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Abstract

We consider the problem of fairly allocating a set
of indivisible goods among n agents with addi-
tive valuations, using the popular fairness notion
of maximin share (MMS). Since MMS allocations
do not always exist, a series of works provided ex-
istence and algorithms for approximate MMS al-
locations. The Garg-Taki algorithm gives the cur-
rent best approximation factor of ( 34 + 1

12n ). Most
of these results are based on complicated analyses,
especially those providing better than 2/3 factor.
Moreover, since no tight example is known of the
Garg-Taki algorithm, it is unclear if this is the best
factor of this approach. In this paper, we signifi-
cantly simplify the analysis of this algorithm and
also improve the existence guarantee to a factor of
( 34 +min( 1

36 ,
3

16n−4 )). For small n, this provides a
noticeable improvement. Furthermore, we present
a tight example of this algorithm, showing that this
may be the best factor one can hope for with the
current techniques.

1 Introduction
Fair division of a set of indivisible goods among n agents with
diverse preferences is a fundamental problem in many areas,
including game theory, social choice theory, and multi-agent
systems. We assume that agents have additive valuations.
Maximin share (MMS) is one of the most popular fairness
notion in this setting, introduced by Budish [2011], which
has attracted a lot of attention in recent years. It is preferred
by participating agents over other notions, as shown in real-
life experiments by [Gates et al., 2020]. Every agent i has
an associated threshold, called her maximin share (MMSi),
defined as the maximum value i can get by partitioning the
set of goods into n bundles (one for each agent) and picking
a lowest-value bundle. An agent considers an allocation to be
fair if she receives goods of total value at least her MMS.

A natural question is whether we can always find an allo-
cation that gives each agent her MMS. Surprisingly, such an
allocation need not always exist. Procaccia and Wang [2014]
showed examples for any n ≥ 3 in which MMS allocations
do not exist. This motivated them to initiate the study of

approximate MMS. Agent i considers an allocation to be α-
MMS fair to her for α ∈ (0, 1) if she receives goods of total
value at least α ·MMSi. They showed that a 2/3-MMS allo-
cation always exists. Ghodsi et al. [2018] improved this result
by showing the existence of a 3/4-MMS using a sophisticated
algorithm with a very involved analysis. More recently, Garg
and Taki [2021] improved this result to ( 34 + 1

12n )-MMS us-
ing a simple combinatorial algorithm, though their analysis
remains quite involved. Furthermore, there is no tight exam-
ple known for this algorithm, so it is unclear if this is the best
factor of the approach.

A complementary problem is to construct examples with
the smallest upper bound on α, say α∗, such that α-MMS
allocations do not always exist for α > α∗. Feige, Sapir,
and Tauber [2021] recently obtained the best-known α∗ =
1 − 1/n4 for n ≥ 4. They also gave an improved value of
α∗ = 39/40 for the special case of n = 3 agents. However,
there is still a substantial gap between the lower and upper
bounds.

In this paper, we investigate the Garg-Taki algorithm and
obtain the following results.

• A significantly simple analysis of the algorithm.
• An improved bound of ( 34 + min( 1

36 ,
3

4(4n−1) ))-
MMS by slightly modifying the algorithm. Since
min( 1

36 ,
3

4(4n−1) ) ≥
1

12n for all n ≥ 3, this provides no-
ticeable improvement for small n. We note that 3

4 +
1

12n
was the best-known bound for n > 4.

• A tight example of the Garg-Taki’s and our algorithms,
which shows the limits of this approach in obtaining a
better bound of 3

4 + O(1). Interestingly, our example
only utilizes identical valuations, for which MMS allo-
cations are known to exist.

Our simplified analysis not only helped us to improve the
MMS bound but also, together with the tight example, shed
more light on why and for which instances the algorithm can-
not do better. We believe that these results would help reduce
the gap further between the lower and upper bounds.

1.1 Related Work
Computing the maximin share of any agent is NP-hard (even
for 2 agents)1, but a PTAS exists [Woeginger, 1997]. Procac-

1by a straightforward reduction from the partition problem.
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cia and Wang [2014] showed the existence of a 2/3-MMS al-
location, which can also be computed in polynomial time for
a constant n. Later, the algorithm was modified [Amanatidis
et al., 2017b; Kurokawa et al., 2018] to compute a (2/3− ε)-
MMS allocation in polynomial time (here ε > 0 is a parame-
ter of the algorithm, whose running time increases with 1/ε).
Barman and Krishnamurthy [2020] gave a simple greedy al-
gorithm with an involved analysis to find a 2

3 (1+
1

3n−1 )-MMS
allocation. Garg et al. [2018] gave a simple algorithm with a
simple analysis to output a 2/3-MMS allocation.

Ghodsi et al. [2018] showed the existence of a 3/4-MMS
allocation using a complicated algorithm and analysis. Garg
and Taki [2021] showed how to find a 3/4-MMS allocation in
strongly polynomial time, and showed that ( 34 + 1

12n )-MMS
allocations exist. Their results use simple algorithms, but
their analysis is still quite involved.

Special cases. Amanatidis et al. [2017b] showed that when
m ≤ n + 3, an MMS allocation always exists. Feige et al.
[2021] improved this to m ≤ n+5. For n = 2, MMS alloca-
tions always exist [Bouveret and Lemaı̂tre, 2016]. For n = 3,
the MMS approximation was improved from 3/4 [Procaccia
and Wang, 2014] to 7/8 [Amanatidis et al., 2017b] to 8/9
[Gourvès and Monnot, 2019], and then to 11/12 [Feige and
Norkin, 2022]. For n = 4, Ghodsi et al. [2018] showed the
existence of 4/5-MMS.

Experiments. Bouveret and Lemaı̂tre [2016] showed that
MMS allocations usually exist (for data generated randomly
using uniform or Gaussian valuations). Amanatidis et al.
[2017b] gave a simple and efficient algorithm and showed
that when the valuation of each good is drawn independently
and randomly from the uniform distribution on [0, 1], the al-
gorithm’s output is an MMS allocation with high probability
when the number of goods or agents is large. Kurokawa et al.
[2016] gave a similar result for arbitrary distributions of suf-
ficiently large variance.

Chores. MMS can be analogously defined for fair division
of chores. MMS allocations do not always exist for chores
[Aziz et al., 2017], which motivated the study of approximate
MMS [Aziz et al., 2017; Barman and Krishnamurthy, 2020;
Huang and Lu, 2021], with the current best approximation
ratio being 11/9. For 3 agents, 19/18-MMS allocations ex-
ist [Feige and Norkin, 2022].

Other settings. MMS has also been studied for non-additive
valuations [Barman and Krishnamurthy, 2020; Ghodsi et al.,
2018; Li and Vetta, 2021]. Generalizations have been studied
where restrictions are imposed on the set of allowed alloca-
tions, like matroid constraints [Gourvès and Monnot, 2019],
cardinality constraints [Biswas and Barman, 2018], and graph
connectivity constraints [Bei et al., 2022; Truszczynski and
Lonc, 2020]. Stretegyproof versions of fair division have also
been studied [Barman et al., 2019; Amanatidis et al., 2016;
Amanatidis et al., 2017a; Aziz et al., 2019]. MMS has
also inspired other notions of fairness, like weighted MMS
[Farhadi et al., 2019], AnyPrice Share (APS) [Babaioff et al.,
2021], Groupwise MMS [Barman et al., 2018; Chaudhury et
al., 2021], 1-out-of-d share [Hosseini and Searns, 2021], and
self-maximizing shares [Babaioff and Feige, 2022].

1.2 Outline of This Paper
In Section 2, we give formal definitions, notations, and pre-
liminaries. In Section 3, we give a very simple proof that (a
minor modification of) the Garg-Taki algorithm [2021] out-
puts a 3/4-MMS allocation. In Section 4, we improve the
analysis to show that the output is a ( 34 +min( 1

36 ,
3

4(4n−1) ))-
MMS allocation. In Section 5, we give a tight example for
our algorithm.

2 Preliminaries
For any non-negative integer n, let [n] := {1, 2, . . . , n}.

A fair division instance I is specified by a triple (N,M, v),
where N is the set of agents, M is the set of goods, and vi,g
is the value of good g ∈ M for agent i ∈ N . For a set S of
goods, define vi(S) :=

∑
g∈S vi,g . Then vi is called agent

i’s valuation function. Intuitively, vi(S) is a measure of how
valuable S is to i. For ease of notation, we write vi(g) in-
stead of vi({g}). We can assume without loss of generality
that N = [n] and M = [m], where n = |N | and m = |M |
(though when dealing with multiple related fair division in-
stances, not making this assumption can sometimes simplify
notation).

For a set S of goods, let Πn(S) denote the set of partitions
of S into n bundles. For any valuation function u, define

MMSnu(S) := max
X∈Πn(S)

n
min
j=1

u(Xj).

When the fair division instance (N,M, v) is clear from con-
text, we write MMSi instead of MMS|N |

vi
(M) for concise-

ness.

2.1 Ordered Instance
Definition 1. A fair division instance (N,M, v) is called or-
dered if there is an ordering [g1, g2, . . . , g|M |] of goods M
such that for each agent i, vi,g1 ≥ vi,g2 ≥ . . . ≥ vi,g|M| .

We will now see how to reduce the problem of finding an
α-MMS allocation to the special case of ordered instances.

Definition 2. For the fair division instance I := (N,M, v),
toOrd(I) is defined as the instance (N, [|M |], v̂), where for
each i ∈ N and j ∈ [|M |], v̂i,j is the jth largest number in
the multiset {vi,g | g ∈ M}.

In Theorem 3.2 of [Barman and Krishnamurthy, 2020],
it was shown that the transformation toOrd is α-MMS-
preserving, i.e., for a fair division instance I, given an α-
MMS allocation of toOrd(I), we can compute an α-MMS
allocation of I in polynomial time. (The proof is based on
ideas by Bouveret and Lemaı̂tre [2016]).

2.2 Valid Reductions
We use a technique called valid reduction, that helps us re-
duce a fair division instance to a smaller instance. This tech-
nique has been implicitly used in [Bouveret and Lemaı̂tre,
2016; Kurokawa et al., 2016; Kurokawa et al., 2018; Amana-
tidis et al., 2017b; Ghodsi et al., 2018; Garg et al., 2018] and
explicitly used in [Garg and Taki, 2021].
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Definition 3 (Valid reduction). In a fair division instance
(N,M, v), suppose we give the goods S to agent i. Then
we are left with a new instance (N \ {i},M \ S, v). Such a
transformation is called a valid α-reduction if both of these
conditions hold:

1. vi(S) ≥ αMMS|N |
vi

(M).

2. MMS|N |−1
vj

(M \S) ≥ MMS|N |
vj

(M) for all j ∈ N \{i}.

Note that valid reductions are α-MMS-preserving, i.e., if
A is an α-MMS allocation of an instance obtained by per-
forming a valid reduction, then we can get an α-MMS allo-
cation of the original instance by giving goods S to agent i
and allocating the remaining goods as per A. A valid reduc-
tion, therefore, helps us reduce the problem of computing an
α-MMS allocation to a smaller instance.

We now describe four standard transformations, called re-
duction rules, and show that they are valid reductions.
Definition 4 (Reduction rules). Consider an ordered fair di-
vision instance (N,M, v), where M := {g1, . . . , g|M |} and
vi,g1 ≥ . . . ≥ vi,g|M| for every agent i. Define

1. S1 := {g1}.
2. S2 := {g|N |, g|N |+1} if |M | ≥ |N |+ 1, else S2 := ∅.

3. S3 := {g2|N |−1, g2|N |, g2|N |+1} if |M | ≥ 2|N |+1, else
S3 := ∅.

4. S4 := {g1, g2|N |+1} if |M | ≥ 2|N |+ 1, else S4 := ∅.

Reduction rule Rk(α): If vi(Sk) ≥ αMMSi for some
agent i, then give Sk to i.

A fair division instance is called Rk(α)-irreducible if
Rk(α) cannot be applied, i.e., vi(Sk) < αMMSi for every
agent i (otherwise it is called Rk(α)-reducible). An instance
is called totally-α-irreducible if it is Rk(α)-irreducible for all
k ∈ [4].
Lemma 1 (Lemma 3.1 in [Garg and Taki, 2021]). For an or-
dered instance and for α ≤ 1, R1(α), R2(α), and R3(α) are
valid α-reductions. For an ordered instance and for α ≤ 3/4,
if the instance is R1(α)-irreducible and R3(α)-irreducible,
then R4(α) is a valid α-reduction.
Lemma 2. Let I := ([n], [m], v) be an ordered instance
where vi,1 ≥ . . . ≥ vi,m for each agent i. For any k ∈ [3], if
I is Rk(α)-irreducible, then for each agent i and every good
j > (k − 1)n, we have vi,j < αMMSi/k.

Proof. Since I is Rk(α)-irreducible, we get vi(Sk) <
αMMSi for each agent i. Let t := (k − 1)n+ 1. Then

αMMSi > vi(Sk) =
∑
g∈Sk

vi,g ≥ |Sk| min
g∈Sk

vi,g = kvi,t.

Hence, ∀j ≥ t, we have vi,j ≤ vi,t < αMMSi/k.

Lemma 3. If an ordered instance (N,M, v) is R1(α)-
irreducible for any α ≤ 1, then |M | ≥ 2|N |.

Proof. Assume |M | < 2|N |. Pick any agent i ∈ N . Let P be
an MMS partition of agent i. Then some bundle Pj contains
a single good {g}. Then vi,g = vi(Pj) ≥ MMSi. Hence,
the instance is not R1(α)-irreducible for any α ≤ 1. This is a
contradiction. Hence, |M | ≥ 2|N |.

Algorithm 1 normalize((N,M, v))

1: for i ∈ N do
2: Compute agent i’s MMS partition P (i).
3: ∀j ∈ N , ∀g ∈ P

(i)
j , let v̂i,g := vi,g/vi(P

(i)
j ).

4: end for
5: return (N,M, v̂).

We would like to convert fair division instances into
totally-α-irreducible instances. This can be done using a very
simple algorithm, which we call reduceα. This algorithm
works for α ≤ 3/4. It takes an ordered fair division instance
as input and repeatedly applies the reduction rules R1(α),
R2(α), R3(α), and R4(α) until the instance becomes totally-
α-irreducible. The reduction rules can be applied in arbitrary
order, except that R4(α) is only applied when R1(α) and
R3(α) are inapplicable.

Note that the application of reduction rules changes the
number of agents and goods, which affects subsequent re-
duction rules. More precisely, the sets S1, S2, S3, S4 (as
defined in Definition 4) can change after applying a reduction
rule. So, for example, it is possible that an instance is R2(α)-
irreducible, but after applying R3(α), the resulting instance
is R2(α)-reducible.

2.3 Normalized Instance
Definition 5 (Normalized instance). A fair division instance
(N,M, v) is called normalized if for every agent i, there is a
partition P (i) := (P

(i)
1 , . . . , P

(i)
|N |) of M such that vi(P

(i)
j ) =

1 ∀j ∈ N .
Note that for a normalized instance, every agent’s MMS

value is 1. Furthermore, for each agent i and for every MMS
partition Q of agent i, we have vi(Qj) = 1 ∀j ∈ N , since
each partition has total value at least 1 and

∑
j∈N vi(Qj) =

vi(M) =
∑

j∈N vi(P
(i)
j ) = |N |.

The algorithm normalize (c.f. Algorithm 1) converts a
fair division instance to a normalized instance.
Lemma 4. Let (N,M, v̂) = normalize((N,M, v)). Then
for any allocation A, vi(Ai) ≥ v̂i(Ai)MMS|N |

vi
(M) for all

i ∈ N .

Proof. Let βi := MMSnvi
(M). For any good g ∈ P

(i)
j ,

v̂i,g = vi,g/vi(P
(i)
j ) ≤ vi,g/βi. Hence, vi,g ≥ v̂i,gβi. Hence,

vi(Ai) ≥ v̂i(Ai)βi.

Lemma 4 implies that normalize is α-MMS-preserving,
since if A is an α-MMS allocation for the normalized instance
(N,M, v̂), then A is also an α-MMS allocation for the origi-
nal instance (N,M, v).

3 Simple Proof for Existence of
3/4-MMS Allocations

We give an algorithm, called approxMMS (c.f. Algorithm 2),
that takes as inputs a fair division instance and an approxima-
tion factor α, and outputs an α-MMS allocation. It works in
three major steps:
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Algorithm 2 approxMMS(I, α)
Input: Fair division instance I = (N,M, v) and approxima-
tion factor α.
Output: Allocation A = (A1, . . . , An).

1: Î = toOrd(normalize(reduceα(toOrd(I))))
2: Â = bagFill(Î, α).
3: Use Â to compute an allocation A for I with the same

MMS approximation as Â. (This can be done since Sec-
tions 2.1, 2.2 and 2.3 show that toOrd, reduceα, and
normalize are α-MMS-preserving.)

4: return A

1. Reduce the problem of finding an α-MMS allocation to
the special case where the instance is Ordered, Normal-
ized, and totally-α-Irreducible (ONI).

2. Compute an α-MMS allocation for this special case us-
ing the bagFill algorithm (c.f. Algorithm 3).

3. Convert this allocation for the special case to an alloca-
tion for the original fair division instance.

We describe steps 1 and 3 in Section 3.1 and step 2 in Sec-
tion 3.2. In this section, we only consider the case where
α = 3/4. In Section 4, we slightly modify approxMMS so
that it works for α = 3

4 + min( 1
36 ,

3
4(4n−1) ). Our algorithm

approxMMS is almost the same as the algorithm of Garg and
Taki [2021]. The only difference is that, unlike them, we en-
sure that the output of step 1 is normalized.

3.1 Obtaining an Ordered Normalized Irreducible
(ONI) Instance

Lemma 5. Let I be a fair division instance. Let Î :=

toOrd(normalize(reduce3/4(toOrd(I)))). Then Î is or-
dered, normalized, and totally-3/4-irreducible. Furthermore,
the transformation of I to Î is 3/4-MMS-preserving, i.e., a
3/4-MMS allocation of Î can be used to obtain a 3/4-MMS
allocation of I.

Proof. Let I(1) := toOrd(I). Then I(2) :=
reduce3/4(I(1)) is totally-3/4-irreducible and ordered, since
the application of reduction rules preserves orderedness.

Let I(3) := normalize(I(2)). By Lemma 4, normalize
does not increase the ratio of a good’s value to the MMS
value. Hence, Î is totally-3/4-irreducible. Î is also normal-
ized, since for each agent, toOrd only changes the identities
of the goods, but the (multi-)set of values of the goods re-
mains the same. Hence, Î is ordered, normalized, and totally-
3/4-irreducible.

Since toOrd, reduce3/4, and normalize are 3/4-MMS-
preserving operations, their composition is also 3/4-MMS-
preserving.

The order of operations is important here, as well as the
need to call toOrd twice, since reduce requires the input to
be ordered, reduce may not preserve normalizedness, and
normalize may not preserve orderedness.

Algorithm 3 bagFill(I, α)
Input: Ordered instance I = ([n], [m], v) with m ≥ 2n and
approximation factor α.
Output: (Partial) allocation A = (A1, . . . , An).

1: for k ∈ [n] do
2: Bk = {k, 2n+ 1− k}.
3: end for
4: UG = [m] \ [2n] // unassigned goods
5: UA = [n] // unsatisfied agents
6: UB = [n] // unassigned bags
7: while UA ̸= ∅ do // loop invariant: |UA| = |UB |
8: if ∃i ∈ UA, ∃k ∈ UB , such that vi(Bk) ≥ α then
9: // assign the kth bag to agent i:

10: Ai = Bk

11: UA = UA \ {i}
12: UB = UB \ {k}
13: else if UG ̸= ∅ then
14: g = arbitrary good in UG

15: k = arbitrary bag in UB

16: // assign g to the kth bag:
17: Bk = Bk ∪ {g}.
18: UG = UG \ {g}
19: else
20: error: we ran out of goods. return null.
21: end if
22: end while
23: return (A1, . . . , An)

Garg and Taki [2021] transform the instance as
reduce3/4(toOrd(I)), since they do not need the in-
put to be normalized.

3.2 3/4-MMS Allocation of ONI Instance
Let ([n], [m], v) be a fair division instance that is ordered,
normalized, and totally-3/4-irreducible (ONI). Without loss
of generality, assume that vi,1 ≥ vi,2 ≥ . . . ≥ vi,m for each
agent i.

Our algorithm, called bagFill(I, α), creates n bags,
where the jth bag contains goods {j, 2n + 1 − j}. (To cre-
ate bags in this way, there must be at least 2n goods. This
is ensured by Lemma 3.) It then repeatedly adds a good to
an arbitrary bag, and as soon as some agent i values a bag
more than α, that bag is allocated to i. The algorithm termi-
nates when all agents have been allocated a bag. See Algo-
rithm 3 for a more precise description. (In this section, we set
α = 3/4. In Section 4, we set α = 3

4 + min( 1
36 ,

3
4(4n−1) ).)

bagFill computes a partial allocation, i.e., some goods may
remain unallocated. But that can be easily fixed by arbitrarily
allocating those goods among the agents.
bagFill(I, α) allocates a bag Bk to agent i only if

vi(Bk) ≥ α. Hence, to prove that bagFill(I, 3/4) returns a
3/4-MMS allocation, it suffices to show that bagFill termi-
nates successfully, i.e., line 20 is never executed.

For k ∈ [n], let Bk := {k, 2n + 1 − k} be the initial
contents of the kth bag and B′

k be the kth bag’s contents after
bagFill terminates. We consider two groups of agents. Let
N1 be the set of agents who value all the initial bags at most

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2488



1. Formally, N1 := {i ∈ [n] | ∀k ∈ [n], vi(Bk) ≤ 1}. Let
N2 := [n] \N1 = {i ∈ [n] | ∃k ∈ [n] : vi(Bk) > 1} be the
rest of the agents.

Let UA be the set of agents that did not receive a bag when
bagFill terminated. Note that UA is non-empty iff we ex-
ecute line 20. We first show that all agents in N1 receive a
bag, i.e., UA ∩ N1 = ∅. Then we show that UA ∩ N2 = ∅.
Together, these facts establish that bagFill terminates suc-
cessfully, and hence its output is 3/4-MMS.

Lemma 6. Let ([n], [m], v) be an ordered and normalized
fair division instance. For all k ∈ [n] and agent i ∈ [n], if
vi,k + vi,2n−k+1 > 1, then vi,2n−k+1 ≤ 1/3 and vi,k > 2/3.

Proof. It suffices to prove vi,2n−k+1 ≤ 1/3 and then vi,k >
2/3 follows. Let P = (P1, . . . , Pn) be an MMS partition of
agent i. For j ∈ [k] and j′ ∈ [2n+1−k], vi,j+vi,j′ ≥ vi,k+
vi,2n+1−k > 1, since the instance is ordered. Furthermore, j
and j′ cannot be in the same bundle in P , since the instance
is normalized. In particular, no two goods from [k] are in the
same bundle in P . Hence, assume without loss of generality
that j ∈ Pj for all j ∈ [k].

For all j ∈ [k] and j′ ∈ [2n − k + 1], j′ ̸∈ Pj . Thus,
{k + 1, . . . , 2n − k + 1} ⊆ Pk+1 ∪ . . . ∪ Pn. By pigeon-
hole principle, there exists a bundle B ∈ {Pk+1, . . . , Pn} that
contains at least 3 goods g1, g2, g3 in {k+1, . . . , 2n−k+1}.
Hence,

vi,2n−k+1 ≤ min
g∈{g1,g2,g3}

vi,g ≤ 1

3

∑
g∈{g1,g2,g3}

vi,g

≤ vi(B)

3
=

1

3
.

Lemma 7. Let i be any agent. For all k ∈ [n], if vi(Bk) ≤ 1,
then vi(B

′
k) ≤ 1.

Proof. If B′
k = Bk, then the claim obviously holds. Now

assume Bk ⊊ B′
k. Let g be the last good that was added to

B′
k. We have vi(B

′
k \ g) < 3/4, otherwise g would not be

added to B′
k. Also note that g > 2n and hence vi,g < 1/4 by

Lemma 2. Thus, we have

vi(B
′
k) = vi(B

′
k \ g) + vi,g <

3

4
+

1

4
= 1.

Lemma 8. UA ∩N1 = ∅, i.e., every agent in N1 gets a bag.

Proof. For the sake of contradiction, assume UA ∩ N1 ̸= ∅.
Hence, ∃i ∈ UA ∩N1. Also, for some j ∈ [n], the jth bag is
unallocated. Hence, vi(B′

j) < 3/4 and

n = vi(M) = vi(B
′
j) +

∑
k∈[n]\{j}

vi(B
′
k)

(since M =
⋃

k∈[n] B
′
k)

< (n− 1) +
3

4
= n− 1

4
, (by Lemma 7)

which is a contradiction. Hence, UA ∩N1 = ∅.

Now we prove that bagFill allocates a bag to all agents
in N2, i.e., UA ∩N2 = ∅.

Lemma 9. i ∈ N2 =⇒ vi,2n+1 < 1/12.

Proof. Since i ∈ N2, there exists a bag Bk such that
vi(Bk) > 1. By Lemma 6, vi,k > 2/3. Thus, vi,1 > 2/3.
Moreover,

vi,2n+1 <
3

4
− vi,1 (since R4(3/4) is not applicable)

<
3

4
− 2

3
=

1

12
. (since vi,1 > 2/3)

From now on assume for the sake of contradiction that
UA ̸= ∅. Let a be a fixed agent in UA. By Lemma 8, a ∈ N2.
Let A+ := {k ∈ [n] | va(Bk) > 1}, A− := {k ∈ [n] |
va(Bk) < 3/4}, and A0 := {k ∈ [n] | 3/4 ≤ va(Bk) ≤ 1}.
We will try to get upper bounds on va(B

′
k) for each of the

cases k ∈ A+, k ∈ A−, and k ∈ A0.
Note that n = |A+|+ |A−|+ |A0|. Also, n ∈ A− since the

instance is R2(3/4)-irreducible, and |A+| ≥ 1 since a ∈ N2.

Lemma 10. ∀k ∈ A−, va(B′
k) < 5/6.

Proof. If B′
k = Bk, then va(B

′
k) < 3/4 < 5/6. Otherwise,

let g be the last good that was added to B′
k. Then va(B

′
k \

{g}) < 3/4, otherwise bagFill would assign B′
k \ {g} to

agent i instead of adding g to it. Hence,

va(B
′
k) = va(B

′
k \ {g}) + va,g

<
3

4
+ va,2n+1

(since va(B
′
k \ g) < 3/4 and va,g ≤ va,2n+1)

<
3

4
+

1

12
=

5

6
.

(va,2n+1 < 1/12 by Lemma 9)

Let ℓ be the smallest such that for all k ∈ [ℓ+1, n], va,k +
va,2n−k+1+ℓ ≤ 1. See Fig. 1 for a better understanding of ℓ.
Note that ℓ ≥ 1, since a ∈ N2.

Lemma 11.
∑

k∈A+ va(B
′
k) < |A+|+min(ℓ, |A+|)/12.

Proof. Let S ∈ A+ be the set of min(ℓ, |A+|) smallest in-
dices in A+ and L ∈ A+ be the set of min(ℓ, |A+|) largest
indices in A+. Since |A+| ≥ 1 and ℓ ≥ 1, we get |S| =
|L| ≥ 1. Note that

∑
k∈A+

va(B
′
k) =

(∑
k∈S

va,k +
∑
k∈L

va,2n−k+1

)

+

 ∑
k∈A+\S

va,k +
∑

k∈A+\L

va,2n−k+1

 .

By Lemma 6, we get va,2n−k+1 ≤ 1
3 . Since va,k < 3/4

and |S| ≥ 1, we get∑
k∈S

va,k +
∑
k∈L

va,2n−k+1 < |S|
(
3

4
+

1

3

)
=

13

12
|S|. (1)
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1

2n

2

2n− 1

· · ·

· · ·

k − ℓ

2n+ 1− k + ℓ

· · ·

· · ·

k

2n+ 1− k

· · ·

· · ·

n− 1

n+ 2

n

n+ 1

+

≤ 1

Figure 1: The items [2n] are arranged in a table, where the kth column is Bk := {k, 2n + 1 − k}. For i ∈ N1, we have vi(Bk) =
vi,k + vi,2n+1−k ≤ 1 for all k. However, a ̸∈ N1. Hence, we look for the smallest shift ℓ such that va,k + va,2n+1−k+ℓ ≤ 1 for all k.

If ℓ ≥ |A+|, then |S| = |L| = |A+|, and we are done.
Now assume ℓ < |A+|. Then |S| = |L| = ℓ.

Let A+ := {g1, . . . , g|A+|} and g1 < . . . < g|A+|.
Then A+ \ S = {gℓ+1, . . . , g|A+|} and A+ \ L =
{g1, . . . , g|A+|−ℓ}. The idea is to pair the goods gk+ℓ and
2n− gk + 1 (for k ∈ [|A+| − ℓ]) and prove that their value is
at most 1 for agent a.

Since gk+ℓ ≥ gk + ℓ, we get va,gk+ℓ
+ va,2n−gk+1 ≤ 1 by

definition of ℓ. Hence,∑
k∈A+\S

va,k +
∑

k∈A+\L

va,2n−k+1

=
∑

k∈[|A+|−ℓ]

(va,gk+ℓ
+ va,2n−gk+1) ≤ |A+| − ℓ.

(2)

Equations (1) and (2) imply Lemma 11.

Lemma 12. va([m] \ [2n]) > ℓ/4.

Proof. By definition of ℓ, there exists a good k ∈ {ℓ, . . . , n}
such that va,k + va,2n−k+ℓ > 1. Hence, for all j ∈ [k] and
t ≤ [2n−k+ℓ], we have va,j+va,t ≥ va,k+va,2n−k+ℓ > 1.

Let P := (P1, . . . , Pn) be an MMS partition of agent a.
Then, for j ∈ [k] and t ∈ [2n − k + ℓ], j and t cannot be
in the same bundle in P , since the instance is normalized. In
particular, no two goods from [k] are in the same bundle in P .
Hence, assume without loss of generality that j ∈ Pj for all
j ∈ [k]. Thus, [2n− k + ℓ] \ [k] ⊆ Pk+1 ∪ . . . ∪ Pn.

Bundles in {P1, . . . , Pk} can only have goods from [k],
[2n] \ [2n− k + ℓ], and [m] \ [2n]. There are k − ℓ goods in
[2n] \ [2n− k+ ℓ]. Hence, at least ℓ bundles in {P1, . . . , Pk}
have just 1 good from [2n]. Let L be the indices of these
bundles, i.e., L := {t ∈ [k] | |Pt ∩ [2n]| = 1}. Then

va([m] \ [2n]) ≥
∑
j∈L

va(Pj \ {j})

=
∑
j∈L

(va(Pj)− va,j)

>
∑
j∈L

(
1− 3

4

)
=

|L|
4

≥ ℓ

4
.

(va,j < 3/4 by Lemma 2)

Lemma 13. For all i ∈ N2 and k ∈ [n], vi(Bk) > 1/2.

Proof. Fix an i ∈ N2. Let t be smallest such that vi(Bt) > 1.
By Lemma 6, vi,t > 2/3. Hence, for all k ≤ t,

vi(Bk) ≥ vi,k ≥ vi,t >
2

3
>

1

2
.

Since vi(Bt) = vi,t + vi,2n−t+1 > 1 and vi,t < 3/4 (by
Lemma 2), we get vi,2n−t+1 > 1/4. For all k > t, we have
k < 2n− k + 1 < 2n− t+ 1. Hence,

vi(Bk) = vi,k + vi,2n−k+1 ≥ 2 · vi,2n−t+1 >
1

2
.

Lemma 14. UA∩N2 = ∅, i.e., every agent in N2 gets a bag.

Proof. Assume for the sake of contradiction that UA ∩N2 ̸=
∅. Then, as discussed before, we fix an agent a ∈ UA ∩ N2

and define A+, A−, A0, and ℓ.

n = va([m]) =
∑
k∈[n]

va(B
′
k)

=
∑

k∈A−

va(B
′
k) +

∑
k∈A+

va(B
′
k) +

∑
k∈A0

va(B
′
k)

<
5

6
|A−|+

(
|A+|+ ℓ

12

)
+ |A0|

(by Lemmas 10 and 11)

= n+
ℓ

12
− |A−|

6

Hence, |A−| < ℓ/2.
Now we show that there are enough goods in [m] \ [2n] to

fill the bags in A−.

ℓ

4
≤ va([m] \ [2n]) (by Lemma 12)

=
∑

k∈A−

(va(B
′
k)− va(Bk))

(since B′
k = Bk ⊆ [2n] for k ∈ A+ ∪A0)

< |A−|
(
5

6
− 1

2

)
(by Lemmas 10 and 13)

= |A−| · 1
3
<

ℓ

6
, (since |A−| < ℓ/2)

which is a contradiction.

By Lemmas 8 and 14, we get that UA = ∅, i.e., every agent
gets a bag, and hence, bagFill’s output is 3/4-MMS.
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4 Better than 3/4-MMS
In this section, we give an overview of how to refine the
techniques of Section 3 to get an algorithm that outputs a
( 34 +min( 1

36 ,
3

4(4n−1) ))-MMS allocation. The details can be
found in Appendix A of the full version of our paper [Akrami
et al., 2023].

Theorem 1. For any fair division instance with additive val-
uations, a ( 34 +min( 1

36 ,
3

4(4n−1) ))-MMS allocation exists.

Algorithm approxMMS from Section 3 does not work with
α > 3/4, since R4(α) may not be a valid reduction. To
fix this, we modify R4(α) using the dummy goods technique
from [Garg and Taki, 2021].

Consider the fair division instance ([n], [m], v). When
performing R4(α), in addition to giving the goods S4 :=
{1, 2n + 1} to some agent i for whom vi(S4) ≥ αMMSi,
we create a dummy good g where vj(g) := max(0, vj(S4)−
MMSj) for each agent j ̸= i. With this change, R4(α) be-
comes a valid reduction even for α > 3/4. See Appendix A.1
for a proof. Note that dummy goods are fictional, i.e., they ex-
ist solely to guide the valid reductions. No agent is allocated
a dummy good.

Formally, a fair division instance with dummy goods is rep-
resented as a tuple I := (N,M, v,D), where D is the set of
dummy goods and M is the set of non-dummy goods. We
can extend the concepts of Section 2.1 (ordered instance),
Section 2.2 (valid reductions), and Section 2.3 (normalized
instance) to instances with dummy goods. See Appendix A.2
for details. In particular, instance (N,M, v,D) is ordered
iff (N,M, v) is ordered, and (N,M, v,D) is normalized iff
(N,M ∪D, v) is normalized.

With these modifications, we can extend approxMMS to the
case where α > 3/4. approxMMS first transforms the in-
stance into an ordered, normalized, and totally-α-irreducible
instance. Then it discards all the dummy goods and allocates
the remaining goods using the algorithm bagFill. In Ap-
pendix A.3, we show that when α ≤ 3

4 + min( 1
36 ,

3
4(4n−1) ),

bagFill allocates a bag of value at least α to every agent.
Our proof is almost the same as that in Section 3. The main
difference is that the analogue of Lemma 14 (Lemma 25 in
Appendix A) involves more elaborate algebraic manipula-
tions so that we can get tighter bounds.

5 Tight Example
We give an almost tight example for our algorithm and Garg
and Taki’s [2021] algorithm. We show that these algorithms’
output on this example is not better than ( 34 + 3

8n−4 )-MMS.

Example 1. Consider a fair division instance with n agents
and m = 3n − 1 goods. All agents have the same valuation
function u, where

u(j) :=


2n− 1− ⌊(j − 1)/2⌋

4n− 2
if j ≤ 2n

n

4n− 2
if j > 2n

.

Lemma 15. Example 1 is normalized.

Proof. Let M1 := {1, 2} and for i ∈ [n − 1], let Mi+1 :=
{i+2, 2n+1− i, 2n+ i}. Then for any i ̸= j, Mi∩Mj = ∅.
Also, u(M1) = u(1) + u(2) = 1 and for each i ∈ [n− 1],

(4n− 2)u(Mi+1)

= (4n− 2)(u(i+ 2) + u(2n+ 1− i) + u(2n+ i))

=
(
2n− 1−

⌊ i+ 1

2

⌋)
+
(
2n− 1−

⌊2n− i

2

⌋)
+ n

= (2n− 1− ⌈i/2⌉) + (n− 1 + ⌈i/2⌉) + n

= 4n− 2.

Define the MMSscore of an allocation as the maximum α
such that it is an α-MMS allocation. Formally, for an alloca-
tion A := (A1, . . . , An),

MMSscore(A) :=
n

min
i=1

vi(Ai)

MMSi
.

Theorem 2. Let I be the fair division instance of Example 1.
Let S1 := {1}, S2 := {n, n+1}, S3 := {2n−1, 2n, 2n+1},
S4 := {1, 2n + 1}. Consider a fair division algorithm that
either outputs bagFill(I, α) for some α, or allocates the
set Sk, for some k ∈ [4], to an agent i, and allocates the
remaining goods to the remaining agents in an unspecified
way. Let A be the allocation output by this algorithm. Then

MMSscore(A) ≤ 3n

4n− 2
=

3

4
+

3

8n− 4
.

Proof. u(S1) = 1/2, u(S2) = u(S4) = (3n − 1)/(4n− 2),
and u(S3) = 3n/(4n− 2). Hence, if the algorithm allocates
Sk to an agent i, for some k ∈ [4], then that agent will get a
bundle of value at most 3n/(4n− 2).

Now suppose that the algorithm outputs bagFill(I, α).
Every bag initially has value τ := (3n − 1)/(4n − 2). If
α ≤ τ , then no bag receives any more items, and each agent
gets a bag of value τ . If α > τ , then we run out of goods and
bagFill fails (i.e., returns null), since there are n bags but
only n− 1 goods in [m] \ [2n].

6 Conclusion
In fair division of indivisible goods, MMS is one of the most
popular notions of fairness, and determining (tight lower and
upper bounds on) the maximum α for which α-MMS alloca-
tions are guaranteed to exist is an important open problem.

To gain a better understanding of this problem, we thor-
oughly studied Garg and Taki’s [2021] algorithm for obtain-
ing 3/4-MMS allocations. We considerably simplified its
analysis and our techniques helped improve the best-known
MMS approximation factor to 3

4 + min( 1
36 ,

3
4(4n−1) ). Fur-

thermore, we presented a tight example that reveals a fun-
damental barrier towards improving the MMS approximation
guarantee using techniques in [Garg and Taki, 2021].
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Monnot. On maximin share allocations in matroids. The-
oretical Computer Science, 754:50–64, 2019.

[Hosseini and Searns, 2021] Hadi Hosseini and Andrew
Searns. Guaranteeing maximin shares: Some agents left
behind. In International Joint Conference on Artificial In-
telligence, pages 238–244, 2021.

[Huang and Lu, 2021] Xin Huang and Pinyan Lu. An algo-
rithmic framework for approximating maximin share allo-
cation of chores. In ACM Conference on Economics and
Computation, pages 630–631, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2492



[Kurokawa et al., 2016] David Kurokawa, Ariel D Procac-
cia, and Junxing Wang. When can the maximin share guar-
antee be guaranteed? In AAAI Conference on Artificial
Intelligence, 2016.

[Kurokawa et al., 2018] David Kurokawa, Ariel D Procac-
cia, and Junxing Wang. Fair enough: Guaranteeing ap-
proximate maximin shares. Journal of the ACM (JACM),
65(2):1–27, 2018.

[Li and Vetta, 2021] Zhentao Li and Adrian Vetta. The fair
division of hereditary set systems. ACM Transactions on
Economics and Computation (TEAC), 9(2):1–19, 2021.

[Procaccia and Wang, 2014] Ariel D Procaccia and Junxing
Wang. Fair enough: Guaranteeing approximate maximin
shares. In ACM Conference on Economics and Computa-
tion, pages 675–692, 2014.

[Truszczynski and Lonc, 2020] Miroslaw Truszczynski and
Zbigniew Lonc. Maximin share allocations on cycles.
Journal of Artificial Intelligence Research, 69:613–655,
2020.

[Woeginger, 1997] Gerhard J Woeginger. A polynomial-
time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters,
20(4):149–154, 1997.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2493


	1 Introduction
	1.1 Related Work
	1.2 Outline of This Paper

	2 Preliminaries
	2.1 Ordered Instance
	2.2 Valid Reductions
	2.3 Normalized Instance

	3 Simple Proof for Existence of 3/4-MMS Allocations
	3.1 Obtaining an Ordered Normalized Irreducible (ONI) Instance
	3.2 3/4-MMS Allocation of ONI Instance

	4 Better than 3/4-MMS
	5 Tight Example
	6 Conclusion

