B| and |Bu| represent the total number of baskets of
all users and the total number of baskets of user u, respec-
tively. I(Bj) is an indicative function, if item i belongs to a
basket Bj , then I(Bj) is equal to 1, otherwise it is equal to 0.
It can be seen that the global popularity of items is used as a
penalty indicator. When an item is more popular, its purchase
can less reflect the connection with other items in the basket
and reflect the user’s personalized preferences.

The hypergraph convolution rule for all vertices in the hy-
pergraph Gt, that is, the matrix form of Eq. 1 can be written
as: Xt,(l+1) = H̃tWtH̃⊤

t X
t,(l). However, the spectral ra-

dius of H̃tWtH̃⊤
t is not constrained in this formula, which

means that the scale of Xt,(l+1) may change and leads to nu-
merical instability in the optimization. Similar to [Bai et al.,
2021], we apply a symmetric normalization, and the matrix
form of the final vertex hypergraph convolution rule is ex-
pressed as follows:

Xt,(l+1) = (Dt)−1H̃tWt(Ft)−1H̃⊤
t X

t,(l), (4)

where Dt and Ft are degrees of vertices and hyperedges, re-
spectively, which are defined in Sec. 3.2.

After passing through the L hypergraph convolution lay-
ers on hypergraph Gt, vertex (i.e., item) embedding can
stack more higher-order messages propagated from multi-hop
neighbors, thus effectively establishing correlations among
intra-basket items. We obtain the final item embeddings Xt

in Eq. 5 based on the mean pooling over all layers, i.e.,:

Xt =
1

L+ 1

L∑
l=0

Xt,(l) (5)

The representation of items in other periods t ∈ {1, 2, . . . , T}
can be obtained in the manner of Eq. 5. So far, each item
representation we have obtained has fully considered the cor-
relation with other items in the basket. In particular, our pro-
posed method adds a new hyperedge connection to the re-
peated items in the basket, further strengthening the relation-
ship between items.

3.4 Basket Representation Learning
As shown in Sec. 2, repeated items in the basket are usually
more closely related than other items, and play a more impor-
tant role in basket representation learning. In this section, we
generate both positive and negative views for the anchor bas-
ket through data augmentation, and emphasize the effect of
removing repeated items on the basket representation through
contrastive learning.
Data Augumentation. Suppose a basket buk =
[i1(milk), i2(egg), i3(bread), i4(toy)] is given by user u,
we regard it as an anchor basket and re-denote it by banc for
expressiveness. Then, we create a negative bneg (positive
bpos ) view from the anchor basket by making changes on
repeated (non-repeated) items. Let’s assume that items i1
and i3 are previously purchased items (i.e., repeated) in
this basket. (i) repeated items in a basket are usually more
closely related and representative of the basket and the user’s
preference. The basket semantics will greatly shift if we
perturb this part of the repeated purchase items. Hence,
we replace all the repeated items in the anchor basket with
random items to get a negative view of anchor basket, e.g.,
bneg = [i5(rose), i2(egg), i6(pencil), i4(toy)], where items
i5 and i6 are randomly sampled from the item set. (ii) due to
the diversity and randomness of user behaviors, a basket may
contain some items that are less relevant to the basket as a
whole, such as an item i4(toy) in the basket banc mentioned
above, which we call noise items. Therefore, removing
these noise items does not affect the representation of basket
semantics. The basket we get after removing noise items
from the anchor basket is taken as the positive view, e.g.,
bpos = [i1(milk), i2(egg), i3(bread)]. More specifically, after
obtaining the whole representation ebanc of the anchor basket
(from Eq. 6), we calculate and sort its correlation with the
representation Xt

i (from Eq. 5) of each item i in the basket,
and rank the least relevant top 20% items removed. In this
way, we obtain the anchor basket banc, and its positive bpos

and negative bneg basket views.
Basket Encoding. Now, we need to fuse the representations
of the items in the basket to get an overall representation of
the basket. Since we have emphasized the importance of each
item in the basket to the hyperedge (that is, the basket) in the
hypergraph convolution, see Eq. 2 for details. At the same
time, the item representation obtained after hypergraph con-
volution (i.e., Eq. 5 in Sec. 3.3) has captured the relevance of
repeated items between baskets, as well as emphasizing the
closer connection between items purchased repeatedly. So
we can use the simplest mean pooling to take the average
representation of all items in the basket banc as the whole
representation ebanc of the basket in hypergraph Gt. That is,

ebanc =
1

|banc|
∑

i∈banc

Xt
i (6)

where |banc| represents the number of items contained in the
anchor basket banc in hypergraph Gt. Similarly, we can ob-
tain representations ebpos and ebneg for the positive and neg-
ative baskets, respectively.
Contrastive Learning. To better capture the characteristics
of dynamic changes in user u’s preferences, we use RNN
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to model the conversion process of basket sequences Bu.
Specifically, we input the representation ebanc of the user’s
basket banc ∈ Bu at time t into the RNN unit, that is,

hanc
t = RNN(ebanc ,hanc

t−1), (7)

where RNN unit can be gated recurrent unit (GRU) [Chung et
al., 2014] and Long short-term memory (LSTM) [Hochreiter
and Schmidhuber, 1997], hanc

t−1 is the hidden state of the RNN
unit at time t − 1. The last hidden state hanc

T is employed as
a composition of the user’s preference. After that, a softmax
function is applied to calculate the item scores:

ŷ = softmax(hanc
T ), (8)

where ŷ ∈ R|I| represents the probability distribution that a
user will be interested in the entire set of items. We can also
calculate the probability distribution ŷ+ (ŷ−) of the user’s
preference on items from the positive (negative) basket view.
Therefore, user representations learned from a positive view
should be intuitively pulled closer to the original user repre-
sentation. In contrast, representations learned from a negative
view without repurchased concepts should be pushed away
from the original result. We finally use triplet margin loss to
measure the relative similarity between samples:

Lcl =

|I|∑
i=1

max
(
d(ŷi, ŷi

+)− d(ŷi, ŷ
−
i ) + 1, 0

)
, (9)

where the distance function d(·, ·) is set to the L2 norm since
user representations generated by the same user preference
representation are in the same embedding space.

3.5 Model Optimization
We train our BRL model by optimizing the main task on
implicit feedback together with the contrastive learning loss
(i.e., Eq. 9). Given a training set Bu = {bu1 , bu2 , bu3 , . . . , bum}
of user u, yu is the ground-truth next purchased basket for
user u and ŷu represents the next basket predicted by our rec-
ommender. Inspired by [Hu and He, 2019], we define our
optimized objective of the recommendation task as follows:

Lrec =
∑
u∈U

M(yu, ŷu) + γ · P (yu, ŷu), (10)

where γ is a hyperparameter, M(·, ·) represents the weighted
mean square loss function and P (·, ·) is partitioned set margin
constraint that maximizes the pair-wise margin between the
predicted correct and error sets. M(yu, ŷu) is obtained by
the following formula:

M(yu, ŷu) =

|I|∑
m=1

(ey,m − eŷ,m)2

αim

, (11)

where ey,m is the m-th entry of yu and eŷ,m is the m-th entry
of ŷu. αim is the frequency of element im in the train set
in Eq. 3, which is used to make the contributions of different
elements to the loss equilibrium. Taking account of a pair-
wise margin between the predicted correct and incorrect sets,
we define the partitioned set margin in the next basket using
the following function:

P (yu, ŷu) =
1

|zu||zu|
∑
i∈zu

∑
j∈zu

marg(ezu,i, ezu,j) (12)

in which zu is the matched set of yu ∩ ŷu and zu = yu∩ ŷu,
yu represents all the element not appearing in yu, ezu,i and
ezu,j is the i-th element in zu and the j-th in zu, separately.
The marg(·) calculates the pair-wise margin. We adopt multi-
task learning optimizing the recommendation loss and con-
trastive loss jointly. The joint loss is formulated as follows:

L = Lrec + λ · Lcl (13)

where λ controls the strength of contrastive learning loss Lcl.
We can use a gradient descent optimization algorithm to com-
pute the loss according to Eq. 13 and backpropagate the gra-
dients to update the parameters of our BRL model.

4 Experimentation
4.1 Experimental Settings
Datasets. We use three real-world datasets in our experi-
ments: TaFeng3, Dunnhumby4 and Instacart5. TaFeng is a
Chinese grocery store dataset, which contains shopping trans-
actions in four months. Dunnhumby consists of household-
level transactions from most frequent shoppers, and it is used
in [Faggioli et al., 2020a; Ariannezhad et al., 2022]. Instacart
records over 3 million online purchases on the Instacart gro-
cery service. Note that all users with less than 3 baskets are
removed to ensure temporal sequential signals exist in the
records (applied in [Hu and He, 2019; Ariannezhad et al.,
2022]). For TaFeng, we save the top 5,000 most frequent
items that cover 83% items appearing in all the baskets. For
Dunnhumby, we use the version with 50k users. For Instacart,
we remove the least frequent items. We treat all the items
bought in the same order as a basket. The overall time span
of Dunnhumby and Tafeng is greater than 4 months, and we
divide the time span by weeks; Instacart divides it by days
because its overall time span is less than 1 month. The statis-
tics of our datasets after pre-processing are shown in Tab. 2.
#users, #items, and #baskets represent the total number of
users, items, and baskets respectively. avg. basket size repre-
sents the average number of items in each basket. avg. bas-
ket/user indicates how many baskets each user owns on av-
erage. repeated ratio (all) is the ratio of repeated items to
all purchased items. repeated ratio (target) is the ratio of re-
peated purchase items in target baskets (test set).

Comparison Methods. We compare BRL with eight base-
lines, including two early baselines (POP6, FPMC [Rendle
et al., 2010]), five RNN-based models (DREAM [Yu et al.,
2016], Beacon [Le et al., 2019], Sets2Sets [Hu and He, 2019],
CLEA [Qin et al., 2021], MBN [Shen et al., 2022]), and a hy-
pergraph based model (NBRR) [Katz et al., 2022].
Evaluation Metrics. Following [Shao et al., 2022; Katz et
al., 2022], we adopt three commonly used metrics for evalu-
ation, namely Recall@K, NDCG@K and MAP@K, where
K is set to 10 and 20 in our experiments. Generally, greater
values of evaluation metrics indicate better accuracy.

3https://www.kaggle.com/chiranjivdas09/
ta-feng-grocery-dataset

4https://www.dunnhumby.com/source-files/
5https://www.kaggle.com/c/instacart-market-basket-analysis
6It always suggests users with the most popular item.
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Dataset Metrics POP FPMC DREAM Beacon MBN NBRR Sets2Sets CLEA BRL Improve

TaFeng

Recall@10 2.59 3.12 7.83 8.21 9.83 10.23 10.94 11.81 11.98 1.44%
NDCG@10 2.00 2.96 7.17 8.51 8.09 7.72 8.47 9.57 9.75 1.88%
MAP@10 3.97 6.12 11.53 11.62 15.52 16.02 17.58 20.12 21.29 5.81%
Recall@20 3.87 4.53 11.58 11.76 13.04 14.67 15.51 15.58 16.04 2.95%
NDCG@20 2.51 3.57 8.02 8.51 8.87 8.85 9.57 10.36 10.79 4.15%
MAP@20 2.41 4.83 6.72 7.87 9.91 8.54 8.71 10.73 11.92 11.09%

Dunnhumby

Recall@10 7.78 8.64 9.72 9.13 13.85 15.62 16.97 16.93 17.48 3.01%
NDCG@10 8.99 9.53 11.39 10.86 14.28 14.83 15.06 15.83 17.54 10.80%
MAP@10 2.73 2.95 3.54 3.42 4.64 4.52 4.62 5.14 5.85 13.81%
Recall@20 10.19 11.21 13.26 12.35 19.66 21.78 22.56 22.13 23.19 2.79%
NDCG@20 9.23 9.92 12.17 11.42 14.91 15.50 15.54 16.11 18.73 16.26%
MAP@20 1.50 1.68 1.84 1.73 2.85 2.77 2.80 3.19 3.61 13.17%

Instacart

Recall@10 7.49 7.28 11.86 11.21 27.36 26.53 26.13 28.63 29.59 3.35%
NDCG@10 9.36 10.07 13.13 13.39 26.45 27.32 25.65 27.62 29.70 7.53%
MAP@10 3.10 3.87 5.91 6.64 9.11 9.11 8.89 10.56 11.25 6.53%
Recall@20 10.23 10.05 13.73 14.04 36.61 36.72 35.58 38.37 40.68 6.02%
NDCG@20 9.81 10.58 13.76 13.81 28.96 28.87 28.64 29.27 33.12 13.15%
MAP@20 1.78 2.03 3.81 3.93 5.17 6.22 5.60 6.23 7.15 14.77%

Table 1: Performance comparison on three datasets in terms of Recall, NDCG and MAP. The best performance is bolded while the second is
underlined. Column ‘Improve’ shows the percentage of improvements obtained by the best performance relative to the second.

Feature TaFeng Dunnhumby Instacart

#users 7,384 36,240 19,825
#items 4,999 4,995 7,999
#baskets 40,393 181,199 178,643
avg. basket size 5.38 7.46 8.88
avg. basket/user 5.43 5.00 9.01
repeated ratio (all) 11.4% 20.9% 52.0%
repeated ratio (target) 14.9% 24.9% 56.6%

Table 2: The characteristics of experimental datasets

Parameter Settings. To make a fair comparison, we adopt
the following settings for all methods: the embedding size is
set to 128, item embedding parameters are randomly initial-
ized in the range of (0, 1), 10% data of users are reserved as
the testset and the left data is applied to train recommenders.
For Sets2Sets, we set the hidden size of the encoder-decoder
to 128. For CLEA, the initial temperature in Gumbel Softmax
is set to 10. For MBN, we set the learning rate to 0.001 with
step decay by 0.99 and the batch size to 32. For NBRR, the
number of nearest neighbors is set to 100. For our model, the
initial learning on the three datasets (TaFeng, Dunnhumby,
Instacart) is separately set to 1e−4, 1e−5, 1e−5, respectively.
We empirically set hyperparameters λ = 1/16.

4.2 Performance Comparison
We can draw the following conclusions according to the re-
sults in Tab. 1. First, traditional recommendation algorithms
perform poorly. We observe that the simple POP method is
the worst performer on almost all metrics in all datasets, and
only achieves a performance close to FPMC on Recall@10
and Recall@20 in Instacart dataset (i.e., 7.49 v.s. 7.28, 10.23

v.s. 10.05). This is because POP makes recommendations
based on the popularity of items without considering the
user’s personalized preferences. FPMC is a classic first-order
Markov-based personalized recommendation algorithm. We
observed that FPMC is significantly better than POP, but there
is still a clear gap with RNN-based methods. Because the
Markov assumption restricts FPMC only to consider histori-
cal basket information in the recent time window, but cannot
consider very long basket information.

Second, the method based on RNN and hypergraph rep-
resentation significantly improves the quality of next-basket
recommendations. More specifically, 1) Because RNN can
capture basket information in a longer history, the early RNN-
based recommendation methods DREAM and Beacon have
achieved significant performance improvement over Markov-
based FPMC. 2) Furthermore, MBR and NBRR model the
multi-behavioral information in the next-basket recommen-
dation and the repeated purchase cycle of items, and capture
user preferences more comprehensively. 3) The Sets2Sets
method considering repeated purchases of items can also ef-
fectively improve the recommendation performance, which
means that repeated purchases usually reflect users’ long-
term preferences more. CLEA uses the contrastive learning
technique to strengthen the consistency of the basket repre-
sentation, and achieves the best results compared to other
baselines, which also verifies that contrastive learning is ef-
fective for improving the representation of the basket.

Third, our BRL model achieves state-of-the-art perfor-
mance thanks to better basket representation learning and
fine-grained emphasis on the importance of repeated items.
Specifically, on the TaFeng, Dunnhumby and Instacart
datasets, the proposed BRL achieved an average improve-
ment of 4.55%, 9.97% and 8.56%, respectively, and a max-
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imum improvement of 11.09%, 16.26%, and 14.77%. The
improvement in Dunnhumby and Instacart datasets is signifi-
cantly greater than that of TaFeng dataset, which may be be-
cause the amount of data in the front is significantly larger
than that in the back, and the average length of each basket is
also longer (See Tab. 2 for details). Compared with the sub-
optimal CLEA method, our method can excavate the multiple
correlations between items, contributing to better basket rep-
resentation. Although Sets2Sets also noticed repeated items,
it is limited to singly predicting purchased items on a coarse-
grained approach. Our method can not only analyze interac-
tions among intra-basket items, but also attach importance to
the repurchase behavior at a finer-grained level.

4.3 Ablation Study

We study the effectiveness of key components of the proposed
model by generating several variants. Tab. 3 presents the re-
sults on two different datasets.

-HGC. This variant does not include hyperedge and hyper-
graph convolutional networks, and is used to study the effect
of hypergraph representations and hypergraph convolutional
networks on the quality of basket representations. According
to Tab. 3, we observe a clear performance drop compared to
BRL, illustrating the importance of considering correlations
among items within the basket.

-Sub. This variant simplifies the hypergraph by removing
the hyperedges generated by repurchasing sub-basket, that is,
we do not consider the closer correlations among repurchased
items. When the hyperedges from repurchasing sub-basket
are removed, our model will achieve worse results on two
datasets simultaneously. This is because more repurchased
items can provide clearer clues about user interests.

-CL. This variant discards the contrastive learning task and
relies merely on RNNs to model behavioral basket sequences.
It achieves close performance to (-) Sub on both datasets in
Tab. 3, validating the usefulness of contrastive learning and
hyperedges on repeated items.

-DA. This variant by replacing our data augmentation with
a straightforward method, i.e., negative samples are con-
structed by randomly replacing any items. It is significantly
worse than our method. This is because random replacement
cannot capture the influence of repeatedly purchased items
on the basket representation. In contrast, our method effec-
tively captures such an effect by replacing repeated items to
construct negative samples.

BRL(λ). This variant analyzes the impact of different con-
trastive learning loss strength coefficients λ in Eq. 13 on the
overall recommendation performance. We can find that the
optimal choices have different distributions on the different
metrics for these two datasets: λ = 1/4 is a bit better on Re-
call while λ = 1/16 works better on NDCG. We speculate
that λ = 1/4 emphasizes the value of user repurchase be-
haviors and thus promotes the ranking of repurchased items.
Overestimating the ranking of repurchased items across the
entire collection reduces user interest exploration and ulti-
mately leads to a decline in ranking ability.

Variants Instacart Dunnhumby
Recall NDCG Recall NDCG

-HGC 27.38 26.96 17.14 16.20
-Sub 28.85 29.01 17.23 16.88
-CL 28.73 28.72 17.32 16.72
-DA 28.86 28.84 17.36 16.89

BRL(λ)
λ =1/4 29.62 29.29 17.50 17.41
λ =1/16 29.59 29.70 17.48 17.54
λ =1/64 29.26 29.38 17.37 17.03

BRL 29.59 29.70 17.48 17.54

Table 3: Ablation study on key components.

5 Related Work
Next basket recommendation has been widely studied in re-
cent years. One approach [Yu et al., 2016] is to use an RNN
to obtain basket representations by pooling items, where all
the items are treated independently. As a result, the basket
features may be suboptimal. Le et al. [2019] develop a hi-
erarchical network architecture to capture high-order depen-
dencies across baskets by incorporating pair-wised informa-
tion across baskets. Schulz et al. [2020] construct a model to
learn heterogeneous user behaviors, which capture the user’s
multiple intentions from a single basket. However, these
works pay little attention to the item correlations in a basket,
and lead to a sub-optimal representation of baskets. Mean-
while, some methods try to exploit repeated items for perfor-
mance improvements. Hu et al. [2020] consider personalized
item frequency and neighbor preference to predict the next
basket while Hu and He [2019] predict next items by combin-
ing an encoder-decoder framework with an attention mech-
anism based on item frequency. Shen et al. [2022] capture
meta-knowledge from multi-behavior sequences, from which
repeat frequency is considered. Faggioli et al. [2020b] uti-
lizes collaborative filtering techniques to model the recency
of items and thus to capture users’ shopping patterns. The
above methods do not well explore the relationship among re-
peated purchases, while our method considers repeated items
in a fine-grained manner. Most recently, although hypergraph
convolution has been adopted to enhance traditional recom-
mendation [Yu et al., 2021; Xia et al., 2021], it has not been
well studied in NBR. Katz et al. [2022], where hypergraph is
used to model the items repeatedly purchased periodically. In
contrast, we focus on repeated items in a fine-grained manner
and provide a more nuanced approach to capturing correla-
tions among items within the same basket.

6 Conclusions and Future Work
This paper advocated the importance of intra-basket item cor-
relations, which were validated by data analysis on a real
dataset. Then, a novel model called BRL was realized by con-
structing hyperedges from all the (repeated) items in a basket.
We designed a contrastive learning task to stress more on re-
peated items. Experimental results demonstrated that our ap-
proach outperformed eight baselines. For future work, we
intend to consider time intervals between repurchased behav-
iors to further enhance basket representations.
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