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Abstract
We study fair division of indivisible chores among
n agents with additive disutility functions. Two
well-studied fairness notions for indivisible items
are envy-freeness up to one/any item (EF1/EFX)
and the standard notion of economic efficiency is
Pareto optimality (PO). There is a noticeable gap
between the results known for both EF1 and EFX
in the goods and chores settings. The case of chores
turns out to be much more challenging. We re-
duce this gap by providing slightly relaxed versions
of the known results on goods for the chores set-
ting. Interestingly, our algorithms run in polyno-
mial time, unlike their analogous versions in the
goods setting.
We introduce the concept of k surplus which means
that up to k more chores are allocated to the agents
and each of them is a copy of an original chore. We
present a polynomial-time algorithm which gives
EF1 and PO allocations with (n− 1) surplus.
We relax the notion of EFX slightly and define
tEFX which requires that the envy from agent i
to agent j is removed upon the transfer of any
chore from the i’s bundle to j’s bundle. We give
a polynomial-time algorithm that in the chores case
for 3 agents returns an allocation which is either
proportional or tEFX. Note that proportionality is a
very strong criterion in the case of indivisible items,
and hence both notions we guarantee are desirable.

1 Introduction
Fair division of a set of indivisible items among agents is a
fundamental area with applications in various multi-agent set-
tings. The items can be either goods (provides positive utility)
or chores (provides negative utility). The case of goods has
been vastly studied [Amanatidis et al., 2022]. On the other
hand, the case of chores is relatively new. In both settings,
given a set N = [n] of n agents and a set M = [m] of m
items, the goal is to find an allocation X = ⟨X1, . . . , Xn⟩
satisfying some fairness and efficiency criteria where agent i
receives the bundle Xi for all i ∈ [n].

In this paper, we focus on fair division of chores when each
agent i has a disutility function di : 2M → R≥0 which

indicates how much agent i dislikes each subset S ⊆ M
of the chores. We assume that each di is additive, i.e.,
di(S) =

∑
j∈S di({j}).

Envy-freeness is one of the most accepted notions of fair-
ness. In the chores setting, allocation X is envy-free if for
every pair of agents i and j, di(Xi) ≤ di(Xj). However,
envy-freeness is too strong to be satisfied.1 Hence, to obtain
positive results we need to relax the fairness notion. There-
fore, we study envy-freeness up to one item (EF1), envy-
freeness up to transferring any item (tEFX) and proportional-
ity as our fairness criteria. For efficiency, we consider (frac-
tional) Pareto optimality (fPO).

1.1 EF1 and fPO with Surplus for n Agents
An allocation X = ⟨X1, . . . , Xn⟩ is Pareto optimal (PO),
if there exists no allocation Y = ⟨Y1, . . . , Yn⟩ such that
di(Yi) ≤ di(Xi) for all agents i and for some agent j,
dj(Yj) < dj(Xj). For Pareto optimality, we assume Y is
an integral allocation. A stronger notion is fractional Pareto
optimality (fPO) which allows Y to be a fractional alloca-
tion. In a fractional allocation y = ⟨y1, . . . , yn⟩, yi,c is
the fraction of chore c ∈ [m] allocated to agent i with∑

i∈[n] yi,c = 1 and yi = (yi,1, . . . , yi,m) is i’s bundle. Then
di(yi) =

∑
c∈[m] yi,c · di({c}) is the disutility of agent i in

the fractional allocation.

Fractional Pareto optimality (fPO). Allocation x is frac-
tionally Pareto optimal or fPO, if there exists no fractional
allocation y such that di(yi) ≤ di(xi) for all i and for some
agent j, dj(yj) < dj(xj).

Envy-freeness up to one chore (EF1). Allocation X =
⟨X1, . . . , Xn⟩ is EF1 if for all i, j ∈ N , di(Xi) ≤ di(Xj) or
there exists a chore c ∈ Xi such that di(Xi \ {c}) ≤ di(Xj).

EF1 is defined for the case of the goods accordingly, with
the difference that the good should be removed from the bun-
dle of the envied agent [Budish, 2011]. For both goods and
chores settings, EF1 allocations are known to exist, and they
can also be computed in polynomial-time [Lipton et al., 2004;
Bhaskar et al., 2021]. However, the outputs of these algo-
rithms are not guaranteed to be efficient. Satisfying EF1 and
PO simultaneously turns out to be a challenging problem.

1For example, consider division of one chore among two agents.
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In the goods setting under additive valuations, Caragiannis
et al. [2016] proved that any allocation with maximum Nash
welfare is EF1 and PO. Later, Barman et al. [2018] gave a
pseudopolynomial-time algorithm for computing an EF1 and
PO allocation, which was recently improved to output an EF1
and fPO allocation [Garg and Murhekar, 2021]. In the case
of chores on the other hand, the existence of EF1 and PO al-
locations is a big open problem. Similar results on chores are
known for very limited settings of bivalued disutilities [Garg
et al., 2022a; Ebadian et al., 2022], three agents [Garg et al.,
2022b] and when chores are divided into two types [Aziz et
al., 2022].

In this paper, we make progress in this line of work by
proving that given additive disutilities, there exists an EF1
and fPO allocation with (n−1) surplus. The analouge of sur-
plus in the goods setting is charity, which is a well-accepted
concept, and it means that some goods might remain un-
allocated. Caragiannis et al. [2019] introduced the notion
of EFX with charity. Many follow-up papers proved relax-
ations of envy-freeness with charity [Chaudhury et al., 2021b;
Berger et al., 2022; Akrami et al., 2022b; Mahara, 2021;
Berendsohn et al., 2022]. In the chores setting, by “k sur-
plus”, we mean that all the chores are allocated, and at most,
k extra chores are allocated to the agents, and each of these
chores is a copy of an original chore.

One motivation behind defining the concept of surplus for
chores is the lack of progress on the original problem for over
half a decade. It is likely that an allocation that is both EF1
and PO might not always exist, and in that case, the concept
of surplus seems a good alternative. Moreover, duplicating
chores makes sense for many applications. For instance, con-
sider the task of distributing papers among reviewers. The
goal is to have all papers reviewed and also be fair toward
the reviewers. To this end, it does not harm if a few papers
are reviewed more than needed. Another practical scenario is
when the chores are going to be repeated. Consider the case
where the same set of chores needs to be done every month.
This can happen in households, corporations, etc. In this case,
multiplying some chore c for k times means that we already
decide which agents should do c in the following k months.
Thus, when planning for the next k months, we can remove c
from the set of chores that need to be assigned.

Our first main result is formally stated in Theorem 1.

Theorem 1. Given additive disutilites, there exists an allo-
cation with at most (n − 1) surplus which is EF1 and fPO.
Moreover, it can be computed in polynomial time.

Note that the allocation in Theorem 1 being fPO means that
it fractionally Pareto dominates all the allocations with the
same surplus. Our approach is based on rounding of competi-
tive equilibrium with equal incomes (CEEI). Since there is no
polynomial-time algorithm known for computing a CEEI, we
round a (1−ϵ)-approximate-CEEI for ϵ = 1

5nm , which can be
computed in polynomial-time [Chaudhury et al., 2022a]. By
integrally assigning chores which are fractionally allocated in
the (1−ϵ)-CEEI, we guarantee that the final allocation is fPO.
However, the main challenge here is to achieve EF1 guarantee
with at most n− 1 surplus, which requires careful rounding.

1.2 tEFX or Proportionality for 3 Agents
The discrepancy between known results for the goods and
chores setting carries over even for instances with a small
number of agents. In the goods setting, EFX allocations al-
ways exist for 3 agents with additive utilities [Chaudhury et
al., 2020]. However, the analogous problem for chores is
open. An allocation X = ⟨X1, . . . , Xn⟩ is EFX if for all
agents i and j and all chores c ∈ Xi, di(Xi \ {c}) ≤ di(Xj).
The existence of EFX allocations for chores has been studied
in the very limited settings of 3 agents with bivalued disu-
tilites [Zhou and Wu, 2022] and also when agents have the
same ordinal preferences on the chores [Li et al., 2022].

Let us briefly discuss the technique to obtain EFX for three
agents for the goods setting and why it fails in the chores set-
ting. In [Chaudhury et al., 2020], the high-level idea is to
start with an empty allocation and at each step, allocate some
unallocated goods to some agents, possibly take away some
goods from them or move the bundles among the agents while
guaranteeing that the partial allocation is EFX at the end of
each step. Basically, the algorithm moves in the space of
partial EFX allocations, improving a sophisticated potential
function at each step and terminates when it reaches a com-
plete allocation. This algorithm relies on involved concepts
such as champion-graphs and half-bundles. In the goods set-
ting, by allocating more goods, we make progress in the sense
of improving agents’ utilities. However, in the chores setting,
by allocating more chores, we make the agents less happy.
Therefore, it is not easy to adapt the algorithm and come up
with a potential function which improves after more chores
get allocated. In fact, the existence of allocations satisfy-
ing even weaker notions of fairness than EFX like tEFX is
open for the chores setting even when n = 3. Yin and Mehta
[2022] proved the existence of a tEFX allocation for three
agents if two of them have additive disutility functions and
the ratio of their highest to lowest cost is bounded by two.

Envy-freeness up to transferring any chore (tEFX). An
allocation is tEFX if no agent i envies another agent j after
transferring any chore from i’s bundle to j’s bundle. For-
mally, allocation X is tEFX if for all agents i and j and any
chore c ∈ Xi, di(Xi \ {c}) ≤ di(Xj ∪ {c}). We note that
given additive utility/disutility functions, tEFX is stronger
than EF2X studied in [Akrami et al., 2022b]. EF2X guaran-
tees that any envy is removed upon the removal any two items
from the envied/envious bundle.

Recently, Akrami et al. [2022a] gave an alternative proof
for the existence of EFX allocations for three agents in the
goods setting which overcomes the mentioned barrier. We
use similar techniques, and instead of moving in the space of
partial fair allocations and terminating when reaching a com-
plete allocation, we move in the space of complete allocations
and stop when we reach a fair allocation. Our technique re-
sembles the cut-and-choose protocol used for fairly allocating
items among two agents. In cut and choose, whether the re-
source is divisible or indivisible, one agent divides it into two
parts so that she finds both parts fair. Then the second agent
chooses her favorite part and the remaining part goes to the
first agent. A similar idea for the case of three agents would
be to find a partition (X1, X2, X3) such that agent 1 finds X1
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and X2 fair and agent 2 finds X2 and X3 fair. This way the
third agent can choose her favorite bundle and the remaining
bundles can be fairly allocated to the two remaining agents.

An allocation X is proportional if for every agent i,
di(Xi) ≤ di(M)/n. Note that proportionality is too strong to
be satisfied when chores are indivisible.2 We show that given
any instance comprising of three agents with additive disu-
tilities, in polynomial time one can find an allocation that is
either proportional or tEFX; the choice of alternative is made
by the algorithm. Note that the EFX result for 3 agents in the
goods setting is existential and although the approach is con-
structive, the algorithm is not polynomial. Our second main
result is stated in Theorem 2.

Theorem 2. Given an instance comprising of three agents
with additive disutilities, and a set of indivisible chores, there
exists an allocation X , such that for all i ∈ [3]

• either di(Xi) ≤ 1/3 · di(M), or

• for all c ∈ Xi and j ∈ [3], we have di(Xi \ {c}) ≤
di(Xj ∪ {c}).

Furthermore, such an allocation can be determined in poly-
nomial time.

We remark that although our result does not fully settle the
existence of tEFX allocations in the chores setting, the guar-
antees in Theorem 2 are indeed desirable, especially given
that no relaxation of envy-freeness other than EF1, is cur-
rently known to exist in the chores setting. Proportionality is a
very desirable property of an allocation and is often unattain-
able in the discrete setting. In fact, the discrete fair division
protocol used in Spliddit3, prior to the Nash-welfare maxi-
mization algorithm in 20154, first checks for a proportional
allocation and only if proportional allocations are unattain-
able, it attempts at finding relaxations of envy-freeness. There
is also research in discrete fair division that attempts to give
as many agents their proportional share [Feige and Norkin,
2022], whilst satisfying certain relaxations of classical fair-
ness notions.

1.3 Further Related Work
The notion of CEEI has a long history dating back to classi-
cal theories in microeconomics [Fisher, 1891]. When agents
have linear utilities, CEEI with goods is known to be con-
vex, and the equilibrium prices are unique [Eisenberg and
Gale, 1959]. Such properties have facilitated the formula-
tion of several polynomial time algorithms [Devanur et al.,
2008; Orlin, 2010]. In contrast, CEEI with chores forms
a non-convex disconnected set [Bogomolnaia et al., 2017],
and admits several equilibrium prices. Branzei and San-
domirskiy [2019] give a polynomial-time algorithm when
the number of agents or the number of goods is constant,
which was later improved in [Garg and McGlaughlin, 2020;
Garg et al., 2021] to the case of mixed manna containing both
goods and chores. Later, Chaudhury et al. [2021a] gave a
complementary pivot algorithm for finding a CEEI for the

2Consider the counter-example of two agents and one chore.
3spliddit.org
4This is elaborated in Introduction of [Caragiannis et al., 2016].

case of mixed manna. Recently, Boodaghians et al. [2022]
and Chaudhury et al. [2022b] have given polynomial time al-
gorithms for computing (1 − ε)-CEEI. However, the com-
plexity of finding an exact CEEI in the chores setting is open.
Moreover, Fisher markets that admit integral equilibria is
studied in [Barman and Krishnamurthy, 2019].

2 Preliminaries
An instance of discrete fair division with chores is given
by the tuple ⟨N,M,D⟩, where N = [n] is the set of n
agents, M = [m] is the set of m indivisible chores and
D = (d1(·), . . . , dn(·)), where each di : 2M → R≥0 is
the disutility function of agent i. For all agents i, di is as-
sumed to be normalized, i.e., di(∅) = 0 and monotone, i.e.,
di(S ∪ {c}) ≥ di(S) for all S ⊆ M and c /∈ S. A function
f : 2M → R≥0 is said to be additive if f(S) =

∑
s∈S f({s})

for all S ⊆M . For ease of notation, we use c instead of {c}.
For ⊕ ∈ {≤,≥, <,>}, we use S ⊕i T for di(S)⊕ di(T ).

Fisher market. In the Fisher market setting for chores in
addition to a set N of agents, a set M of chores and a disu-
tility profile D, each agent i has an initial liability ℓi > 0
which specifies how much money this agent should earn in
the market. We denote the fisher market instance by F =
⟨N,M,D,L⟩ where L = (ℓ1, . . . , ℓn). Given the instance F ,
the market outcome is a pair of fractional allocation and pay-
ment vector ⟨x, p⟩. For all agents i and chores c, xi,c denotes
what fraction of c is assigned to i and pc denotes the price of
chore c. The income of agent i from market outcome ⟨x, p⟩
is p(xi) =

∑
c∈M xi,cpc. We can also treat integral bundles

as vectors with 0 and 1 entries. Given payment vector p, the
pain per buck of agent i for chore c is di(c)/pc. We denote
the minimum pain per buck of agent i at payment p by MPBi,
i.e., MPBi = minc∈M di(c)/pc.

Definition 1. Given a Fisher market instance F , a market
outcome ⟨x, p⟩ is a Fisher market equilibrium if

• the market clears, i.e., for all chores c ∈ M ,∑
i∈[n] xi,c = 1, and

• for all agents i,
∑

c∈M xi,c · pc = ℓi, and

• all agents only receive chores with minimum pain per
buck, i.e., for all agents i and chores c, if xi,c > 0, then
di(c)/pc = MPBi.

If for all agents i, ℓi = 1, then a Fisher equilibrium is
called competitive equilibrium with equal incomes or CEEI.
Bogomolnaia et al. [2017] proved that a CEEI always exists
when agents have linear disutilities.

For goods, any Fisher equilibrium is fPO [Mas-Colell et
al., 1995]. The same holds true for chores as essentially the
same argument shows.

Proposition 1. Given additive disutilities, any Fisher equi-
librium is fractionally Pareto Optimal.

Given a market ⟨x, p⟩, the payment graph of x is a weighted
bipartite (undirected) graph with one part consisting of nodes
corresponding to the n agents and one part consisting of
nodes corresponding to the m chores. We denote the pay-
ment graph of x by G⟨x,p⟩. There is an edge between agent
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i and chores c, if and only if xi,c > 0. For any edge {i, c}
in G⟨x,p⟩, the weight of {i, c} is ei,c = xi,c · pc which is the
earning of agent i from chore c in this market. For any graph
G, we denote the set of edges of G by E(G).

There is no known polynomial time algorithm for comput-
ing a CEEI. However, Boodaghians et al. [2022] gave an exte-
rior point algorithm to compute a (1−ϵ)-CEEI in polynomial
time. The running time was improved by a combinatorial al-
gorithm in [Chaudhury et al., 2022a]. Namely, a (1−ϵ)-CEEI
can be computed in time polynomial in the size of the input
and 1

ϵ . In a (1−ϵ)-CEEI, the income of each agent is between
1− ϵ and 1 + ϵ. We formally define (1− ϵ)-CEEI below.

Definition 2. Given a Fisher market F , a market outcome
⟨x, p⟩ is a (1− ϵ)-CEEI, for an ϵ ∈ [0, 1], if

• the market clears, i.e., for all chores c ∈ M ,∑
i∈[n] xi,c = 1, and

• for all agents i, 1− ϵ ≤
∑

c∈M xi,c · pc ≤ 1 + ϵ, and

• all agents only receive chores with minimum pain per
buck, i.e., for all agents i and chores c, if xi,c > 0, then
di(c)/pc = MPBi.

Similar to envy-freeness and its relaxations, we can de-
fine payment envy-freeness and its relaxations. In particular,
given a payment vector p = (p1, . . . , pm) for the chores, an
integral allocation X is payment envy-free up to one chore or
pEF1, if for all agents i and j, either Xi = ∅ or there exists a
chore c ∈ Xi such that p(Xi \ c) ≤ p(Xj).

Proposition 2 (Lemma 3.5 in Ebadian et al., 2022). If an
integral allocation X is pEF1 with respect to payment vector
p and ⟨X, p⟩ is a Fisher equilibrium, then X is EF1.

3 EF1 + fPO + Surplus
In this section, we prove that after introducing at most n − 1
chores, an allocation exists which is EF1 and fPO at the same
time. Each of these new chores is a copy of an existing chore.
Moreover, we compute such an allocation in polynomial time.
The high-level idea is to first consider a fractional allocation
x which admits a (1 − ϵ)-CEEI for ϵ = 1

5nm . Then to each
agent, we fully allocate some of the chores that are fraction-
ally allocated to her in x. This way, each agent only receives
her MPB chores and therefore the allocation is fPO. Further-
more, we guarantee that each agent earns at least 1−ϵ amount
of money and there exists a chore that upon its removal, the
earned money drops below 1− ϵ. This way, we can also guar-
antee EF1 property for the allocation. In order to achieve such
an allocation, we allocate some chores to multiple agents and
hence we need multiple copies of some of the chores. How-
ever, we prove that the number of required copies does not
exceed n − 1. Basically, our algorithm introduces at most
n−1 copies of the existing chores and finds an integral Fisher
equilibrium where each agent earns 1 − ϵ amount of money
up to one chore.

Lemma 1. Given any Fisher equilibrium ⟨x, p⟩ for a
Fisher market F , there exists a polynomial time algorithm
makeAcyclic(x, p) that computes allocation y such that
⟨y, p⟩ is a Fisher equilibrium for F and G⟨y,p⟩ is acyclic.

Now we explain Algorithm 1. Given instance I, let ϵ =
1

5nm and ⟨x, p⟩ = approxCEEI(I, ϵ) be the (1 − ϵ)-CEEI
computed in polynomial time by [Chaudhury et al., 2022a].
First we run makeAcyclic(x, p) to make G⟨x,p⟩ acyclic.
Then, we compute the integral allocation Y as follows. Our
Algorithm consists of two phases. We start with G = G⟨x,p⟩
and during Phase 1, we alter G. At each point in time, let y be
such that G is the payment graph of ⟨y, p⟩ (i.e. G = G⟨y,p⟩).
Let Nv be the set of the neighbors of node v in G.

Phase 1. Start from an empty allocation Y and run phase 1
as long as there is an unallocated chore c∗ such that |Nc∗ | =
1. Phase 1 of the algorithm consist of 2 steps. Basically, as
long as there exists an unallocated chore c∗ with |Nc∗ | = 1,
run Step 1 and then Step 2.

Step 1. For all unallocated chores c with |Nc| = 1, let ic be
the agent such that Nc = {ic}. Then add c to Yic .

Step 2. For all agents i and chores c such that {i, c} ∈
E(G), if for all chores c′ ∈ Yi ∪{c}, p((Yi ∪ c) \ c′) > 1− ϵ,
then distribute the earning of agent i from chore c equally
among the other neighbors of c and remove the edge {i, c}
from G. Recall that ej,c = xj,cpc is the earning agent j re-
ceives from chore c in the market outcome ⟨x, p⟩. Formally,
for all j ∈ Nc \ {i}, we set

ej,c ← ej,c +
yi,c · pc
|Nc| − 1

.

Phase 2. The second phase starts when for all unallocated
chores c, |Nc| ̸= 1. In Lemma 2 we prove the case |Nc| = 0 is
not possible and therefore for all remaining chores c, |Nc| >
1. Each of the connected components of G is a tree. For
each of the trees T do the following. Take an arbitrary agent
i0 in T and consider T rooted at i0. For agent i0, as long as
p(Yi0) < 1−ϵ, keep adding chores from Ni\Yi0 to Yi0 . Then
iterate on the agents in T in a breadth-first order and for each
agent i do the following. Let ci be the chore corresponding
to the parent of agent i in T . If ci is not allocated yet, add it
to Yi, i.e., Yi ← Yi ∪ {ci}. Then, keep adding the chores in
Ni \ (Yi ∪ {ci}) to Yi until p(Yi) ≥ 1− ϵ or until we run out
of chores. Note that all chores in Ni \ (Yi ∪{ci}) correspond
to children nodes of agent i in T . If at the end of this process
p(Yi) < 1− ϵ, add a copy of ci to Yi.

Algorithm 1 shows the pseudocode of our algorithm. In
the rest of this section we prove that the final allocation Y is
pEF1 and fPO with at most (n− 1) surplus.

Observation 1. For all agents i, p(yi) ≥ 1 − ϵ at any time
during Phase 1.

Proof. The proof is by induction. In the beginning of the
algorithm, y = x and thus the claim holds. Now fix an agent
i and let y be the allocation such that G = G⟨y,p⟩ before
deleting an edge e and y∗ be the allocation such that G\{e} =
G⟨y∗,p⟩. Assuming p(yi) ≥ 1− ϵ, we prove p(y∗i ) ≥ 1− ϵ. If
e is not incident to i, then p(y∗i ) ≥ p(yi) and thus the claim
holds. If e is incident to i, then p((Yi ∪ c) \ c′) > 1− ϵ for all
c′ ∈ Yi∪{c}. Therefore, p(Yi) = p((Yi∪c)\c) > 1−ϵ. Note
that all chores in Yi are incident to i in G⟨y∗,p⟩. Therefore,
p(y∗i ) ≥ p(Yi) > 1− ϵ.
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Algorithm 1 fairAndEfficient(I)
Input: Instance I.
Output: Allocation Y .

1: ϵ← 1
5nm

2: ⟨x, p⟩ ← makeAcyclic(approxCEEI(I, ϵ))
3: G← payment graph of ⟨x, p⟩
4: // Phase 1:
5: while ∃ an uncallocated chore c∗: |Nc∗ | = 1 do
6: // Step 1:
7: for i ∈ [n] do
8: Yi ← {c ∈M |yi,c = 1}
9: // Step 2:

10: for {i, c} ∈ E(G) do
11: if ∀c′ ∈ Yi ∪ {c}: p((Yi ∪ c) \ c′) > 1− ϵ then
12: for j ∈ Nc do
13: ej,c ← ej,c +

yi,c·pc

|Nc|−1

14: G← G \ {{i, c}}
15: // Phase 2:
16: for all connected components T of G do
17: // Let T be rooted at i0
18: for all agents i in T in BFS-order do
19: if i ̸= i0 then
20: ci ← parent chore of i in T

21: if ci is not allocated then
22: Yi ← Yi ∪ {ci}
23: for c ∈ Ni \ (Yi ∪ {ci}) do
24: if p(Yi) < 1− ϵ then
25: Yi ← Yi ∪ {c}
26: if p(Yi) < 1− ϵ then
27: Yi ← Yi ∪ {ci}
28: return Y

Observation 2. For all agents i, p(yi) ≤ 1 + (2n − 1)ϵ at
any time during Phase 1.

Proof. In the beginning of the algorithm, since y = x, we
have

∑
i∈N p(yi) ≤ (1 + ϵ)n. Allocation y changes during

Phase 1 when an edge is deleted in Step 2. Upon the deletion
of edge {i, c}, yi,c · pc is distributed among the neighbors of
c (in case any such neighbors exist). Therefore, the value of∑

i∈N p(yi) cannot increase during Phase 1. Thus, for all
agents i at any point during Phase 1 we have

(1 + ϵ)n ≥
∑
j∈N

p(xj) ≥
∑
j∈N

p(yj)

≥ (1− ϵ)(n− 1) + p(yi). (by Observation 1)

Therefore, p(yi) ≤ 1 + (2n− 1)ϵ.

Lemma 2. Before the execution of Phase 2, for all unallo-
cated chores c, Nc ̸= ∅.
Observation 3. All the chores in M are allocated in Y .

Proof. By Lemma 2, in the beginning of Phase 2 no unallo-
cated chore is isolated in G. In Phase 2, all the chores that
are the parent of some agent in T get allocated. Moreover,

the leaf chores in T got allocated in Phase 1. Hence, all the
chores are allocated in Y .

Observation 4. The number of copied chores in Y is at most
n− 1.

Proof. In Phase 1, no chore is allocated more than once. Con-
sider the step in which we allocate chores to agent i when it-
erating on T in breadth-first order. Note that except ci, all the
chores that we allocate to i are her children nodes. Since we
run BFS on T , these children chores had not been assigned
to any other agent before. Therefore, for each non-root agent,
we might need to copy one chore and namely her parent node.
Thus, the number of copied chores is at most n− 1.

Observation 5. For all agents i, p(Yi) ≥ 1− ϵ.

Proof. Fix an agent i. Since ⟨x, p⟩ is a (1−ϵ)-CEEI, p(xi) ≥
1−ϵ. Note that if at some iteration of Step 2, an adjacent edge
of i is deleted, then p(Yi) ≥ 1 − ϵ. Now assume no adjacent
edge of i is deleted. Let Xi = {c ∈ M |xi,c > 0}. We
have p(Xi) ≥ p(xi) ≥ 1 − ϵ. Note that all the chores in
Xi which are not added to Yi in phase 1 are either children
of i in T or her parent node. In either of the cases, as long
as p(Yi) < 1 − ϵ, we add these chores to Yi. If we stop
before adding the whole chores in Xi to Yi, it means that
the condition p(Yi) ≥ 1 − ϵ is satisfied. Otherwise we have
Yi = Xi and thus, p(Yi) ≥ 1− ϵ.

Observation 6. For all agents i, there exists a chore c ∈ Yi

such that p(Yi \ c) < 1− ϵ.

Proof. Consider Y in the end of Phase 1. By Observation 2,
p(Yi) ≤ p(yi) ≤ 1 + (2n − 1)ϵ. Let c be the chore with
maximum pc in Yi. We have

p(Yi \ c) ≤
m− 1

m
· p(Yi)

(pc ≥ p(Yi)/m by Pigeonhole principle)

≤ m− 1

m
· (1 + (2n− 1)ϵ)

(by Observation 2)

≤ 1− ϵ. (since ϵ = 1
5nm )

Therefore, there exists a chores c ∈ Yi, such that p(Yi \ c) ≤
1 − ϵ before the execution of Phase 2. Also, there exists a
chore c ∈ Yi ∪ {ci} such that p((Yi ∪ {ci}) \ c) < 1 − ϵ.
Otherwise, the edge (i, ci) would be deleted before Phase 2.
So if in Phase 2 no chore is added to Yi or only ci is added to
Yi, the claim holds. Otherwise, let c be the last chore added
to Yi. Since we stop adding chores to Yi the moment p(Yi) >
1− ϵ, p(Yi \ c) ≤ 1− ϵ.

Now we are ready to prove Theorem 1.
Theorem 1. Given additive disutilites, there exists an allo-
cation with at most (n − 1) surplus which is EF1 and fPO.
Moreover, it can be computed in polynomial time.

Proof. Let Y be the output of Algorithm 1. Let M ′ be the
set of copied chores that are allocated in Y in addition to the
chores in M . First we prove that ⟨Y, p⟩ is a Fisher equilibrium
for the market given by ⟨N,M∪M ′,D, (p(Y1), . . . , p(Yn))⟩.
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By Observation 3, the market clears. Since ⟨x, p⟩ is a CEEI
for ⟨N,M,D⟩, for each agent i, all the chores in Xi = {c ∈
M |xi,c > 0} are MPB chores. Since Yi ⊆ Xi, all the chores
in Yi are also MPB chores. In the end, it is clear that each
agent i earns p(Yi). So all the conditions of a Fisher equilib-
rium hold for ⟨Y, p⟩. Now we prove each of the properties for
Y separately.
EF1. By Observations 5 and 6, Y is pEF1. Since ⟨Y, p⟩ is a
Fisher equilibrium, by Proposition 2, Y is EF1.
fPO. By Proposition 1, every Fisher equilibrium is fPO.
(n− 1) surplus By Observation 3, all the chores in M are
allocated and by Observation 4, the size of the surplus is at
most n− 1.

Now we prove Algorithm 1 terminates in polynomial
time. The subroutines makeAcyclic runs in poly(n,m) and
approxCEEI(x, ϵ) runs in poly(n,m) for ϵ = 1

5nm . Step 1
can be executed at most m times since in each iteration of
Step 1 a chore gets allocated. Step 2 can be executed at most
m + n − 1 times since in each iteration of Step 2 an edge
gets deleted. Phase 2 is a BFS subroutine which terminates in
poly(n,m). Therefore, the total running time of Algorithm 1
is polynomial with respect to n and m.

Remark. The bound n−1 on the size of the surplus is tight
for Algorithm 1. Consider the instance with n agents and one
chore c with disutility 1 for all the agents. Then any ϵ-CEEI
(for ϵ = 1

5n ) allocates some fraction of c to all of the agents
and Algorithm 1 copies c for n − 1 times and allocates one
copy to each agent.

4 Fairness Among Three Agents
Given an allocation X = ⟨X1, X2, . . . , Xn⟩, we say that an
agent i strongly envies an agent j if and only if Xi\c >i Xj∪
c, for some c ∈ Xi. Thus, an allocation is a tEFX allocation
if there is no strong envy between any pair of agents. We now
introduce certain concepts that will be useful in this section.
Definition 3 (tEFX feasibility). Given a partition X =
(X1, X2, . . . , Xn) of M , a bundle Xk is tEFX-feasible to
agent i if and only if for all chores c ∈ Xk and all j ∈ [n],

Xk \ c ≤i Xj ∪ c.

Therefore an allocation X = ⟨X1, X2, . . . , Xn⟩ is tEFX if
and only if for each agent i, Xi is tEFX-feasible.

Note that when agents have additive disutility functions,
Xk is tEFX-feasible for agent i if and only if for all j ∈ [n],
Xk \ c∗ ≤i Xj ∪ c∗ for c∗ = argminc∈Xk

di(c).
EFX-feasibility is defined in the same way. Formally, given

a partition X = (X1, X2, . . . , Xn) of M , a bundle Xk is
EFX-feasible to agent i if and only if for all chores c ∈ Xk

and all j ∈ [n], Xk \ c ≤i Xj .
Restriction to non-degenerate instances is no loss of gener-

ality and simplifies arguments about linear programs. The
same is true for allocation of goods and chores. Here, it
means that no two distinct bundles of chores are valued the
same by any agent. Chaudhury et al. [2020] showed that to
prove the existence of EFX allocations in the goods setting,
when agents have additive valuations, it suffices to show the

Algorithm 2 EFX-Identical

1: Input : Instance I = ([n],M, d)
2: Output: allocation X
3: X ← ⟨∅, ∅, . . . , ∅⟩
4: Let d(c1) ≥ d(c2) ≥ . . . ≥ d(cm)
5: for i← 1 to m do
6: Let j = argminℓ∈[n]d(Xℓ)

7: Xj ← Xj ∪ {ci}
8: Return X

existence of EFX allocations for all non-degenerate instances.
We adapt their approach and show that the same claim holds,
even when agents have additive disutilities and the notion of
fairness is tEFX. Henceforth, in the rest of this section we as-
sume that the given instance is non-degenerate, implying that
every agent has positive disutility for every chore.

In this section we prove Theorem 2. We start with an al-
location which is EFX assuming all agents’ disutility func-
tions are d1. During the algorithm we maintain a partition
(X1, X2, X3) of the chores such that all the following invari-
ants hold.

Invariant 1. X1 and X2 are tEFX-feasible for agent 1.

Invariant 2. For all i ∈ [2] and c ∈ Xi, Xi \ c ≤1 X3.

Invariant 3. X3 is tEFX-feasible for agent 3.

We use the potential function Φ(X) = |X1| + |X2|. Each
iteration of the algorithm updates allocation such that the new
allocation is proportional or tEFX or satisfies all the invari-
ants and has a smaller potential value. Since the value of the
potential is at most m, the number of iterations is at most m.

Li et al. [2022] proved when agents have identical ordering
on the chores, an EFX allocation can be computed in polyno-
mial time. Lemma 3 follows from their result.

Lemma 3. When all agents have additive disutility func-
tion d, Algorithm 2 returns an EFX allocation in time
O(m logm).

In the beginning, we run Algorithm 2 with d = d1 to ob-
tain allocation X . Note that all X1, X2 and X3 are EFX-
feasible for agent 1. Without loss of generality, assume
X3 ≤3 X1 ≤3 X2, i.e., d3(X3) ≤ d3(X1) ≤ d3(X2). Then,
since all bundles are EFX-feasible for agent 1, Invariants 1
and 2 hold and since X3 is the favorite bundle of agent 3, In-
variant 3 holds too. If X1 or X2 is tEFX-feasible for agent 3,
we can allocate a tEFX-feasible bundle to each of the agents.
Without loss of generality assume X2 is also tEFX-feasible
for agent 3. Then we let agent 2 pick her favorite bundle. If
she picks X2, we assign X1 to agent 1 and X3 to agent 3. If
agent 2 picks X1, then we assign X2 to agent 1 and X3 to
agent 3. The case that agent 2 picks X3 is symmetric.

Now we assume that X3 is the only tEFX-feasible bundle
for agent 3. Let c1 = argminc∈X1

d3(c). Then the algorithm
moves c1 from X1 to X3. Let X ′

1 = X1 \ c1, X ′
2 = X2 and

X ′
3 = X3 ∪ c1. The next step of the algorithm depends on

whether X ′
2 is tEFX-feasible for agent 1 or not. In Lemma

4 we show that if X ′
2 is tEFX-feasible for agent 1 then X ′

satisfies all the invariants.
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Observation 7. Let c1 = argminc∈X1
d3(c). If X3 is the

only tEFX-feasible bundle for agent 3 and X1 ≤3 X2, then
X1 \ c1 >3 X3 ∪ c1.

Proof. Assume otherwise. For all c ∈ X1 we have

X1 \ c ≤3 X1 \ c1 (c1 ≤3 c and additivity of d3)
≤3 X3 ∪ c1
≤3 X3 ∪ c. (c1 ≤3 c and additivity of d3)

Since X1 ≤3 X2, X1 is tEFX-feasible for agent 3 which is a
contradiction.

Lemma 4. If X ′
2 is tEFX-feasible for agent 1, then Invariants

1, 2 and 3 hold.

Proof. For all c ∈ X ′
1 and i ∈ {2, 3} we have

X ′
1 \ c ≤1 X1 \ c (X ′

1 ⊂ X1)
≤1 Xi ∪ c (X1 is tEFX-feasible for agent 1)

≤1 X ′
i ∪ c. (Xi ⊆ X ′

i)

Therefore, Invariant 1 holds. Also, for all i ∈ [2] and c ∈ X ′
i

X ′
i \ c ≤1 Xi \ c (X ′

i ⊆ Xi)
≤1 X3 (Invariant 2 holds for X)

≤1 X ′
3. (X3 ⊂ X ′

3)

Thus, Invariant 2 holds. By Observation 7, we have X ′
1 >3

X ′
3. Also, X ′

2 =3 X2 ≥3 X1 ≥3 X ′
1. Hence, X ′

3 is the fa-
vorite bundle of agent 3 and is tEFX-feasible for her. There-
fore, Invariant 3 holds as well.

After moving c1, we have Φ(X ′) = |X ′
1|+ |X ′

2| = |X1| −
1 + |X2| < Φ(X). Thus, if X ′

2 is tEFX-feasible for agent
1, by Lemma 4 all the invariants hold and also the potential
function decreases.

Now we assume that X ′
2 is not tEFX-feasible for agent 1.

As long as the second bundle is not tEFX-feasible for agent
1, keep moving chores from X ′

2 to X ′
1 in non-decreasing

order of d1(·). Formally, let X ′
2 = {c′1, c′2, . . . , c′k} and

c′1 ≤1 c′2 ≤1 . . . ≤1 c′k. Then Y1 = X ′
1 ∪ {c′1, . . . , c′ℓ} and

Y2 = X ′
2 \{c′1, . . . , c′ℓ} such that Y1 <1 Y2 and Y1∪ c′ℓ+1 ≥1

Y2 \ c′ℓ+1. Note that ℓ ≥ 1. Let Y3 = X ′
3.

Lemma 5. Invariants 1 and 2 hold for Y .

Proof. We have

Y1 <1 Y2 ≤1 X ′
2 \ c′1 (Y2 ⊆ X ′

2 \ c′1)

≤1 X ′
3 (Invariant 2 holds for X ′ by Lemma 4)

=1 Y3 . (Y3 = X ′
3)

Therefore, Invariant 2 holds. We also know that for all c′ ∈
Y2, c′ ≥1 cℓ+1. Hence, for all c′ ∈ Y2,

Y1 ∪ c′ ≥1 Y1 ∪ c′ℓ+1 ≥1 Y2 \ c′ℓ+1 ≥1 Y2 \ c′.
Since Y1 <1 Y2, Invariant 1 holds too.

Now if Y3 is tEFX-feasible for agent 3, then all the in-
variants hold and Φ(Y ) = |Y1| + |Y2| = |X ′

1| + |X ′
2| =

|X1|+ |X2| − 1 < Φ(X). In Section 4.1, we prove that if Y3

is not tEFX-feasible for agent 3, we can obtain a proportional
allocation.

4.1 Proportional Allocation When Y3 Is Not
tEFX-feasible for Agent 3

In the following observations, we prove that Y1 and Y2 are
proportional for agent 1, and Y2 and Y3 are proportional for
agent 3. Then without any further modification of the bun-
dles, we allocate these bundles to the agents such that the
final allocation is proportional.
Observation 8. d3(Y3) < d3(M)/3.

Proof. Since X ′
2 = X2 and X ′

1 = X1 \ c1, we have X ′
2 =3

X2 ≥3 X1 ≥3 X ′
1. Also, by Observation 7, X ′

1 >3 X ′
3.

Therefore, X ′
2 >3 X ′

3 =3 Y3. Hence, d3(X ′
3) < d3(X

′
1)

and d3(X
′
3) < d3(X

′
2). By additivity of d3(·), we get that

d3(X
′
3) < d3(M)/3.

Observation 9. If Y3 is not tEFX-feasible for agent 3, then
d3(Y2) < d3(M)/3.

Proof. By Observation 7, X ′
1 >3 X ′

3 =3 Y3. Since X ′
1 ⊂

Y1, we have Y1 ≥3 X ′
1 >3 Y3. Since Y3 is not tEFX-

feasible for agent 3, it cannot be her favorite bundle. Since
d3(Y1) > d3(Y3), we have d3(Y2) < d3(Y3). By Observa-
tion 8, d3(Y3) < d3(M)/3. Hence, d3(Y2) < d3(M)/3.

Finally, in Observation 10, we prove that d1(Y1) ≤
d1(M)/3 and d1(Y2) ≤ d1(M)/3.
Observation 10. d1(Y1) ≤ d1(M)/3 and d1(Y2) ≤
d1(M)/3.

Proof. Consider the allocation ⟨X1 ∪ c′1, X2 \ c′1, X3⟩. Note
that since Invariants 1 and 2 hold for X , we have d1(X2 \
c′1) ≤ d1(X1 ∪ c′1) and d1(X2 \ c′1) ≤ d1(X3). By additivity
of d1, we have d1(X2 \ c′1) ≤ d1(M)/3. Now it suffices to
prove that d1(Y1) ≤ d1(X2 \ c′1) and d1(Y2) ≤ d1(X2 \ c′1).
Note that d1(Y1) < d1(Y2) and Y2 ⊆ X2 \ c′1. Therefore, we
have d1(Y1) < d1(Y2) ≤ d1(X2 \ c′1).

At this stage of the algorithm, by Observation 10 we have
that d1(Y1) ≤ d1(M)/3 and d1(Y2) ≤ d1(M)/3. Also
by Observations 8 and 9, we have d3(Y3) < d3(M)/3 and
d3(Y2) < d3(M)/3. Now we let agent 2 pick her favorite
bundle. Let it be Yi. Clearly, d2(Yi) ≤ d2(M)/3. As already
argued before, no matter which bundle agent 2 chooses, we
can allocate one of Y1 or Y2 to agent 1 and one of Y2 or Y3 to
agent 3. Therefore, we obtain a proportional allocation.

5 Conclusion
We have introduced a concept of k surplus and showed the
existence of an allocation that is both EF1 and fPO with at
most n− 1 surplus in the case of indivisible chores. Further-
more, such an allocation can be computed in polynomial time.
A natural open question is whether there exists an allocation
that is both EF1 and fPO with < n− 1 surplus.

Our second result shows the existence of allocation of in-
divisible chores among 3 agents that is either tEFXor pro-
portional. Since proportionality is a very strong guarantee,
which is not possible to satisfy for every instance, this result
is the first non-trivial result for a slight relaxation of EFX for
3 agents. A natural open question is whether EFX allocations
exist for 3 agents.
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