
Totally Dynamic Hypergraph Neural Network

Peng Zhou1 , Zongqian Wu1 , Xiangxiang Zeng3 , Guoqiu Wen1∗ , Junbo Ma1 ,
Xiaofeng Zhu1,2∗

1Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University,
Guilin 541004, China

2 University of Electronic Science and Technology of China
3Hunan University

Abstract
Recent dynamic hypergraph neural networks
(DHGNNs) are designed to adaptively optimize
the hypergraph structure to avoid the dependence
on the initial hypergraph structure, thus capturing
more hidden information for representation learn-
ing. However, most existing DHGNNs cannot ad-
just the hyperedge number and thus fail to fully
explore the underlying hypergraph structure. This
paper proposes a new method, namely, totally hy-
pergraph neural network (TDHNN), to adjust the
hyperedge number for optimizing the hypergraph
structure. Specifically, the proposed method first
captures hyperedge feature distribution to obtain
dynamical hyperedge features rather than fixed
ones, by conducting the sampling from the learned
distribution. The hypergraph is then constructed
based on the attention coefficients of both sam-
pled hyperedges and nodes. The node features
are dynamically updated by designing a simple hy-
pergraph convolution algorithm. Experimental re-
sults on real datasets demonstrate the effective-
ness of the proposed method, compared to SOTA
methods. The source code can be accessed via
https://github.com/HHW-zhou/TDHNN.

1 Introduction
Graphs are widely used in real applications including social
networking [Berahmand et al., 2021], web search [Wang et
al., 2021], and recommendation systems [Wu et al., 2022]
since they can efficiently capture relationships among data.
However, the construction of the regular graph is based on
pairwise relations, which makes it difficult to describe com-
plex relationships. Hypergraphs can handle this problem nat-
urally. The hypergraph is a good alternative to address the
above issue by connecting every hyperedge with an arbitrary
number of nodes. As a result, the hypergraph is able to cap-
ture complex relationships among nodes, and thus having
more expressive ability than regular graphs.

∗Corresponding author (seanzhuxf@gmail.com)
This work was supported in part by the National Key Re-

search and Development Program of China under Grant No.
2022YFA1004100.

Previous hypergraph methods can be divided into two cate-
gories, i.e., static hypergraph neural networks (SHGNNs) and
dynamic hypergraph neural networks (DHGNNs). SHGNNs
conduct representation learning by using the initialized hy-
pergraph structure to capture the relatuionships among nodes.
To do this, HGNN [Feng et al., 2019] employed the convo-
lution method and HGNN+ [Gao et al., 2022] introduced a
spatial-based hypergraph convolution. However, SHGNNs
are highly dependent on the initialized hypergraph structure,
which usually has redundant information and cannot dis-
cover hidden relationships among nodes. To address these
issues, DHGNNs were proposed to learn latent connections
from features and can mine more useful information. For in-
stance, [Jiang et al., 2019] proposed to reconstruct the hy-
pergraph using both kNN and k-means. [Bai et al., 2021]
proposed using continuous values to construct the incidence
matrix and the attention mechanism to learn the connection
weights. DeepHGSL [Zhang et al., 2022] uses hidden rep-
resentations in multiple hypergraph convolutional layers to
construct the hypergraph. HSL [Cai et al., 2022] samples hy-
peredges from the initial hypergraph structure (i.e., removing
redundant hyperedges) and utilizes attention mechanisms to
capture more relationships among nodes and hyperedges for
the hypergraph construction.

Previous DHGNNs ignore the adjustment of the number
of hyperedges, i.e., hyperedge number, resulting in being un-
available to correctly explore the hypergraph structure. That
is, no matter how the nodes are allocated, the hyperedge num-
ber is always the same. To address this issue, t-DHL [Gao et
al., 2020] attempts to adaptively adjust the hyperedge number
by projecting the hyperedge space onto a binary tensor. How-
ever, it is a traditional machine learning method and cannot
be used in an end-to-end way, thus difficultly exploring the
relationship among nodes. Besides, we observe that it is es-
sential for considering the hyperedge features to adjust the
hyperedge number. Actually, a hyperedge connects a set of
nodes, so that the common information among these nodes
(the hyperedge features for short) can be used for character-
izing this set of nodes. In contrast, the hyperedge is not nec-
essary if it cannot represent the common characteristics of a
set of nodes by a specific measurement, e.g., the attention co-
efficients between the hyperedge and the nodes in this paper.
In this way, the hyperedge number is updated with the hyper-
edge features. However, the hyperedge features are unavail-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2476

Figure 1: The architecture of the proposed TDHNN involving four steps, i.e., (1) Hyperedge feature sampling randomly samples m hyper-
edges from a trainable hyperedge feature distribution; (2) Hyperedge feature update renews hyperedge features by the attention coefficients
of the sampled hyperedge features and the node features; (3) Hypergraph construction builds the hypergraph by assigning nodes to the
hyperedges; (4) Hypergraph convolution updates node features by a simple hypergraph convolutional layer.

able for most datasets and few studies focused on considering
the hyperedge features for hypergraph neural networks.

To address the above issues, in this paper, we propose a
new method, namely, Totally Dynamic Hypergraph Neural
Network (TDHNN) shown in Figure 1, to learn dynamical hy-
peredge features for updating the hyperedge number, includ-
ing four steps, i.e., hyperedge feature sampling, hyperedge
feature update, hypergraph construction, and hypergraph con-
volution. The first two steps generate the hyperedge fea-
tures and the third step adjusts the hyperedge number. Hence,
the aforementioned issues in previous methods have been ex-
plored. In particular, both of the hyperedge features and the
hyperedge number are adaptively adjusted with the updated
node features. As a result, our method avoids the influence of
the low quality of the initial hypergraph.

Different from previous methods, the main contributions of
our proposed method are summarized as follows:

• We propose a new end-to-end dynamic hypergraph
framework, which can dynamically adjust the hyper-
graph structure and the number of hyperedges.

• We propose a simple hypergraph convolution algorithm
based on the learned hyperedge features.

• We propose a supervised constraint loss and an unsuper-
vised constraint loss to improve the learned hypergraph.

2 Methodology
A hypergraph is defined as G = (V, E ,H). V =
{v1; v2; ...; vn} is the set of all nodes accompanied by nodes
feature matrix Xv ∈ Rn×dn in which feature dimension is
dn; E = {e1; e2; ...; em} is the set of all hyperedges, with
each hyperedge e ⊂ E constitutes a subset of V [Arya et
al., 2020]. Similar to V , E should also have a feature ma-
trix Xe ∈ Rm×de , although this feature matrix is unavailable
in most datasets. H ∈ Rn×m is the incident matrix, which
implies the topology of the hypergraph. In incident matrix
H, each row hi represents the relationship between the i-th
node and all hyperedges, hi,j = 1 means there is a connection

between the i-th node and the j-th hyperedge, otherwise the
opposite. hi,j can also be a continuous value, indicating the
connection strength between the i-th node and the j-th hyper-
edge. Since H implies the topology of a hypergraph, we also
use H to denote the hypergraph for simplicity. The degree
of a hyperedge ei indicates the number of nodes contained in
this hyperedge, denoted by ⌈(ei). In this paper, given a set
of nodes V and its feature matrix Xv , our goal is to learn a
hyperedge feature distribution P(Xe|Xv) and use this distri-
bution to sample a suitable number of hyperedges to construct
a hypergraph H, then use hypergraph convolution to update
node features.

2.1 Hyperedge Feature Sampling
Common methods for constructing hypergraphs, such as
kNN [Huang et al., 2009], l1-hypergraph [Wang et al., 2015],
or constructing hypergraph based on existing graph struc-
tures [Fang et al., 2014], all construct hyperedges centered at
nodes, which means the number of hyperedges is equal to the
number of nodes. As the sample size increases, the number
of hyperedges also becomes very large. Not only will it cause
many nodes to appear on multiple hyperedges, but it will also
reduce computational efficiency. If we have the features of
hyperedges in advance and construct hypergraphs centered
on hyperedges, we can break the above limitations. However,
hyperedge features are unavailable for most datasets, which
poses a challenge. To solve this problem, we propose to
sample hyperedges from a trainable distribution P(Xe|Xv),
and use the relationship between the sampled hyperedges and
training samples to update hyperedge features and this distri-
bution. Specifically, we assume that each hyperedge’s feature
dimension is independent and obeys a trainable Gaussian dis-
tribution (Xe)i,j ∼ N(µj , diag(σj)), where µ ∈ R1×de

and σ ∈ R1×de . At the very beginning, we randomly ini-
tialize this distribution and sample m times to get the ini-
tial hyperedge feature matrix Xe ∈ Rm×de . Since the sam-
pling process is discrete and cannot produce gradients, we
use reparameterization skill [Kingma and Welling, 2013] to
make µ and σ trainable, i.e., we first sample Q ∈ Rm×de

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2477

from N(0,1), and then use the following formula to get Xe:

(Xe)i = µ+ σ ⊙Qi, (1)

where ⊙ represents the Hadamard multiplication.

2.2 Hyperedge Feature Update
Subsequently, we propose to use the attention coefficient to
represent the correlation between each hyperedge and all
nodes. Nevertheless, attention can only be computed if the
hyperedge features and node features belong to the same fea-
ture space [Bai et al., 2021], so we first use a mapping func-
tion f(·) to map the input features Xv onto the feature space
of the hyperedge features:

X̂v = f(Xv) ∈ Rn×de . (2)

Then we adopt the same attention calculation method as
Transformer [Vaswani et al., 2017], including q(·), k(·) and
v(·) three trainable mapping function:

αei,vj =
eq((Xe)i)·k((X̂v)

⊤
j)∑

l e
q((Xe)i)·k((X̂v)⊤l)

, (3)

where Ae ∈ Rm×n is the attention matrix of hyperedges,
αei,vj is the attention coefficient of hyperedge ei and node
vj . After that, we aggregate the features of the top kn nodes
with the highest attention coefficient into the hyperedge:

X̂e = MLP (concate(Xe, topkn
(Ae) · v(X̂v))), (4)

where MLP (·) is Multi-Layer Perceptron, concate(·) means
concatenation. The topkn

(·) here means that for each row of
Ae, keep the first kn values and set the rest to zero. In this
way, we connect µ and σ with the input features Xv . Thus
we can use backpropagation to update them. Note that we
resample hyperedges at each iteration.

2.3 Hypergraph Construction
Now we have the features of m hyperedges. As mentioned
before, building a hypergraph is actually a clustering process,
and each hyperedge is equivalent to a cluster centroid. So,
we have to put each node into appropriate clusters. From the
perspective of clustering, we have the features of the cluster
centroids and the features of the samples; the easiest way is to
calculate the distance between each sample and each cluster
centroid and then divide each sample into the nearest cluster.
Nevertheless, from the hypergraph structure and application
perspective, a node can be connected to an arbitrary number
of hyperedges. For example, in a co-author network, each
author can associate multiple works simultaneously. Here
we still use the Transformer-like attention method to calcu-
late the attention coefficient between nodes and hyperedges
instead of their distances. However, unlike using the hyper-
edges queries q(Xe) to match the keywords of nodes k(X̂v)
in the previous step, in this step, we use the nodes queries
q(X̂v) to match the hyperedges keywords k(X̂e):

αvi,ej =
eq((X̂v)i)·k((X̂e)

⊤
j)∑

l e
q((X̂v)i)·k((X̂e)⊤l)

, (5)

where Av ∈ Rn×m is the attention matrix of hyperedges,
αvi,ej is the attention coefficient of node vi and hyperedge
ej . This reverse is because we need to ensure there are no iso-
lated nodes since isolated nodes cannot exchange information
from the constructed hypergraph, which may affect the per-
formance of downstream tasks. Then we put each node into
the ke hyperedges with the highest attention coefficient:

H = topke(Av), (6)

the topke
(·) here means that for each row of Av , keep the first

ke values, and set the rest to zero.

Supervised Constraint
To improve the learned hypergraph structure, we designed a
supervised constraint function and an unsupervised constraint
function. As mentioned above, each hyperedge can be re-
garded as the centroid of a cluster, and constructing a hyper-
graph is to divide nodes with the same label into the same
cluster. In other words, for any pair of nodes vi and vj with
the same label, we hope them to be connected to the same
hyperedges. Since the i-th row of the incident matrix H is
the connection between the i-node and hyperedges and the H
we learned in Eq. (6) is continuous, what we have to do is to
minimize the distance between hi and hj , i.e., min d(hi,hj).
From this, we can get the loss function:

Ls =
∑
c∈C

∑
vi∈c;vj∈c

d(hi,hj), (7)

where C represents the set of categories of nodes in a dataset,
c ∈ C represents a specific category and d(·) is the distance
function. Eq. (7) can also be regarded as a kind of contrastive
learning using only positive samples.

Adjusting the Number of Hyperedges
Since we learn the distribution of hyperedge features instead
of fixed hyperedge features, we can change the number of
hyperedges by adjusting the number of samples m. The chal-
lenge is that the number of samples is non-differentiable, and
we cannot adjust it from backpropagation. From the graph
theory perspective, we can solve this challenge if we know
what kind of hyperedge and node relationship constitutes an
optimal hypergraph. However, this is also a very challenging
topic, and there is currently no relevant theoretical research.
In order to allow the model to find a better sampling number
adaptively, we designed a simple but effective evaluation cri-
terion to judge whether the number of learned hyperedges is
appropriate. We define the saturation score of a hypergraph:

SH = 1− |Eempty|
|E|

, (8)

where Eempty = {e|e ∈ E , ⌈e = 0} is the set of empty hyper-
edges in the hypergraph, and SH is the saturation score of the
hypergraph H, i.e., the proportion of non-empty hyperedges
to all hyperedges. This idea is very intuitive: if there are too
many empty hyperedges in a hypergraph, which proves that
these hyperedges are redundant, we then reduce the number
of samples; at the same time, due to the extreme situation
of sampling, it is possible to sample outliers, so we should
also allow a few numbers of empty hyperedges. In order

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2478

to achieve this, we set two hyperparameters β ∈ [0, 1] and
γ ∈ [0, 1], which represent the lower and upper limits of sat-
uration score, respectively. After each iteration, we adjust the
number of samples according to the saturation score:

m =

{
m− 1, SH < β;

m+ 1, SH > γ.
(9)

2.4 Hypergraph Convolution
Simple Hypergraph Convolutional Layer
We then use the learned hyperedge features and the con-
structed hypergraph to update the nodes’ features. [Feng et
al., 2019] proposed the first hypergraph convolution formula:

X(t+1)
v = σ(D

− 1
2

v HWD−1
e H⊤D

− 1
2

v X(t)
v Θ(t)). (10)

Although Eq. (10) is derived from the spectral domain based
on the Fourier transform, we can still interpret it from the
perspective of the spatial domain where D

− 1
2

v , W and D−1
e

are all diagonal matrices that are equivalent to regularization
terms. If we remove these regularization terms, then we have:

X(t+1)
v = σ(HH⊤X(t)

v Θ(t)). (11)

In Eq. (11), H⊤X
(t)
v Θ(t) is to multiply the feature matrix of

nodes with a weight matrix and then convert it into the feature
matrix of hyperedges according to the hypergraph structure.
Then it is multiplied by H, which assigns the hyperedge fea-
tures to each corresponding node again. Since the hyperedge
features are sampled from a trainable distribution, we do not
need to convert node features to hyperedge features in Eq.
(11). Thus the convolution formula can be simplified as:

X(t+1)
v = σ(H(t)X(t)

e Θ(t)). (12)
We first multiply the learned features of hyperedges by a
weight matrix Θ ∈ Rde×d and then assign the hyperedge
features to each relevant node according to the learned hy-
pergraph structure. Note that at each layer, we reconstruct H
according to the current layer’s hyperedge and node features.

A previous work [Huang and Yang, 2021] pointed out that
self-loops are very important for hypergraph convolution. In
a hypergraph, self-loops are hyperedges that contain only one
node. If self-loops are not introduced, the representation of
a node will only be affected by the features of its neighbor
nodes in the previous layer and lose its own features. There-
fore, Eq. (12) can be modified as:

X(t+1)
v = σ(H̃(t)X̃(t)

e Θ(t)), (13)

where H̃(t) = concat(H(t),H
′
) ∈ Rn×(m+n), H

′ ∈ Rn×n

is a diagonal incident matrix in which each node vi belongs
to only one hyperedge ei with degree ⌈(ei) = 1. Since there
is only one node in the hyperedge of the self-loop, we can
directly regard the features of the node as the hyperedge fea-
tures, i.e., X̃(t)

e = stack(X
(t)
e , X̂

(t)
v) ∈ R(m+n)×de . How-

ever, instead of taking the form of Eq. (13), our final convo-
lution formula is:

X(t+1)
v = σ(wX̂(t)

v +H(t)X(t)
e Θ(t)), (14)

where w is a trainable parameter. That is, we add the features
of nodes themselves on the basis of Eq. (12). In fact, Eq. (14)
is equally valid and more computationally efficient than Eq.
(13).

Unsupervised Constraint
We use the labeled nodes to get the supervised constraint and
hope that the nodes with the same label would be divided
into the same hyperedge; similarly, for the unsupervised con-
straint, we hope that the nodes divided into the same hyper-
edge would be more similar. In the supervised stage, our con-
straint loss was directly applied to H, and in the unsupervised
stage, we added a constraint on node features after the convo-
lutional layer:

Lu =
∑
e∈E

∑
vi∈e,vj∈e

d((Xv)i, (Xv)j). (15)

Finally, we evaluate our model on the node classification
task, so the final loss function is:

L = Le + λ1Ls + λ2Lu, (16)

where Le is the empirical loss of node classification, and λ1

and λ2 are trade-off hyperparameters.

2.5 The Connection and Difference with k-means
The way we construct a hypergraph is similar to k-means.
The primary process of k-means is (1) randomly selecting
cluster centroids, (2) clustering, (3) updating the cluster cen-
troids, then repeating (2) and (3) until convergence. The
pipeline of the proposed TDHNN is (1) sampling hyperedges,
(2) assigning nodes to each hyperedge, (3) updating the fea-
ture distribution of hyperedges, then repeating (2) and (3) un-
til convergence. The main differences between our method
and k-means are as follows:

• k-means learns features of cluster centroids, while
TDHNN learns the feature distribution of hyperedges;

• k-means selects fixed k cluster centroids, while TDHNN
dynamically adjusts the number of samples according to
the saturation score of the learned hypergraph;

• Each cluster in k-means is disjoint, while TDHNN has
intersections between hyperedges.

3 Experiments
3.1 Experimental Settings
Datasets
Following the work of the first hypergraph convolutional neu-
ral network [Feng et al., 2019], we use two visual object
classification datasets (i.e., Princeton ModelNet40 [Wu et al.,
2015] and National Taiwan University 3D model (NTU for
short)). Among them, ModelNet40 contains 12, 311 objects
with 40 types, and NTU contains 2, 012 objects with a to-
tal of 67 types of 3D shapes. Like [Feng et al., 2019], we use
Group-View Convolutional Neural Network (GVCNN) [Feng
et al., 2018] and Multi-view Convolutional Neural Network
(MVCNN) [Su et al., 2015] for feature extraction and con-
sider the case of using one set of features separately and us-
ing two sets of features at the same time. We adopted the
same split standard for ModelNet40 and NTU, i.e., 80% as
the training set and 20% as the testing set. Since the standard
split of a dataset uses fixed training samples, a method may be
affected by the fixed data distribution. For better comparison,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2479

ModelNet40 NTU

GVCNN MVCNN GV+MV GVCNN MVCNN GV+MV

GCN 91.80±0.46 91.50±1.80 94.85±1.75 78.80±0.92 78.72±1.97 80.43±1.09
GAT 91.65±0.25 90.07±0.41 95.75±0.14 79.60±0.03 78.50±1.17 80.16±1.08

HGNN 91.80±1.73 91.00±0.66 96.96±1.43 82.50±1.62 79.10±0.90 83.64±0.37
HGNN+ 92.50±0.08 90.60±1.68 96.92±1.81 82.80±1.11 76.40±1.17 84.18±0.82
HNHN 92.10±1.76 91.10±1.84 93.80±1.84 83.10±1.89 79.60±0.79 80.60±0.95

DHGNN 92.13±1.55 85.53±0.83 96.99±1.46 82.30±0.98 77.60±1.55 85.13±0.26
HyperGCN 92.20±0.80 90.20±0.28 96.10±0.63 79.90±1.78 78.10±0.83 79.90±0.91
DeepHGSL 89.32±0.71 88.62±0.93 90.33±0.66 76.28±1.45 72.30±1.57 78.67±0.77

HSL 93.17±0.25 91.44±0.42 96.92±0.41 81.82±1.30 75.68±1.41 82.26±1.20

TDHNN 93.81±1.04 92.33±1.67 97.52±0.80 83.69±0.45 79.62±0.53 86.05±1.10

Table 1: Visual object classification accuracy on ModelNet40 and NTU. GVCNN and MVCNN indicate that the features extracted by
GVCNN and MVCNN are used as input, respectively; GV+MV indicates that the two sets of features are concatenated as input. We report
the mean and standard deviation over 20 runs.

we use the same method as [Jiang et al., 2019] to randomly
sample different proportions of the data on Cora [Veličković
et al., 2017] as the training set. Specifically, in addition to the
standard split, we respectively select 2%, 5.2%, 10%, 20%,
30%, and 44% of the data to train.

Comparison Methods
Our comparison methods include two classic graph models,
i.e., GCN [Kipf and Welling, 2016] and GAT [Veličković et
al., 2017]; three hypergraph convolutional neural networks,
i.e., HGNN, HGNN+, and HNHN [Dong et al., 2020]; and
two dynamic hypergraph networks, i.e., DHGNN, Hyper-
GCN [Yadati et al., 2019], DeepHGSL [Zhang et al., 2022]
and HSL [Cai et al., 2022]. We implement GCN and GAT by
the open tool PyTorch Geometric [Fey and Lenssen, 2019],
and we implement HGNN, HGNN+, HNHN, HyperGCN and
DeepHGSL by the open tool DHG (DeepHypergraph) [Gao
et al., 2022]. For DHGNN and HSL, we use their source code
for experiments.

Setting-up
We uniformly set the feature dimension of the hyperedge de
to 128 and the initial sampling number of the hyperedge m
to 100. The number of nodes used to update the hyperedge
features and the number of hyperedges each node belongs to
are set to 10. For the hypergraph saturation score, we set the
lower limit β to 0.9, and the upper limit γ is set to 0.95. We
used dropout [Srivastava et al., 2014] to prevent overfitting
and set the drop rate to 0.2. The optimizer we use is Adam
[Kingma and Ba, 2014], and the learning rate is 0.001.

3.2 Result and Discussion
Visual Object Classification
The experimental results of visual object classification are
shown in Table 1. The proposed TDHNN achieves the best
results among all comparison methods, regardless of the set
of features used, both on ModelNet40 and NTU. Compared
with graph algorithms GCN and GAT, TDHNN has an aver-
age increase of 2.82% and 2.88%, respectively. Compared
with the static hypergraph algorithms HGNN, HGNN+, and

HNHN, TDHNN has an average improvement of 1.33%,
1.6%, and 2.12%, respectively. Compared with dynamic hy-
pergraph algorithms DHGNN, HyperGCN, DeepHGSL and
HSL, our classification accuracy has averagely increased by
2.22%, 2.77%, 6.25% and 1.95% respectively. In general,
hypergraph algorithms outperform graph algorithms on Mod-
elNet40 and NTU. However, some algorithms show instabil-
ity in the experimental results. For example, when HNHN
uses the features of GVCNN and MVCNN on ModelNet40,
respectively, it shows high accuracy (92.10% and 91.10%,
respectively). However, the accuracy improvement is not ob-
vious when fusing these two sets of features simultaneously
(93.80%). Compared with other methods, it is even lower,
and a similar situation occurs at NTU. When DHGNN uses
the features of MVCNN alone, the accuracy is relatively low,
whether it is on ModelNet40 or NTU, but it achieves good
grades when fusing these two sets of features. In sharp con-
trast to these two methods, TDHNN has achieved better re-
sults, showing better stability and compatibility, whether us-
ing a specific feature alone or fusing two sets of features si-
multaneously.

Overall, the proposed TDHNN has three advantages: first,
by applying the hypergraph structure, we can better mine the
multi-relationships in the data; second, we dynamically learn
the hypergraph structure, which can fully mine the potential
relationships in the data; third, we can dynamically adjust
the number of hyperedges to help learn a more reasonable
hypergraph structure.

Citation Network Classification
The experimental results of experiments on Cora using dif-
ferent proportion samples are shown in Table 2. As is shown,
TDHNN has achieved the best results except for the 2% split,
which is 76.11% second to DHGNN (76.90%) with a gap
of 0.8%. Compared with graph algorithms GCN and GAT,
TDHNN has an average increase of 4.11% and 1.57%, re-
spectively. Compared with the static hypergraph algorithms
HGNN, HGNN+, and HNHN, TDHNN has an average im-
provement of 3.14%, 4.37%, and 6.18%, respectively. Com-
pared with dynamic hypergraph algorithms DHGNN, Hyper-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2480

lr GCN GAT HGNN HGNN+ HNHN DHGNN HyperGCN DeepHGSL HSL TDHNN

std 81.50±1.59 83.00±0.37 81.80±0.79 79.60±1.59 76.80±1.02 82.50±0.69 62.22±1.92 82.16±0.76 79.45±1.92 83.60±0.62
2% 69.60±0.19 74.80±0.81 75.40±1.17 71.40±1.41 66.50±2.06 76.90±1.71 46.21±1.53 74.52±1.74 74.86±4.19 76.11±1.14

5.2% 77.80±0.43 79.40±0.47 79.70±0.75 76.20±1.32 73.10±1.52 80.20±0.20 54.25±0.84 78.66±2.12 77.91±0.80 80.41±1.50
10% 79.90±0.66 81.50±1.90 80.00±0.28 78.20±0.87 76.50±1.94 81.60±0.12 64.93±0.42 79.29±1.32 79.18±1.55 84.53±1.69
20% 81.40±0.57 83.50±1.67 80.10±1.08 81.40±1.43 80.90±1.83 83.60±1.79 72.51±0.02 80.32±1.18 81.69±1.39 85.04±1.87
30% 81.90±1.82 84.50±0.15 82.00±1.67 82.50±0.17 82.50±1.04 85.00±0.41 78.82±1.83 83.22±1.16 83.15±1.70 85.86±1.81
44% 82.00±0.71 85.20±0.23 81.90±0.09 83.00±0.35 83.30±0.96 85.60±0.69 82.44±0.62 83.65±0.89 84.98±1.69 87.34±1.24

Table 2: Node classification results on Cora. In addition to the standard division, we randomly select 2%, 5.2%, 10%, 20%, 30%, and 44%
of the data, respectively as the training set.

GCN, DeepHGSL, and HSL, our classification accuracy has
averagely increased by 1.07%, 17.38%, 2.86% and 3.09%
respectively. Specifically, under the split of 2% and 5.2%,
HGNN, HGNN+, and our TDHNN have achieved relatively
similar performance. However, with the increase of the train-
ing ratio, the advantage of TDHNN is revealed, which might
be attributed to the supervised constraint loss Ls.

3.3 Ablation Study
The proposed TDHNN has three main components, a hy-
peredge updater (HU for short), supervised constraints (C1
for short), and unsupervised constraints (C2 for short). To
demonstrate the effectiveness of each part, we tested differ-
ent combinations of these components. As shown in Table
3, first, TDHNN has an average increase of 1.22%, 3.75%,
and 3.13% on ModelNet40, NTU, and Cora compared to us-
ing only a single component, respectively. In the case of only
using HU, the performance of the model at each dataset is ac-
ceptable, especially on ModelNet40 (97.28%), which is close
to using all components. In the case of using only C1, the
overall performance drops a lot on ModelNet40 (94.24%) and
NTU (77.74%), but it is slightly better on Cora than using
only HU (increased by 0.3%). When only using C2, Mod-
elNet40 also performed very well (97.36%), and it was also
better than using only HU or C1 on Cora. When any two com-
ponents are used in combination, the overall performance is
not significantly improved compared with using a single com-
ponent. Specifically, when combining C1 and C2, the model
cannot even converge on ModelNet40 and NTU (the classi-
fication accuracy is 7.86% and 6.43%, respectively). How-
ever, when combining all these components, the model’s per-
formance achieves the best, and the case of non-convergence
does not exist anymore.

HU C1 C2 ModelNet40 NTU Cora

✓ 97.28±0.25 84.71±0.80 79.9±1.25
✓ 94.24±0.16 77.74±0.06 80.2±1.86

✓ 97.36±1.47 84.45±0.91 81.3±1.36
✓ ✓ 96.88±0.36 83.64±1.21 80.9±0.75
✓ ✓ 97.36±1.20 84.45±1.30 79.2±0.32

✓ ✓ 07.86±0.15 06.43±0.64 79.6±0.53

✓ ✓ ✓ 97.52±0.80 86.05±1.10 83.6±0.62

Table 3: Classification accuracy (mean and standard deviation) of
our method with different components on all datasets.

3.4 Visualizations
In order to better show the ability of TDHNN, we use the t-
SNE algorithm [Van der Maaten and Hinton, 2008] to reduce
the dimensionality of the embedding of the model and visu-
alize it. We also calculate the Silhouette score [Rousseeuw,
1987] of the embedding to evaluate it. We perform the same
experiment on HGNN+ and HNHN for comparison. The ex-
perimental results are shown in Figure 2. As is shown, in
the experimental results of TDHNN, the boundaries of cate-
gories are clearer. The Silhouette scores also prove this point,
where the Silhouette score of HGNN+ and HNHN are 0.3531
and 0.3344, respectively, while TDHNN is 0.5081, which is
15.50% and 17.34% higher than the previous two methods.

3.5 Running Time
In order to demonstrate the computational efficiency of
TDHNN, we compared the time required for each iteration
with the latest dynamic hypergraph methods. As shown in
the Table 4, TDHNN improved by an average of 9.44 sec-
onds, 3.01 seconds, and 2.31 seconds per epoch compared
to DHGNN, HyperGCN, and DeepHGSL on three datasets.
Compared to HSL, TDHNN is on average 0.04 seconds
slower, that is because HSL samples and obtains new struc-
tures from existing hypergraph structures rather than using
features for reconstruction. In addition, we did not compare
TDHNN with static methods as they did not reconstruct hy-
pergraphs.

Time per epoch (seconds)

ModelNet40 NTU Cora

DHGNN 25.04 3.58 0.34
HyperGCN 6.71 1.16 1.81
DeepHGSL 5.33 1.27 0.97

HSL 0.42 0.06 0.02

TDHNN 0.42 0.11 0.11

Table 4: Running time for each epoch.

3.6 Sensitivity Analysis
Effect of Hypergraph Saturation Threshold
We tested the effect of setting the saturation threshold on the
model on ModelNet40 and NTU. We set the lower thresh-
old β from 0.1 to 0.9 with a step size of 0.1 and the corre-
sponding upper threshold γ = β + 0.05. According to the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2481

(a) HGNN+ (b) HNHN (c) TDHNN

Figure 2: t-SNE embeddings of HGNN+, HNHN, and the proposed TDHNN on Cora. The Silhouette scores of the embeddings learned by
the three methods are 0.3531, 0.3344, and 0.5081, respectively.

experimental results, on ModelNet40, with the change of β
and γ, the model’s accuracy has almost no change. On NTU,
the model’s accuracy fluctuates slightly with the change of
threshold; the model reaches its best at the point β = 0.9,
but overall the difference is not much. The result shows that
the learned hypergraph indeed has a large number of redun-
dant edges. Although these redundant hyperedges do not af-
fect the model’s accuracy, they add many unnecessary cal-
culations, reducing the computational efficiency. Thanks to
our strategy of dynamically adjusting the number of hyper-
edges, our model can control the number of redundant hy-
peredges by setting a threshold, thus reducing the computa-
tional overhead. Specifically, considering the convolutional
operation H(t)X

(t)
e Θ(t) in Eq. (12), the time complexity is

O(n × m × de) + O(n × de × d) = O(nm). When using
a traditional method such as kNN to generate a hypergraph,
the number of hyperedges m is equal to the number of nodes
n, then the time complexity is O(n2). In contrast, the pro-
posed TDHNN sets m as a constant, and the model optimizes
this constant at each iteration so that the time complexity of
convolution is reduced to O(n).

Trade-off between Two Constraints
In order to make the learned hypergraph better, we set a su-
pervised constraint and an unsupervised constraint. How to
set the weight of these two constraints is a question worth
discussing. We conducted experiments on ModelNet40 and
NTU, respectively, and set λ1 and λ2 from 10 to 100 with a
step size of 10. It can be concluded that: (1) TDHNN is less
sensitive to λ1 and λ2 since as λ1 and λ2 change, the variance
of TDHNN’s accuracy within each data distribution tested is
relatively low; (2) for different data distributions, the influ-
ence of λ1 and λ2 is different, i.e., the trade-off of λ1 and λ2

depends on the dataset.

4 Conclusion
In this paper, we propose a novel dynamic hypergraph learn-
ing framework that can dynamically adjust both the structure
of the hypergraph and the number of hyperedges. As far as we
know, this may be the first work that constructs hypergraphs
centered on the features of hyperedges, and it opens up a new
way for the research and learning of hypergraph neural net-
works. The proposed TDHNN learns the feature distribution

of hyperedges and adjusts the number of samples according to
the saturation score of the learned hypergraph to dynamically
adjust the hypergraph structure. To make the constructed hy-
pergraph more reasonable, we propose two constraints on the
graph and features after convolution. Experiments demon-
strate the effectiveness of our method. However, this method
also has many aspects that can be improved. For example,
the measurement of hypergraph saturation and the strategy of
adjusting the number of hyperedges may be too simple; the
relationship between the number of hyperedges and samples
has yet to be further explored and theoretically proved. It is
also the direction we need to continue in-depth research and
exploration in the future.

Contribution Statement
Zongqian Wu made equal contributions to this work. He was
involved in the overall design of the method, conducted com-
parative experiments, contributed to chart design, and partic-
ipated in some writing tasks.

References
[Arya et al., 2020] Devanshu Arya, Deepak K Gupta, Stevan

Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv
preprint arXiv:2010.04558, 2020.

[Bai et al., 2021] Song Bai, Feihu Zhang, and Philip HS
Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

[Berahmand et al., 2021] Kamal Berahmand, Elahe Nasiri,
Mehrdad Rostami, and Saman Forouzandeh. A modified
deepwalk method for link prediction in attributed social
network. Computing, 103(10):2227–2249, 2021.

[Cai et al., 2022] Derun Cai, Moxian Song, Chenxi Sun,
Baofeng Zhang, Shenda Hong, and Hongyan Li. Hyper-
graph structure learning for hypergraph neural networks.
In IJCAI, pages 1923–1929, 2022.

[Dong et al., 2020] Yihe Dong, Will Sawin, and Yoshua
Bengio. Hnhn: hypergraph networks with hyperedge neu-
rons. arXiv preprint arXiv:2006.12278, 2020.

[Fang et al., 2014] Quan Fang, Jitao Sang, Changsheng Xu,
and Yong Rui. Topic-sensitive influencer mining in

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2482

interest-based social media networks via hypergraph learn-
ing. IEEE Transactions on Multimedia, 16(3):796–812,
2014.

[Feng et al., 2018] Yifan Feng, Zizhao Zhang, Xibin Zhao,
Rongrong Ji, and Yue Gao. Gvcnn: Group-view convolu-
tional neural networks for 3d shape recognition. In CVPR,
pages 264–272, 2018.

[Feng et al., 2019] Yifan Feng, Haoxuan You, Zizhao
Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural net-
works. In AAAI, pages 3558–3565, 2019.

[Fey and Lenssen, 2019] Matthias Fey and Jan E. Lenssen.
Fast graph representation learning with PyTorch Geomet-
ric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[Gao et al., 2020] Yue Gao, Zizhao Zhang, Haojie Lin,
Xibin Zhao, Shaoyi Du, and Changqing Zou. Hypergraph
learning: Methods and practices. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[Gao et al., 2022] Yue Gao, Yifan Feng, Shuyi Ji, and Ron-
grong Ji. Hgnn+: General hypergraph neural networks.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2022.

[Huang and Yang, 2021] Jing Huang and Jie Yang. Unignn:
a unified framework for graph and hypergraph neural net-
works. arXiv preprint arXiv:2105.00956, 2021.

[Huang et al., 2009] Yuchi Huang, Qingshan Liu, and Dim-
itris Metaxas.] video object segmentation by hypergraph
cut. In CVPR, pages 1738–1745, 2009.

[Jiang et al., 2019] Jianwen Jiang, Yuxuan Wei, Yifan Feng,
Jingxuan Cao, and Yue Gao. Dynamic hypergraph neural
networks. In IJCAI, pages 2635–2641, 2019.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2013] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Rousseeuw, 1987] Peter J Rousseeuw. Silhouettes: a graph-
ical aid to the interpretation and validation of cluster anal-
ysis. Journal of computational and applied mathematics,
20:53–65, 1987.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning re-
search, 15(1):1929–1958, 2014.

[Su et al., 2015] Hang Su, Subhransu Maji, Evangelos
Kalogerakis, and Erik Learned-Miller. Multi-view con-
volutional neural networks for 3d shape recognition. In
ICCV, pages 945–953, 2015.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten
and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, volume 30, 2017.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Wang et al., 2015] Meng Wang, Xueliang Liu, and Xindong
Wu. Visual classification by l1-hypergraph modeling.
IEEE Transactions on Knowledge and Data Engineering,
27(9):2564–2574, 2015.

[Wang et al., 2021] Meihong Wang, Linling Qiu, and Xiaoli
Wang. A survey on knowledge graph embeddings for link
prediction. Symmetry, 13(3):485, 2021.

[Wu et al., 2015] Zhirong Wu, Shuran Song, Aditya Khosla,
Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric
shapes. In CVPR, pages 1912–1920, 2015.

[Wu et al., 2022] Shiwen Wu, Fei Sun, Wentao Zhang,
Xu Xie, and Bin Cui. Graph neural networks in rec-
ommender systems: a survey. ACM Computing Surveys,
55(5):1–37, 2022.

[Yadati et al., 2019] Naganand Yadati, Madhav
Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. Hypergcn: A new method for
training graph convolutional networks on hypergraphs. In
NeurIPS, volume 32, 2019.

[Zhang et al., 2022] Zizhao Zhang, Yifan Feng, Shihui Ying,
and Yue Gao. Deep hypergraph structure learning. arXiv
preprint arXiv:2208.12547, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2483

	Introduction
	Methodology
	Hyperedge Feature Sampling
	Hyperedge Feature Update
	Hypergraph Construction
	Supervised Constraint
	Adjusting the Number of Hyperedges

	Hypergraph Convolution
	Simple Hypergraph Convolutional Layer
	Unsupervised Constraint

	The Connection and Difference with k-means

	Experiments
	Experimental Settings
	Datasets
	Comparison Methods
	Setting-up

	Result and Discussion
	Visual Object Classification
	Citation Network Classification

	Ablation Study
	Visualizations
	Running Time
	Sensitivity Analysis
	Effect of Hypergraph Saturation Threshold
	Trade-off between Two Constraints

	Conclusion

