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Abstract

Categories of Point of Interest (POI) facilitate
location-based services from many aspects like lo-
cation search and POI recommendation. However,
POI categories are often incomplete and new POIs
are being consistently generated, this rises the de-
mand for semantic annotation for POIs, i.e., label-
ing the POI with a semantic category. Previous
methods usually model sequential check-in infor-
mation of users to learn POI features for annota-
tion. However, users’ check-ins are hardly obtained
in reality, especially for those newly created POIs.
In this context, we present a Spatial-Textual POI
Annotation (STPA) model for static POIs, which
derives POI categories using only the geographic
locations and names of POIs. Specifically, we de-
sign a GCN-based spatial encoder to model spatial
correlations among POIs to generate POI spatial
embeddings, and an attention-based text encoder
to model the semantic contexts of POIs to gener-
ate POI textual embeddings. We finally fuse the
two embeddings and preserve multi-view correla-
tions for semantic annotation. We conduct compre-
hensive experiments to validate the effectiveness of
STPA with POI data from AMap. Experimental re-
sults demonstrate that STPA substantially outper-
forms several competitive baselines, which proves
that STPA is a promising approach for annotating
static POIs in map services.

1 Introduction
Today’s proliferation of geospatial data has fostered many
successful stories in spatiotemporal data mining for vari-
ous urban applications, e.g., venue recommendation [Sun et
al.2021,Zhang et al.2022], and site selection [Liu et al.2021].
Among varying types of geospatial data, POIs have gained
tremendous momentum, and they have been proven to be ef-
fective in many tasks of urban computing and services, such
as online map search [Göbel and Kiefer2019,Li et al.2020b],
population mapping [Ye et al.2019, Zhao et al.2019], crime
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prediction [Wu et al.2022, Zhang et al.2020], and housing
price prediction [Xiao et al.2017].

While abundant POIs are being generated, the quality of
POI data is still questionable. The missing property problem
of POIs is prevalent, and it is particularly challenging that
the key information of POIs, i.e., categories, is often missing
or incorrect due to the uncertainties in the human annotation
processes for POIs. Categories are among the most important
properties of POIs, which carry valuable semantic informa-
tion to delineate the human activities that POIs bear [Bing et
al.2022, Xu et al.2023]. Therefore, it is pivotal to complete
missing POI categories, to empower POIs to be better used in
various downstream tasks.

Several previous studies have investigated the problem of
POI semantic annotation with human mobility data. For
example, Li et al. [Li et al.2020a] capture the similarities
among different users’ check-in activities to learn the POI
features and use a multi-class classifier for semantic anno-
tation. Xu et al. [Xu et al.2022a] model the co-occurrences
of POIs and categories in check-in sequences to embed them
in the same latent space and infer categories for POIs based
on the similarity between POI vectors and category vectors.
In addition, several works leverage multi-source data such
as check-in data, user reviews, and associated images to en-
hance the effect of POI semantic annotation [Giannopoulos
and Meimaris2019,He et al.2016]. Such studies have yielded
remarkable advancements to tackle the problem of missing or
incorrect POI categories. However, they heavily rely on se-
quential check-in information of users, which can be hardly
obtained in reality, especially for those newly created POIs.
This raises a further demand for POI semantic annotation
with only static POIs, which is the most common type of POIs
with smooth acquisition.

In this paper, we focus on the problem of semantic anno-
tation for static POIs. There are primarily two types of infor-
mation that are pivotal for semantic annotation in our setting.
(1) Spatial information, i.e., geographic locations of POIs.
Intuitively, it is difficult to infer POI semantics from the coor-
dinates of POIs directly. Nevertheless, geographically close
POIs tend to be also semantically related, e.g., restaurants
tend to appear in clusters. How to effectively leverage such
information to understand the environment and background
of POIs is a challenging problem. (2) Textual information,
i.e., POI names. POI names are generally indicative of human
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activities taking place at the locations. For example, from the
POI name “Master Bao’s pastry(鲍师傅糕点)”, one could
readily understand that the POI is a bakery. Furthermore,
many POI names have sparse information that is insufficient
to reflect their actual categories. For example, given the POI
name “Good neighbors(好邻居)”, it is barely possible to de-
rive its actual POI category Convenience Store only from this
weakly correlated name. Thus the short POI names pose a
challenge for modeling POI textual information.

To this end, we propose a Spatial-Textual POI Annotation
(STPA) model that overcomes these challenges of limited
spatial information and sparse textual information of static
POIs. To solve the problem of limited spatial information,
STPA uses Delaunay triangulation to build a spatial graph
(with POIs being graph nodes) that incorporates spatial con-
textual information. A graph convolutional encoder is ap-
plied to the POI spatial graph to generate POI spatial em-
beddings. Meanwhile, STPA uses a semantic attention com-
ponent to alleviate the negative impact of textual information
sparsity, which captures the influence of POI textual contexts,
i.e., neighboring POIs according to the semantic distance of
POI names, and yields the POI textual embeddings. Finally,
the two types of POI embeddings are fused to take account of
the cross-view interaction for POI semantic annotation.

The contributions of this paper are as follows:

• We propose a Spatial-Textual POI Annotation (STPA)
model which recognizes POI semantics from only static
POIs with the information of geographic locations and
names of POIs. To the best of our knowledge, STPA
is the first deep model that simultaneously captures the
spatial and semantic correlations of POIs from limited
spatial information and sparse textual information to ad-
dress the problem of semantic annotation for POIs.

• We leverage Delaunay triangulation and graph convolu-
tion to model spatial contexts of POIs to generate POI
spatial embeddings. Moreover, we design an attention-
based text encoder to incorporate the textual knowledge
captured from semantic POI neighbors based on POI
names into the POI textual embeddings.

• We justify our STPA model on two POI datasets col-
lected from AMap and evaluate its performance via the
task of semantic annotation for POIs. STPA demon-
strates significant performance gains over several base-
line methods based on the paired t-test.

2 Preliminaries
2.1 Problem Statement
[Point of Interest (POI)] The information of a POI pi is com-
posed of a POI ID, a geographic location (here, latitude and
longitude of a POI are known), and a POI name textualized
as a bag of words.

[POI Category] A POI category ci (e.g., Chinese Restau-
rant, University) represents the thematic topics of activities
that are afforded at the POI pi.

Semantic Annotation for POIs. Given the POIs’ geo-
graphical coordinates and names, our goal is to predict the

1 5 10 15 20
number of choosed POIs

0.00

0.05

0.10

0.15

0.20

ra
tio

 o
f P

O
Is

 w
ith

 th
e 

sa
m

e 
ca

te
go

ry spatial neighbors
random POIs

(a) Haidian data
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(b) Lixia data

Figure 1: Relation between POIs’ categories and their spatial neigh-
bors’ categories on the Haidian and Lixia data.

category labels for those unlabeled POIs. Specifically, we di-
vide all POIs into Ptrain and Ptest, where Ptrain contains the
POIs with category labels and Ptest contains the unlabeled
POIs. Our semantic annotation task is to find the category
label for each POI p ∈ Ptest.

2.2 Empirical Data Analysis
The POI data used in this work is collected from AMap1,
where the information of each POI consists of a POI ID, lat-
itude and longitude, a POI name, and a POI category. We
select the Haidian District of Beijing and the Lixia District of
Jinan as study areas, whereas our semantic annotation method
can also be generalized to other study areas. To reduce noise,
we filter duplicate POIs by latitude and longitude. After this
pre-processing, the Haidian dataset contains 105,577 POIs
associated with 248 categories, and the Lixia dataset contains
45,280 POIs associated with 140 categories.

The First Law of Geography tells us that everything is re-
lated to everything else, but near things are more related than
distant things. Therefore, we conduct the data analysis to in-
vestigate whether spatially adjacent POIs share the same cat-
egory label. Specifically, for each targeting POI pi, we find
its Nk nearest neighboring POIs according to the Euclidean
distances with latitude and longitude information and com-
pute the ratio of neighboring POIs which have the same cate-
gory as pi. Similarly, we randomly choose Nk POIs from the
POI set and compute the ratio of the Nk POIs which have the
same category as pi. Finally, we average the ratios of all the
POIs. As shown in Figure 1, we observe that the number of
spatially adjacent POIs with the same category as the target-
ing POI is much more than that of those random POIs on the
Haidian and Lixia datasets. This is an important motivation
for modeling the spatial vicinity of POIs to improve semantic
annotation performance discussed in the following section.

Further, we analyze the POI names of each category. Intu-
itively, we believe that the words of POI names with the same
category are semantically similar. We study the word distri-
butions of categories after removing stop words and punctua-
tion marks of POIs’ names. Taking the categories Tea house
and Flower Shop as examples, many POI names of Tea house
have the keyword “tea(茶)” and those of Flower Shop have
“flower(鲜花)”. Such observations encourage us to lever-
age the category information of semantically similar POIs to
boost the performance of semantic annotation.

1https://lbs.amap.com/api/webservice/guide/api/search/
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Figure 2: The framework of the proposed STPA model.

3 Spatial-Textual POI Annotation Model
3.1 Model Overview
Figure 2 presents the framework of the proposed method. Let
us suppose that we have POIs with latitude and longitude in-
formation as well as text names in a study area, where some
POIs are labeled with categories and others are unlabeled. For
a targeting POI (e.g., p8), on one hand, we model the spatial
correlations of POIs based on the assumption that geograph-
ically close POIs tend to have the same/similar category la-
bels. Specifically, we first construct a POI spatial graph based
on their geographic locations (latitude and longitude) infor-
mation, where the POIs are the nodes and the POI category
information are the node features; we then aggregate the in-
formation from the spatial context via a graph convolution en-
coder on the spatial graph to generate the POI spatial feature
vector hspa. On the other hand, we model the POI name in-
formation based on the assumption that POIs with similar tex-
tual information (names) are likely to have the same/similar
category labels. Specifically, we first discover each POI’s se-
mantic neighbors through a pre-training language model and
propagate the category information of semantic neighbors to
each POI through an attention mechanism. This step pro-
duces a textual feature vector htext for each POI. Finally, the
two feature vectors (i.e., hspa and htext) are fused and the
entire model is optimized using the cross-entropy loss.

3.2 GCN-based Spatial Encoder
The structure of the GCN (Graph Convolutional Network)-
based spatial encoder is shown in Figure 3. As the cate-
gory information of POIs generally encodes POI semantics,
which serve as important features for semantic annotation,
we first generate category embeddings as the initial POI fea-
tures. Next, we build a spatial graph for all the POIs using
the latitude and longitude information based on Delaunay tri-
angulation (DT), where the POIs become the nodes and the
category embeddings become the node features. Finally, we
apply a graph convolutional encoder on the POI spatial graph
to generate POI embeddings, which aggregates the semantic
information from POI’s spatial contexts.

POI category 
embeddings

POI 
embeddings

𝑐𝑐𝑖𝑖

graph 
convolution

𝐡𝐡𝑖𝑖
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𝐡𝐡𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠

Figure 3: Architecture of the GCN-based spatial encoder.

POI Category Embeddings
POI categories largely reflect POI semantics. We choose the
simple one-hot representation of categories as the initial node
features in the subsequent graph learning stage, as it provides
intuitive semantic label information. That is, the embedding
of a category ci is represented as

c⃗i = (0, · · · , 1, · · · , 0), (1)

where the length of c⃗i is equal to the number of the categories
and the ith element of c⃗i is 1.

GCN-based POI Spatial Embeddings
After obtaining the POI category embeddings, we further
learn POI embeddings by modeling the spatial contexts. Ac-
cording to the First Law of Geography, we know that spa-
tial adjacency entails a strong correlation among POIs. Ad-
jacent POIs in space are naturally more semantically similar
(cf. Figure 1), e.g., restaurants are usually spatially clustered.
Therefore, for a POI, we propose to leverage the category in-
formation of its spatial contexts (i.e., nearby POIs) to enhance
the POI embedding.

To this end, inspired by [Huang et al.2023], we model POI
spatial relations using a graph structure and utilize the mes-
sage passing mechanism in GCN to yield POI embeddings via
aggregating the category embeddings in a POI neighborhood.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2443



Specifically, we build a spatial graph for POIs based on DT,
as the effectiveness of DT graphs for capturing the interac-
tions among spatial vector data has been validated in a series
of previous studies [Huang et al.2022, Xu et al.2022b]. The
DT only generates edges between closely proximal (one-hop)
POIs to avoid excessive linking of POIs and eliminate noise.
Along this line, we connect all the POIs in a study area using
the DT to build a spatial graph, where the POIs become the
nodes and the corresponding POI category embeddings serve
as the node features (X = {c⃗1, c⃗2, · · · , c⃗N}). Note that, for
a POI pj without the category label, we average the category
embeddings of its neighbor POIs as the initial node feature to
ensure that all POI initial embeddings can be assigned any-
how, i.e., c⃗j =

∑
i∈Nj

c⃗i/|Nj |, where Nj is the spatial neigh-
bor POIs of pj . In the POI graph, we follow [Calafiore et
al.2021,Huang et al.2022] and define the weight of each edge
between nodes pi and pj as Aij = log[(1+L1.5)/(1+ l1.5pipj

)]
to ensure that spatially closer POIs have larger spatial similar-
ities, where L represents the diagonal length of the minimum
bounding rectangle containing all the POIs, and lpipj

denotes
the actual spatial distance between two nodes pi and pj . Fi-
nally, we normalize the weights into the range from 0 to 1.

Based on the constructed spatial graph, we further apply a
one-layer GCN encoder to generate POI spatial embeddings,

hspa = softmax(D−1/2AD−1/2XΘ), (2)

where A is the weighted adjacency matrix of the POI graph
without self-loops, D is the degree matrix of A, X is the ini-
tial node features of the graph, and Θ is a linear transfor-
mation with learnable parameters. Here we avoid self-loops
in the graph, as we cannot utilize POIs’ own category infor-
mation in advance when aggregating neighbor information to
generate POI embeddings. After graph convolution, the em-
bedding of each POI encodes the semantic category informa-
tion from its spatial contexts.

3.3 Attention-based Text Encoder
Figure 4 shows the structure of the Attention-based text en-
coder. We first find the semantic neighbors for each POI
based on the POI names. After that, we design a semantic at-
tention component that weights the influence of the category
information of neighboring POIs based on the distance of the
textual features between the targeting POI and its neighbors.
Finally, it generates the attention-based textual vector htext

i
as the output.

Discovering Semantic Neighbors Based on POI Names
POI names usually contain semantic information related to
the POI categories, and POIs with similar semantic names
tend to have similar category labels. For example, “Master
Bao’s pastry(鲍师傅糕点)” and “Master Liang’s pastry(梁师
傅糕点)”) have similar text names and both are associated
with the category Bakery. Therefore, we first find seman-
tic neighbors with similar POI names for the targeting POI,
which could largely mitigate the sparsity issue of POIs’ tex-
tual information, and is a pivotal factor to facilitate POI se-
mantic annotation.

Considering that the POI names are short texts and contain
limited semantic information, we propose to learn features of
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Figure 4: Architecture of the attention-based text encoder.

POI names from both word and phrase levels based on the
pre-trained word and phrase vectors from Tencent AI Lab
Chinese and English Term Embedding Corpora2. Specifi-
cally, given a POI, we average the word vectors and the phrase
vectors in the POI name respectively and concatenate the two
vectors as the POI’s initial textual feature. With these initial
features, we find the semantic neighbors for each POI based
on the cosine similarities.

Semantic Attention
As semantically similar POIs tend to have similar categories,
we model this prior with semantic attention by weighting the
semantic neighbor POIs based on the features of POI names.
As depicted in Figure 4, we use the Bert encoder to learn fine-
grained textual features of POI names, and input the textual
feature t⃗i of POI pi and the textual features ( ⃗ti,1, · · · , ⃗ti,k)
of the k most similar POIs to the semantic attention compo-
nent. The score between the textual features of a POI and its
neighbors is calculated based on the Cosine distance,

d(t⃗i, ⃗ti,j) = 1− t⃗i · ⃗ti,j

∥t⃗i∥∥ ⃗ti,j∥
. (3)

Next, we calculate the attention weight for each neighbor
POI pj based on the textual features. Specifically, we feed
the distance vector D⃗ ∈ Rk containing the Cosine distance
between the targeting POI pi and its neighbors to a fully-
connected layer to generate a hidden vector H⃗ ,

H⃗ = W · D⃗ + b⃗, (4)

where W ∈ Rk×k is a learnable parameter matrix and b⃗ is a
bias factor. We then apply a softmax function on H⃗ to ob-
tain the normalized weight for each neighbor POI pj , i.e.,
w(t⃗i, ⃗ti,j) = eH⃗j/(

∑k
j′=1 e

H⃗j′ ), where H⃗j means the trans-
formed semantic distance value between the targeting POI pi
and its neighbor POI pj .

2https://ai.tencent.com/ailab/nlp/en/download.html
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Finally, we compute the attention-based vector for the tar-
geting POI pi,

htext
i =

k∑
j=1

w(t⃗i, ⃗ti,j)c⃗j , (5)

where c⃗j is the category embedding of POI pj introduced in
Section 3.2. Therefore, the element of htext

i is the weighted
sum of the category information of the semantic neighbors of
pi, where the attention weights are adaptively learned. Note
that, we merely encode the category information of the se-
mantic neighbors into the attention-based vector htext

i , ne-
glecting the textual features ⃗ti,j of neighbor POIs, as these
neighbors’ textual features contain implicit semantic infor-
mation instead of explicit category information. Experimen-
tal results demonstrate that concatenating the textual features
into htext

i hinders the annotation performance.

3.4 Multi-view Fusion
As discussed previously, hspa from the geographical view
emphasizes the spatial context of POIs (the First Law of Ge-
ography), while htext from the textual view emphasizes the
semantic information about POIs. In addition, the importance
of POI feature vectors from different views is still unknown
for semantic annotation. Therefore, we propose a multi-view
fusion layer to construct a more informative representation
that preserves multi-view correlations for semantic annota-
tion. Specifically, we consider three kinds of fusion methods:

• Concatenation. We simply concatenate hspa
i and htext

i
to obtain the fusion representation for POI pi: hc

i =
hspa
i ⊕ htext

i .
• Attention-based Fusion. We adopt the attention mech-

anism [Xi et al.2022] to adaptively fuse the two vectors.
That is,

αspa
i = w⃗a · tanh(V · hspa

i + b⃗a),

αtext
i = w⃗a · tanh(V · htext

i + b⃗a),

βspa
i =

exp (αspa
i )

exp (αspa
i ) + exp (αtext

i )
,

βtext
i =

exp (αtext
i )

exp (αspa
i ) + exp (αtext

i )
,

ha
i = βspa

i hspa
i + βtext

i htext
i ,

(6)

where w⃗a, b⃗a, and V are learnable parameters.
• Wide & Deep Network-based Fusion. The Wide &

Deep network contains a wide layer and a deep layer
[Park et al.2019]. In the deep layer, hspa

i and htext
i are

concatenated and fed to a MLP to yield a deep vector gi,

gi = Wg · (hspa
i ⊕ htext

i ) + b⃗g, (7)

where Wg and b⃗g denote the weight and the bias of the
layer, respectively. In the wide layer, the outer product
of hspa

i and htext
i is computed and then flattened to a

wide vector ui,

ui = Wu · F (hspa
i ⊗ htext

i ) + b⃗u, (8)

where Wu and b⃗u denote the weight and the bias, re-
spectively. F denotes a flattening function that converts
a matrix into a single vector. Later, given a POI pi, the
wide vector ui is directly concatenated to the deep vector
gi to yield the fused vector: hwd

i = gi ⊕ ui.

3.5 Training Objective
After obtaining the fused vector, we directly concatenate it
with the pre-trained text vector of the POI name to yield the
final POI representation hfinal

i for POI pi, as the POI name
of pi contains the semantic information related to its category
label. Next, we feed hfinal

i into a three-layer MLP to gen-
erate the final output ŷi, which is the probability that POI pi
associated with each category label and mathematically cal-
culated as follows,

ŷi = softmax(W3 ·(W2 ·(W1 ·hfinal
i +b⃗1)+b⃗2)+b⃗3), (9)

where W1, W2, W3, b⃗1, b⃗2, and b⃗3 are parameters.
Finally, we adopt the classification training objective and

minimize the cross-entropy loss function,

L = − 1

|P|

|P|∑
i=1

|C|∑
j=1

yij log(ŷij), (10)

where |P| and |C| denote the number of unique POIs and cat-
egories in the dataset respectively, yij denotes whether POI
pi is labeled with the category cj , and ŷij is the predicted
probability that pi is labeled with the category cj .

4 Experiment
4.1 Experimental Settings
Datasets. We adopt the Haidian and Lixia POI data crawled
from AMap as the datasets (cf. Section 2.2). For both
datasets, we randomly split them into two collections in the
proportion of 8:2 as the training set and test set. We run the
model 5 times and report the mean of the results.

Evaluation metrics. Semantic annotation for POIs is a
multi-class classification problem. We adopt the two well-
known metrics including Accuracy and Macro-F1 to evaluate
the performance. In addition, based on ŷi, we could generate
the ranking list of the predicted category labels. Thus we also
leverage the metric MRR which considers the position of real
labels in the ranking lists. Specifically, it is defined as

MRR =
1

|Ptest|

|Ptest|∑
i=1

1

ranki
, (11)

where |Ptest| is the number of POIs in the test set Ptest and
ranki is the rank of the real category in the predicted list.

4.2 Baselines
We compare the proposed method against the following fea-
ture learning baselines of three types.

I. Textual view methods
• Word-based Textual Feature (WTF): Based on POI

names, we concatenate word and phrase embeddings
pre-trained on massive Chinese corpus to yield word-
based features for POIs following [Liu et al.2020].
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Data View Method Accuracy Macro-F1 MRR

Haidian

Textual
WTF 64.97 59.64 76.18
ATF 65.59 59.92 76.63

Spatial
GSF 13.17 4.43 31.10

GPS2Vec 4.58 0.26 11.79

Integrated

EHC 65.77* 60.67* 76.88*
WTF+GPS2Vec 64.65 58.17 75.97

STPA 67.73 62.69 78.26

Improvements 2.98 3.33 1.80

Lixia

Textual
WTF 62.60 56.93 74.89
ATF 63.41 57.63 75.42

Spatial
GSF 13.54 4.57 24.53

GPS2Vec 6.33 0.28 15.11

Integrated

EHC 63.41* 58.03* 75.56*
WTF+GPS2Vec 62.48 57.03 74.87

STPA 65.52 60.04 77.01

Improvements 3.33 3.46 1.92

Table 1: Performance comparison of different methods (in percent-
age), where the performance improvements of STPA are compared
with the best of these baseline methods, marked by the asterisk.

• Attention-based Text Feature (ATF): Given a POI, we
use the attention mechanism introduced in Section 3.3
to obtain the weighted textual feature vector of semantic
neighbors, and concatenate it with the word-based tex-
tual vector as the final feature.

II. Spatial view methods

• Grid-based Spatial Feature (GSF): Following [Liu et
al.2020], we divide the study area into grids and use the
TF-IDF transformation to obtain multi-scale geographic
features for POIs based on the category distribution in
the grids.

• GPS2Vec: Following [Yin et al.2021], we train a neural
network to extract geo-aware features for POIs, which
could learn the semantic embeddings from the initial
GPS encoding of POIs.

III. Multiple view methods

• EHC: This is an Ensemble POI Hierarchical Classifica-
tion framework, which mainly consists of a textual and
geographic feature extraction component and a hierar-
chical classifier [Liu et al.2020]. As we do not include
the category hierarchy in our model, we adapt EHC with
a SVM classifier instead of the hierarchical classifier.

• WTF+GPS2Vec: We concatenate the word-based tex-
tual features and the geo-aware features learned with
GPS2Vec as the fused features of POIs.

These baselines generate multiple types of features of
POIs. Based on these POI features, we train a multi-class
classifier (i.e., SVM [Chang and Lin2011]) to predict cate-
gories for those unlabeled POIs.

4.3 Comparison with Baselines
We report the comparative results in Table 1. It can be ob-
served that:

1) The performance of spatial view methods is unsatisfac-
tory on both datasets, as the limited spatial information of
POIs cannot encode enough semantics for POI annotation.
GPS2Vec directly uses a MLP network to encode the POI co-
ordinates and performs the worst; GSF leverages the category
information of other POIs in the same grid and outperforms
GPS2Vec, indicating that spatial context contains useful, not
enough though, information for inferring the category of the
targeting POI.

2) Textual view methods perform better than spatial view
methods, as POI names usually contain richer and more di-
rect semantic information related to POI categories. In addi-
tion, ATF has better performance than WTF, as it leverages
the information of semantic neighbors, which also proves the
effectiveness of the designed attention mechanism.

3) Integrated view methods obtain decent results, and our
proposed STPA performs the best. Compared with the best
of the baseline methods (EHC), STPA achieves an average
improvement of 2.7% on the Haidian data and 2.9% on the
Lixia data in terms of the three metrics. Furthermore, the
superiority paired t-test results show that the improvement of
STPA over these baselines is of practical significance with p
value < 0.01.

4.4 Ablation Study
Study of Performances in Different Views
Figure 5 shows the results of two single views and an inte-
grated view on both datasets. We observe that the perfor-
mances of the textual view are better than those of the spa-
tial view, as POI names contain richer semantic information
than geographic locations for our task. Further, it is interest-
ing to observe that the performances of the integrated view
are better than those of all the single view methods. Such
observations indicate that the integrated view could make up
for the deficiency of every single view and capture relatively
complete semantics about POIs.

Study of Performances of Different Fusion Methods
Figure 6 shows the results of three kinds of multi-view fusion
methods introduced in Section 3.4 on both datasets. We ob-
serve that the simple concatenation method outperforms the
other two methods. A potential explanation is that the POI
features learned with limited spatial information and sparse
textual information are relatively simple, and fusing them us-
ing a complex function with many parameters may lead to the
problem of overfitting.

4.5 Parameter Sensitivity
We investigate the sensitivity of results over the number of se-
mantic neighbors (k) in the attention-based text encoder. We
increase k from 5 to 40 with a step of 5 and report the re-
sults in Figure 7. Evidently, the performances improve when
we increase k from 5 to 15, and then remain relatively stable
when we increase it further.
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Figure 5: Performance comparison in different views (HD: Haidian
data, LX: Lixia data).
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Figure 6: Performance comparison of different fusion methods (HD:
Haidian data, LX: Lixia data).
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Figure 7: Effect of number of semantic neighbors.

5 Related Work
For the problem of POI semantic annotation, traditional meth-
ods usually model users’ check-ins to construct POI-related
features (e.g., distribution of check-in time and the num-
ber of check-ins) and train multi-label classifiers [Chang et
al.2014, Li et al.2020a, Ye et al.2011]. Further, some stud-
ies learn representations of POIs and categories from check-
in sequences based on embedding methods and predict the
category labels of POIs based on the similarity between POI
vectors and category vectors [Wang et al.2017, Rahmani et
al.2019, Xu et al.2022a]. In addition, except for the check-
in information, some works leverage external semantic infor-

mation (e.g., users’ ratings and reviews) of POIs to recog-
nize POI semantics for better annotation [He et al.2016, Gi-
annopoulos and Meimaris2019].

Besides considering the check-in sequential information,
some studies model the spatial information of POIs for learn-
ing POI feature representations. For example, Yan et al. [Yan
et al.2017] regard the spatial neighbors of a POI as its spa-
tial context and adopt the word2vec method to model the POI
co-occurrence information to learn semantic embeddings for
POIs. Liu et al. [Liu et al.2020] leverage the category distri-
bution in the neighborhoods and construct the multi-scale ge-
ographic features for POIs. Yin et al. [Yin et al.2021] present
a model named GPS2Vec to extract geo-aware features for
venues worldwide. Specifically, they divide the region into
fine-grained cells and perform the initial GPS encoding; then
they train a network to learn the semantic embeddings for
the GPS encoding with geotagged documents (e.g., images
and tweets) being the training labels. Huang et al. [Huang et
al.2022] utilize random walks in a spatial network to capture
the spatial contexts of POIs, and a manifold learning algo-
rithm to capture POIs’ categorical semantics.

There are also some methods that extract venue-related fea-
tures from user-generated content (e.g., images) instead of
check-ins and make semantic annotation for venues accord-
ingly. For example, Meng et al. [Meng et al.2017] model the
text-image pairs and predict the categories of venues based on
a feature-level fusion method. Zhang et al. [Zhang et al.2016]
construct features from visual, acoustic, and textual modali-
ties, and label each unseen micro-video with venue categories
based on a multi-task multi-modal learning model.

6 Conclusion
In this study, we investigate the problem of semantic annota-
tion for static POIs with only POI names and geographic loca-
tions. We present a Spatial-Textual POI Annotation (STPA)
model which fully captures the information contained in the
locations and names of POIs. Specifically, we design a GCN-
based spatial encoder to model the spatial correlations among
POIs and generate the POI spatial feature embeddings by us-
ing the category information of spatial neighbors; we design
an attention-based text encoder that models the POI names
and weights the influence of the semantic neighbors’ category
information to yield the POI textual feature embeddings; we
finally construct a more informative fused POI representation
that preserves multi-view correlations for semantic annota-
tion. We perform comprehensive experiments using POI data
from AMap to demonstrate the effectiveness of STPA. In ad-
dition, we observe that textual information is more indicative
than spatial information for deriving missing POI categories,
while the latter is a useful addition to mitigate the sometimes
sparse and weakly correlated textual information.
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