
Non-Obvious Manipulability in Extensive-Form Mechanisms:
The Revelation Principle for Single-Parameter Agents

Thomas Archbold , Bart de Keijzer and Carmine Ventre
King’s College London

{thomas.archbold,bart.de keijzer,carmine.ventre}@kcl.ac.uk

Abstract
Recent work in algorithmic mechanism design fo-
cuses on designing mechanisms for agents with
bounded rationality, modifying the constraints re-
quired to achieve incentive compatibility. Starting
with Li’s strengthening of strategyproofness, ob-
vious strategyproofness (OSP) requires truthtelling
to be “obvious” over dishonesty, roughly meaning
that the worst outcome from truthful actions must
be no worse than the best outcome for dishonest
ones. A celebrated result for dominant-strategy
incentive-compatible mechanisms that allows us to
restrict attention to direct mechanisms, known as
the revelation principle, does not hold for OSP:
the implementation details matter for the obvious
incentive properties of the mechanism. Studying
agent strategies in real-life mechanisms, Troyan
and Morrill introduce a relaxation of strategyproof-
ness known as non-obvious manipulability, which
only requires comparing certain extrema of the
agents’ utility functions in order for a mechanism to
be incentive-compatible: a mechanism is not obvi-
ously manipulable (NOM) if the best and worst out-
comes when acting truthfully are no worse than the
best and worst outcomes when acting dishonestly.
In this work we first extend the cycle monotonicity
framework for direct-revelation NOM mechanism
design to indirect mechanisms. We then apply this
to two settings, single-parameter agents and mech-
anisms for two agents in which one has a two-type
domain, and show that here the revelation principle
holds: direct mechanisms are just as powerful as
indirect ones.

1 Introduction
Traditional algorithm design focuses on mapping inputs to
outputs under some notion of efficiency. In addition to this
algorithmic mechanism design assumes that the inputs must
first be gathered from a set of agents who each possess some
private information (or “type”) about the true state of the
world. Since these agents can influence the output of the al-
gorithm depending on how they report their type it may be
beneficial to lie. As the mechanism designer we must realign

the incentives of the agents to ensure they are acting in the de-
sired manner, with respect to some solution concept. A mech-
anism that guarantees this behaviour is said to be incentive-
compatible. We study mechanisms that use monetary trans-
fers to achieve incentive-compatibility.

Strategyproofness is a solution concept that stipulates it is a
dominant strategy for each agent to report their type truthfully
to the mechanism, for each joint action of the other players.
This is appealing from a theoretical standpoint since a strate-
gyproof mechanism eliminates the possibility for any agent to
benefit from a unilateral deviation. This relies on the assump-
tion that agents are perfectly rational and therefore correctly
reason about all possible actions to conclude that truthtelling
is dominant. Such reasoning may place a high cognitive bur-
den on the agent, so it may be unrealistic to expect agents
to behave “correctly” in strategyproof mechanisms in prac-
tice. Empirical evidence ([Roth, 1991]) suggests that agents
may fail to recognise the benefits of misreporting in mech-
anisms based on the Deferred Acceptance algorithm, even
though they are manipulable, while others such as the Boston
Mechanism ([Dur et al., 2018]) are more readily manipulated.
[Troyan and Morrill, 2020] compare these mechanisms and
argue that deciding when to manipulate in the former is much
easier than in the latter: in the Boston Mechanism an agent
can always guarantee a place her second-choice school, but in
the Deferred Acceptance algorithm determining a profitable
manipulation requires a detailed understanding of the mech-
anism and the other agents’ preferences. Focusing on direct
mechanisms, they introduce a model of bounded rationality
where agents can only recognise manipulations that are “ob-
vious”, where an agent’s best or worst outcome when mis-
reporting her type to the mechanism is strictly greater than
her best or worst outcome when reporting her type truthfully,
and the best and worst cases are taken over all joint actions
of the other agents. If no agent has an obvious manipulation
then the mechanism is said to be not obviously manipulable
(NOM). While a NOM mechanism may be manipulable, we
are safe to ignore the non-obvious manipulations since they
will not be recognised by these cognitively-limited agents.

The mechanisms we study use monetary transfers. Any
mechanism must first collect a type profile from the agents
before returning an outcome and a vector of payments, but
there is flexibility in how the mechanism determines the type
profile. In a direct-revelation mechanism each agent reports

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2503

her type directly to the mechanism, for example by writing
down a monetary value for the item on offer in a single-item
sealed-bid auction. In general agents need not report their
types directly; instead, the mechanism can deduce the type
profile by querying the agents over a number of rounds. In
the ascending-clock auction, for example, bidders gradually
drop out of contention for the item on sale as the sale price
increases, with the item being awarded to the sole remaining
bidder at the final price displayed. In addition to the outcome
and payment vectors it returns, an indirect or extensive-form
mechanism is defined by an implementation tree which spec-
ifies how to elicit the type profile from the agents.

We study which social choice functions are implementable
by indirect mechanisms with respect to the NOM constraints:
given some social choice function that maps type profiles to
outcomes, can we define a payment rule and an implemen-
tation tree such that the resulting mechanism is incentive-
compatible? In an indirect mechanism agents are not limited
to acting only once, and throughout the mechanism’s execu-
tion they may infer information about the the other agents’
types which they would otherwise be unable to (partially) ob-
serve under a direct mechanism. It is therefore natural to ask
whether indirect mechanisms are more powerful than direct
ones in achieving incentive-compatibility, or: do the imple-
mentation details affect which social choice functions are im-
plementable? For strategyproofness the revelation principle
says that every indirect mechanism can be simulated by a di-
rect mechanism (see, e.g., [Nisan et al., 2007, ch. 9]). In
this work we show that the revelation principle holds for two
settings under NOM, partially answering an open question
raised by [Troyan and Morrill, 2020]. These can be applied
naturally to a range of contexts, and our results can be inter-
preted in two ways: on the one hand restricting attention to di-
rect mechanisms means there is a smaller design space to con-
sider when constructing NOM incentive-compatible mecha-
nisms; on the other hand, if a social choice function is not
implementable by a direct mechanism, then nor will it be by
an indirect one.

1.1 Related Work
There has been growing interest in the study of mecha-
nism design for agents with bounded rationality. [Li, 2017]
strengthens the notion of strategyproofness by introducing
OSP as a solution concept for agents that lack contingent rea-
soning skills, arguing agents will only tell the truth if it is
obvious over lying. OSP has since been applied to a range of
settings including combinatorial auctions [de Keijzer et al.,
2020], machine scheduling [Ferraioli et al., 2019], and fa-
cility location [Ferraioli and Ventre, 2021]. Importantly the
revelation principle does not hold for OSP and the implemen-
tation details are vital to whether the mechanism is incentive-
compatible.

[Troyan and Morrill, 2020] take a more optimistic perspec-
tive and relax strategyproofness to non-obvious manipulabil-
ity, motivated by empirical observations that manipulations
are easier to recognise in certain mechanisms in practice than
others. After formalising what it means for a manipulation to
be obvious they characterise NOM mechanisms in the context
of school choice, two-sided matching, auctions, and bilateral

trade, and use this to classify several existing mechanisms as
either obviously manipulable or not.

NOM has been applied to a range of other settings. [Aziz
and Lam, 2021] consider NOM voting rules where agents are
equipped with ordinal (instead of cardinal) preferences and
partially characterise certain classes of NOM voting rules and
show that the number of agents may affect the obvious incen-
tive properties of a mechanism. They also consider the com-
plexity of computing obvious manipulations in certain voting
rules by providing reductions to the Constructive Coalitional
Unweighted Matching problem, yielding a polynomial-time
algorithm for the k approval voting rule.

[Ortega and Segal-Halevi, 2022] study NOM in conjunc-
tion with a particular class of extensive-form mechanisms
without money for cake-cutting known as Robertson-Webb
mechanisms. A drawback of direct mechanisms in this set-
ting is that they only make sense when valuations can be suc-
cinctly represented, hence the focus on indirect mechanisms.
They show that the conflict between incentive-compatibility
and proportionality is resolved when relaxing strategyproof-
ness to NOM, and that every proportional direct mechanism
is NOM for worst cases while every Pareto Optimal direct
mechanism is NOM for best cases.

[Psomas and Verma, 2022] study NOM mechanisms with-
out money for fairly allocating divisible goods among agents
with additive preferences and show that there exist determin-
istic direct mechanisms achieving envy-freeness up to one
good (EF1). They show that optimising against different ob-
jective functions may affect a mechanism’s obvious manipu-
lability: while there is a NOM mechanism maximising social
welfare for n ≥ 3 agents, it is impossible for a NOM mech-
anism to achieve optimal egalitarian or Nash social welfare.
They also reduce the problem of designing NOM and EF1
mechanisms to that of designing EF1 algorithms while pre-
serving efficiency.

[Archbold et al., 2023] study the design of direct-revelation
NOM mechanisms with monetary transfers. They charac-
terise the set of implementable social choice functions in
this setting using cycle-monotonicity then restrict attention
to characterise the implementable social choice functions for
single-parameter agents, along with their payments. Studying
an impossibility result from [Troyan and Morrill, 2020] they
show that any efficient and individually rational mechanism
for bilateral trade requires an unbounded subsidy for a class
of simple “single-line” mechanisms, and show that this is in-
evitable when considering only best cases but can be avoided
when only considering worst cases. Additional NOM mech-
anisms have been studied in the context of matching [Troyan
et al., 2020], assignment [Troyan, 2022], and energy markets
[Kiedanski et al., 2020].

[Bade and Gonczarowski, 2017] study an analogue of the
revelation principle for mechanisms for boundedly-rational
agents, providing a “gradual revelation principle” for OSP
mechanisms which states that every extensive-form mecha-
nism can be transformed into a certain extensive-form mech-
anism where agents gradually reveal more about their prefer-
ences.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2504

1.2 Our Contribution
We begin by investigating the social choice functions that can
be implemented by indirect NOM mechanisms by extending
the concept of labellings for direct mechanisms from [Arch-
bold et al., 2023] to handle extensive-form implementations.
We use the well-known cycle-monotonicity condition on the
graph induced by these labellings to characterise the set of
social choice functions implementable by an indirect mecha-
nism.

We use this characterisation to show two settings in
which the class of social choice functions implementable in
extensive-form is the same as the class of social choice func-
tions implementable by direct-revelation mechanisms. The
first setting is that of single-parameter agents, where each
agent’s private information is expressible as a single num-
ber. Here we can separate an agent’s type from her alloca-
tion and show that an allocation function is implementable
by an indirect mechanism if and only if for each agent we can
find a monotone restriction (with respect to the agent’s bid)
of the allocation function over all allocations it returns. This
generalises the characterisation of [Archbold et al., 2023] for
single-parameter agents and we show that in this setting the
class of allocation functions implementable by direct and in-
direct mechanisms are the same.

Main Result 1 (informal). For any NOM indirect mech-
anism for single-parameter agents implementing a social
choice function f there is a NOM direct mechanism imple-
menting f .

Therefore the implementation details do not matter when de-
signing NOM mechanisms for single-parameter agents and
we may restrict focus to direct mechanisms without loss of
generality. In our second setting we consider mechanisms for
two agents where each agent can have an arbitrary type but
one of the agents has a “two-type” domain.

Main Result 2 (informal). When there are two agents,
one of which having only two possible types, for any NOM
indirect mechanism there is an equivalent NOM direct
mechanism.

In this setting we show that in order for the revelation prin-
ciple not to hold there must be a rich set from which we can
choose the labelled profiles.

2 Preliminaries
There is a set [n] = {1, 2, . . . , n} of n agents. Each agent
possesses some private information ti known as her type that
comes from some domain Di of possible types. We denote
by D = ×i∈[n]Di the set of type profiles. For a type profile
t = (t1, t2, . . . , tn), agent i, and type bi ∈ Di, we adopt the
standard notation (bi, t−i) to denote the type profile obtained
from t by replacing ti with bi.

A social choice function f : D → O maps type profiles to
outcomes; a mechanism is a process for first eliciting a type
profile from the agents and then returning an outcome (plus a
vector of payments). We are interested in designing indirect
(otherwise known as extensive-form) mechanisms that imple-
ment some given social choice function. An indirect mecha-
nism is a tuple M = (f, p, T) where f is a social choice

v v′

u

t1, t2 t3

t1 t2 t1 t2

Figure 1: An extensive-form mechanism where player i has domain
Di = {t1, t2, t3} and is queried at u, v, and v′. The wedges repre-
sent the set of type profiles compatible with i signalling these types
at various nodes in the tree.

function, p : D → Rn is a payment rule, and T is an imple-
mentation tree which describes the execution of the mecha-
nism. Such a mechanism queries the agents about their types
and finally select an outcome and payment vector based on
their responses.

The implementation tree describes how the agents are
queried; formally, it is a rooted tree T with the following
structure [Ferraioli et al., 2022]. At each node u the mech-
anism queries exactly one player, denoted S(u). Associated
with node u is a set of type profiles compatible with u, de-
noted Du = (Du

i , D
u
−i). At the root node r of T we have

Dr = D. The set of profiles compatible with the children
of u partitions Du. An action by player i = S(u) at node
u corresponds to choosing a child node of u. When v is the
child node of u selected by player i, we say that i plays an
action compatible with bi ∈ Du

i whenever bi ∈ Dv
i . We also

say that i signals bi at u. Each leaf ℓ of the tree is compat-
ible with at least one profile b ∈ Dℓ, and once the mech-
anism reaches this leaf it immediately returns the outcome
M(b) = (f(b), p(b)). We say that i = S(u) separates two
types bi, b′i ∈ Du

i at node u if bi ∈ Dv
i and b′i ∈ Dv′

i for two
children v, v′ of u in the implementation tree. We will denote
by Du(tj) = (Du

i (tj), D
u
−i(tj)) the set of all type profiles

which f may elicit taken over all possible continuations of
the players in the mechanism. In other words if the mecha-
nism proceeds to node v from node u after player i = S(u)
signals type tj then Du(tj) = Dv is the set of all type pro-
files compatible with v. Note that i may still be queried again
at some later point in the implementation tree.

Figure 1 provides an example implementation tree of some
extensive-form mechanism for illustrative purposes, though
we note different mechanisms may differ greatly in the struc-
ture of their implementation trees.

When mechanism M arrives at a leaf node ℓ of the imple-
mentation tree, we denote the outcome returned as M(b) =
(o,p) ∈ O × Rn, where o = f(b), p = p(b), and b ∈ Dℓ.
In other words, M(b) is the output of the extensive-form
mechanism when at each node each player i selects an ac-
tion compatible with bi. We consider each agent i’s type

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2505

as a function ti : O → R that maps each outcome of
the mechanism to a real number. Agent utilities are quasi-
linear, so on output M(b) = (o,p) agent i receives utility
ui(o,p; ti) = ti(o)− pi. We overload the notation and write
this utility as ti(o,p).

An agent’s type is private information meaning they may
lie when queried about their type if beneficial. [Troyan
and Morrill, 2020] introduce non-obvious manipulability for
direct-revelation mechanisms as a solution concept for agents
with bounded rationality that only requires comparing the ex-
tremes of each agent’s utility function under truthtelling and
dishonesty. A mechanism M is not obviously manipulable
(NOM) if the following two properties hold:

sup
b−i

{ti(M(ti, b−i))} ≥ sup
b−i

{ti(M(bi, b−i))}, (1)

inf
b−i

{ti(M(ti, b−i))} ≥ inf
b−i

{ti(M(bi, b−i))}, (2)

for every ti, bi ∈ Di and every i ∈ [n]. If (1) holds then
M is best-case non-obviously manipulable (BNOM) and if
(2) holds then M is worst-case non-obviously manipulable
(WNOM). If either inequality does not hold for a pair of types
ti, bi then bi is called an obvious manipulation of M .

For an extensive-form mechanism to be NOM then at ev-
ery point at which the mechanism queries an agent about her
type, the best- and worst-case outcomes from signalling her
type truthfully must be no worse than the best- and worst-case
outcomes from signalling a false type. Our definition of the
implementation tree allows agents to signal different types
each time they are queried by the mechanism. It is standard
to assume, however, that agents commit to signalling a single
type, or that the agent plays a consistent strategy. Otherwise,
they play an inconsistent strategy. An indirect mechanism M
is NOM under inconsistent strategies if for all i and all query
nodes u such that S(u) = i and for all tj , tk ∈ Du

i :

ext
b∈Du

i (tj)
{tj(M(b))} ≥ ext

b′∈Du
i (tk)

{tj(M(b′))}, (3)

for ext ∈ {sup, inf}. Similarly M is NOM under consistent
strategies if for all i and all query nodes u such that S(u) = i
and for all tj , tk ∈ Du

i :

ext
b−i∈Du

−i(tj)
{tj(M(tj , b−i))} ≥ ext

b−i∈Du
−i(tk)

{tj(M(tk, b−i))},

(4)
for ext ∈ {sup, inf}. As usual if (3) or (4) holds for
ext = sup then we will say M is BNOM under (in)consistent
strategies, and if they hold for ext = inf then we will say
M is WNOM under (in)consistent strategies. Observation 1
shows that assuming agents play a consistent strategy is with-
out loss of generality.

In this paper we study implementability for indirect mech-
anisms. Social choice function f is NOM-implementable (in
extensive-form) if there exists an indirect mechanism M =
(f, p, T) such that (4) holds for ext ∈ {sup, inf}. Since
assuming consistent strategies is without loss of generality
in the interest of space we will omit the definition for im-
plementability under inconsistent strategies. BNOM- and
WNOM-implementability are defined as expected.

3 Extensive Form Labellings
We study how to implement some given social choice func-
tion f with an extensive-form NOM mechanism. We may de-
sign both the payment rule and the implementation tree such
that (1) and (2) are satisfied for every pair of types ti, bi ∈ Di

and every agent i ∈ [n]. These conditions require compar-
ing only the extremes (i.e., suprema and infima) of i’s utility
function for truthtelling versus dishonesty. As the mechanism
designer we control the payments hence we effectively decide
which bid profiles lead to these extremes. This is formalised
by [Archbold et al., 2023] in the form of profile labellings for
direct mechanisms, and here we extend the concept to indi-
rect mechanisms. These allow us to choose which bid profiles
to compare for incentive-compatibility (plus some additional
constraints imposed by the labelling) and allows us to char-
acterise the set of implementable social choice functions.

Fix player i with domain Di and let d = |Di|. For each
query node u such that S(u) = i, for every pair of separa-
ble types tj , tk ∈ Du

i at node u we introduce the best-case
and worst-case labellings βu

jk, ω
u
jk ∈ Du

−i(tk) representing
the joint profile of the bidders excluding i that leads to i’s
best-case and worst-case (respectively) outcome when she
has type tj and signals type tk at node u. These extremes of
i’s utility function are taken over all profiles in Du(tk). These
labellings induce the two following types of constraint. For
each true type tj and bid tk of agent i at node u the labelling
constraints (for player i at node u) ensure the validity of the
labels with respect to i’s true type:

tj(M(βu
jk)) ≥ tj(M(b)) for all b ∈ Du(tk), (5)

tj(M(ωu
jk)) ≤ tj(M(b)) for all b ∈ Du(tk). (6)

The second type of constraint ensures the NOM incentive-
compatibility constraints are met for each pair of separable
types tj , tk ∈ Du

i at node u. The incentive-compatibility con-
straints (for player i at node u) ensure the extreme outcomes
from signalling her type truthfully at node u are no worse than
the extreme outcomes from signalling dishonestly:

tj(M(λu
jj)) ≥ tj(M(λu

jk)) for all tj , tk ∈ Du
i (7)

for λu ∈ {βu, ωu}. We denote by λ = {λu}u:S(u)=i the
“full” labelling of the indirect mechanism for player i. With
the following claim we show that allowing agents to play an
inconsistent strategy does not alter the constraints semanti-
cally.
Observation 1. It is without loss of generality for extensive-
form NOM mechanisms to consider labellings λ ∈ {β, ω} in
which player i plays a consistent strategy.

Proof. For simplicity we give the proof based on Figure 1
but emphasise that the arguments can be applied to any tree.
At node u player i = S(u) separates types t1 and t2 from
t3. If she signals t3 then this is the last time she is queried
by the mechanism, while if she signals t1 or t2 at u then the
mechanism will eventually progress to node v or v′, depend-
ing on how the other players respond to their queries. In any
case, at nodes v and v′ player i separates t1 from t2 and these

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2506

are the last times i is queried in the left hand subtree of T .
We will argue that for any best-case labelling the assumption
that i plays a consistent strategy does not semantically alter
the constraints required for BNOM, and analogous reasoning
will apply for any worst-case labelling ω and WNOM.

Due to the structure of T we must designate the best-case
profiles βu

jk for j, k ∈ {1, 2, 3} and βv
jk, β

v′

jk for j, k ∈ {1, 2}.
Note that for any node where i separates two types then
all leaves resulting from i signalling tj must have the form
(tj , b−i) for b−i being some bid profile of the other players
compatible with said node. Therefore βu

j3 must be of the form
(t3, ·) for j ∈ {1, 2, 3}. Similarly for j ∈ {1, 2} the pro-
files βv

j1, β
v′

j1 must be of the form (t1, ·) and βv′

j2 must be of
the form (t2, ·). Since t1 and t2 are inseparable at u then
i may only play an inconsistent strategy if she signals one of
these types at u. We will show that while enforcing consistent
strategies will alter the constraints, it will only do so on an ar-
tificial level since the outcomes they encode will be the same.
Fix i’s true type to be t1 and consider βu

11 of the form (t2, ·).
The labelling constraints at u ensure that t1(M(βu

11)) is the
maximum among all bid profiles in the set Du(t1), including
βv
11 and βv

12. Now since βu
11 and βv

12 both appear in the same
subtree of T then in addition to the labelling constraint at u
enforcing t1(M(βu

11)) ≥ t1(M(βv
12)) there is the labelling

constraint at v stating t1(M(βv
12)) ≥ t1(M(βu

11)), hence the
outcomes of f at βu

11 and βv
12 are equal. Now by the incen-

tive compatibility constraints at v we have t1(M(βv
11)) ≥

t1(M(βv
12)) = t1(M(βu

11)). Since there is a labelling con-
straint at u enforcing t1(M(βu

11)) ≥ t1(M(βv
11)) then we

have βu
11 = βv

11 = βv
12.

Now consider i playing a consistent strategy where the la-
belled node, denoted β̂u

11, must be of the form (t1, ·). Us-
ing the same argument as before we get β̂u

11 = βv
11, since

both profiles appear in the same subtree of T . Since we only
change βu

11 to β̂u
11 then we have βu

11 = βv
11 = βv

12 and there-
fore βu

11 = β̂u
11. As a final step consider the incentive com-

patibility constraints regardless of whether we assume consis-
tent strategies, which require t1(M(βu

11)) ≥ t1(M(βu
13)) and

t1(M(β̂u
11)) ≥ t1(M(βu

13)). Since βu
11 = β̂u

11 then these con-
straints are exactly identical. Therefore enforcing consistent
strategies does not alter any constraints semantically.

Thus we may assume agents play consistent strategies
without loss of generality. We use the extensive-form la-
bellings to characterise the social choice functions imple-
mentable by indirect mechanisms. We first use the labellings
to define a particular graph for each agent and then use the
cyclic monotonicity property to determine whether the mech-
anism coupled with such a labelling admits NOM payments.
This technique was first used in [Rochet, 1987] to charac-
terise truthfully implementable decision rules in arbitrary do-
mains, and then it has been extended to characterise truth-
ful implementability in a variety of settings, including func-
tions on “rich” single-parameter domains [Bikhchandani et
al., 2006], on convex domains with finite range [Saks and Yu,
2005], and multiparameter settings for scheduling [Lavi and
Swamy, 2009], verification [Ventre, 2014], and randomised
mechanisms [Babaioff et al., 2015].

Informally for some social choice function f extended with
labelling λ for player i we will define a weighted multigraph
Gλ

i,f that represents each of the constraints required by some
NOM mechanism (f, p). The edges of Gλ

i,f will encode the
incentive-compatibility constraints (7) and the labelling con-
straints (either (5) or (6), depending on whether λ is a best-
case or worst-case labelling). Edge weights reflect how prof-
itable it is for i to signal one type over another when queried
at some node in the implementation tree.

More concretely Gλ
i,f = (V,Eλ, w) is a weighted multi-

graph in which node set V = D corresponds to the do-
main of social choice function f and edge set Eλ encodes
the NOM constraints, whose precise definition we will give
below. Since Gλ

i,f is a multigraph we distinguish between
edges connecting the same pair of nodes using a type an-
notation describing i’s true type. We denote an edge be-
tween two nodes x, y ∈ D annotated with type ti ∈ Di

as (x, y; t) or equivalently x →t y. The weight of edge is
w(x, y; t) = t(f(x)) − t(f(y)). Note that this definition
is compatible with arbitrary domains and social choice func-
tions.

Regardless of whether λ is a best- or worst-case labelling
Gλ

i,f encodes the incentive-compatibility constraints of the
eventual mechanism, hence for λ ∈ {β, ω} and every node
u such that S(u) = i we have the edges {λu

jj →tj λu
jk :

tj , tk ∈ D}. For a best-case labelling β and worst-case la-
belling ω and every node u such that S(u) = i we define
the edges {βu

jk →tj b : tj , tk ∈ Du
i , b ∈ Du(tk)} and

{b →tj ωu
jk : tj , tk ∈ Du

i , b ∈ Du(tk)} encoding (5) and
(6), respectively. The edge set Eλ for labelling λ is simply
the union of the incentive-compatibility edges with the ap-
propriate labelling edges. We now use cycle monotonicity on
this graph to characterise the class of implementable social
choice functions.
Theorem 1. Social choice function f with implementation
tree T is BNOM-implementable in extensive-form (respec-
tively, WNOM-implementable in extensive-form) if and only if
there exists a best-case labelling β (respectively, worst-case
labelling ω) of f for player i such that Gβ

i,f (respectively,
Gω

i,f) has no negative cycles, for all players i ∈ [n].

Proof. (=⇒) By the implementability of f we may there-
fore define a payment rule p such that all labelling and
incentive-compatibility constraints are satisfied for the given
labelling of f with implementation T . For the sake of con-
tradiction suppose that every labelling of f with tree T for
player i induces a negative cycle in the graph Gλ

i,f . Let
C = ⟨x(1) →t1 x(2) →t2 . . . →tm−1 x(m) →tm x(1)⟩
be such a cycle between any m nodes with negative weight.
Since (f, p, T) defines a NOM mechanism then each of the
constraints represented by the edges of C are satisfied, i.e.,
tk(f(x

(k)))−pi(x
(k)) ≥ tk(f(x

(k+1)))−pi(x
(k+1)) for k ∈

[m] where index m + 1 wraps around to 1. Summing these
inequalities yields t1(f(x(1)))− t1(f(x

(2)))+ t2(f(x
(2)))−

t2(f(x
(3))) + . . .+ tm(f(x(m)))− tm(f(x(1))) ≥ 0, which

is exactly the expression for the weight of cycle C. Hence
we have a contradiction and there must be a labelling λ of f

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2507

with implementation T such that all cycles in Gλ
i,f are non-

negative.
(⇐=) Let λ be a profile labelling of f implemented by

T such that the induced graph Gλ
i,f has no negative weight

cycles. We will define payments such that (f, p, T) is a NOM
indirect mechanism as follows. First augment Gλ

i,f by intro-
ducing an artificial node γ and edges (γ, x; 0) for every node
x ∈ V , where 0 is an artificial type that assigns 0 to every out-
come of f and hence these edges will have zero weight. Call
this augmented graph Gλ

i,f . Note that the addition of these
edges does not create any new cycles we have only introduced
outgoing edges from γ and since there are no negative cycles
in Gλ

i,f then shortest paths are well-defined in Gλ
i,f . We now

set payment pi(x) = SP(γ, x), where SP(x, y) denotes the
shortest path between nodes x and y in Gλ

i,f . By definition
of shortest paths for any edge (x, y; t) in Gλ

i,f we must have
SP(γ, y) ≤ SP(γ, x) + w(x, y; t), and therefore for any such
edge we have t(f(y))− pi(y) ≤ t(f(x))− pi(x).

It is straightforward to show that whenever such an edge
(x, y; t) is present in the graph the corresponding constraint
is satisfied with these definitions of payments: either t = xi

and we have either a (truthful) labelling constraint or an in-
centive compatibility constraint (depending on the labelling
λ), or t ̸= xi and we have a (dishonest) labelling constraint.
Moreover it suffices to only consider two nodes separated at
some lowest common ancestor in the tree: if the label for
some action for parent node u and child node v is different
then as a consequence of Observation 1 the utility derived by i
is the same in both outcomes associated with these nodes.

In the next section we use this result to characterise
the functions implementable by an indirect mechanism for
single-parameter agents and show these is no different to
those implementable by a direct mechanism.

4 The Revelation Principle for
Single-Parameter Agents

A single-parameter agent is one whose type can be described
by a single number: when agent i has type ti then she val-
ues the outcome of the allocation function f(b) as the prod-
uct ti · fi(b) of her private type and her personal allocation.
This allows us to decouple player types from the output of
a mechanism’s allocation function to prove structural proper-
ties about the latter in isolation. [Archbold et al., 2023] show
that an allocation function f is implementable by a direct-
revelation NOM mechanism if and only if it is overlapping.
If f is overlapping then we may always find a “monotone
restriction” of f when viewed as a (multi-valued) allocation
function of player i’s bid. In other words, there is always a
set of profiles ensuring that i is allocated more as she bids
more. We generalise this notion to show a similar condi-
tion for implementability by indirect mechanisms, and show
that the functions implementable by indirect mechanisms is
no different than those implementable by direct ones.

Let u be some node of the implementation tree T for al-
location function f with S(u) = i. We denote by Ou

ij =
{fi(tj , b−i) : b−i ∈ Du

−i(tj)} the set of all outcomes of f

to player i when i signals type tj at u, taken over all possible
continuations of the mechanism from the other players. Fur-
thermore let Ou

i = ×tj∈Di
Oij . We say that f is overlapping

for i at node u with i = S(u) if there exists a non-decreasing
vector (o1, o2, . . . , od) ∈ Ou

i . This says that when i is re-
sponding to the mechanism at node u there always exists an
outcome of f such that when i has a larger type she is allo-
cated more by the mechanism. Notice that if two types tj , tk
are indistinguishable at node u then the ranges of f from sig-
nalling either type are the same. We characterise the class of
social choice functions NOM-implementable by an indirect
mechanism with the following.

Lemma 1. Social choice function f is NOM-implementable
by an indirect mechanism if and only if there exists some im-
plementation tree T such that f is overlapping at every node
u with S(u) = i, for each player i ∈ [n].

The proof employs the same arguments as [Archbold et al.,
2023] to show both directions. Since the social choice func-
tion f we wish to implement is given to us then the range of
outcomes {fi(bi, b−i)}b−i of the function to player i for each
bid bi is fixed. The extra flexibility provided by an indirect
mechanism over a direct-revelation implementation of f is
that we may choose how to partition this set of outcomes for
a given bid using the nodes of the implementation tree. The
sufficiency follows from the fact that, given f which is over-
lapping at u for some implementation, then we can always
define an extensive-form labelling ensuring no negative cy-
cles in the graph Gλ

i,f . For necessity, supposing that f is not
overlapping at u leads to negative cycles in Gλ

i,f and hence
contradiction by Theorem 1.

We now wish to show that the set of NOM-implementable
allocation functions for direct and indirect mechanisms is the
same for single-parameter agents. Our definition of an indi-
rect mechanism is able to emulate a direct revelation mecha-
nism: simply query each player once and get them to separate
every type in their domain from one another. This amounts to
asking each player to directly declare their type to the mech-
anism. Therefore all direct-revelation NOM-implementable
allocation functions are implementable by an indirect mecha-
nism. This of course covers cases where agents are single-
parameter. We may use Lemma 1 to show the opposite:
for single-parameter agents all NOM-implementable func-
tions by an indirect mechanism are implementable by a direct
mechanism. The functions implementable by direct and in-
direct mechanisms is therefore the same, thus the revelation
principle holds for single-parameter agents.

Theorem 2. For every NOM indirect mechanism implement-
ing social choice function f for single-parameter agents there
is a NOM direct mechanism implementing f .

Proof. Let f be a NOM-implementable social choice func-
tion that is implemented by indirect mechanism (f, p, T).
Note that by Lemma 1 f must be overlapping for S(u) at
each node u of T . We will show that restructuring the imple-
mentation to one in which player i is queried once at the root
and fully separates each type in her domain, which must oc-
cur in a direct-revelation implementation of f , maintains the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2508

overlapping property of f at the root. Therefore the resulting
implementation will also be NOM.

First recall the definition of Ou
ij , which denotes the set of

all outcomes possible when player i signals tj at node u. Note
that for some player i = S(u) and two types tj , tk ∈ Du

i that
are overlapping at node u, the overlapping property of f at
u may only be violated if we restrict either of the two sets
Ou

ij and Ou
ik. Now fix a player i for which there are two

types tj , tk ∈ Dv
i which are inseparable at u but separable

at child node v of u. Clearly the set of all outcomes reach-
able after signalling t1 at u contains all outcomes reachable
after signalling t1 at v, hence Ov

ij ⊆ Ou
ij . Thus modifying the

tree T such that i now separates tj from tk at node u rather
than node v cannot violate the overlapping property of f at u
(which was true by hypothesis). We may repeat this argument
and continue to query i further up the tree, where she sepa-
rates progressively more types from her domain. Our final
modified tree T ′ will query i once at the root, at which point
she separates each type from every other. At each point the
overlapping property is maintained and thus f is also over-
lapping for i at the root. Hence f is implementable by this
modified tree T ′ by Lemma 1.

As a final step we will use the overlapping property of
[Archbold et al., 2023] to show f is NOM-implementable
by a direct mechanism. Note that in a direct mechanism each
player is “queried” exactly once simultaneously and directly
reports her type, effectively separating all types in her do-
main. We have reconstructed T into T ′ such that i is now
queried once at the root and fully separates each type in her
domain. Hence from i’s perspective T ′ is a direct-revelation
implementation of f and since f is overlapping for i at the
root in implementation T ′ so too is f overlapping for i in the
sense of [Archbold et al., 2023]. Note that we do not need
to move each player to the root simultaneously – to show
the existence of a direct-revelation mechanism it suffices to
show that this can be done for each player in isolation while
maintaining the overlapping property. Thus there must exist
a direct-revelation mechanism that NOM-implements f .

5 Beyond Single-Parameter Domains
In this section we prove the revelation principle for a setup
that is independent of agents’ domains. This result says that
for the revelation principle not to hold there must be a rich
set of labels that the extensive-form mechanism can use. A
two-type domain is a domain containing two possible types,
where the types themselves can be arbitrary.
Theorem 3. The revelation principle holds for NOM mecha-
nisms when n = 2 and one of the two agents has a two-type
domain.

Proof. Assume without loss of generality that agent 2 has
a two-value domain, D2 = {t, t′}. Fix the social choice
function f ; we will prove that if there is an extensive-form
NOM mechanism M that implements f then there is a direct-
revelation mechanism M ′ that is NOM and also implements
f . Let Gλ

i,f and Gℓ
i,f be the graphs of interest for extensive-

form and direct-revelation labellings λ and ℓ, respectively.
We start by observing that the revelation principle holds

true for agent 2. Assume by contradiction that this is not true.

This means that for any ℓ there is a negative-weight two-cycle
in Gℓ

i,f between (ℓtt′ , t) and (ℓt′t, t
′) and then the outcome of

the mechanism for agent 2 must differ in these two profiles
(for otherwise, each edge would weigh 0). Therefore, to im-
plement the mechanism, the extensive-form implementation
must separate these profiles. Clearly, this cannot be agent 2
or we would get the same negative cycle. Thus, agent 1 must
separate ℓtt′ from ℓt′t before agent 2 separates t from t′. Re-
iterating the argument for all the possible labellings ℓ yields
the contradiction that agent 2 can never separate the two types
in her domain.

Let us now focus on the revelation principle for agent 1.
Since agent 2 has a two-value domain, then any extensive-
form mechanism, including M , has only one node v in each
path from the root to a leaf of its implementation tree T such
that S(v) = 2. Thus, the only difference between a direct-
revelation mechanism M ′ and an extensive-form mechanism
M for agent 1 is that the latter restricts the labels λu at nodes
u below v to belong to Du

2 whereas the domain of the labels
would be unrestricted for the former. Labels are unrestricted
for both M and M ′ at nodes above v.

Therefore, if the children of v are leaves of T then M has
the same labels (and then graphs) of M ′, thus proving the rev-
elation principle. Otherwise, let us focus on a type t1 ∈ Dv

1 ,
i.e., t1 is still in the domain of agent 1 when 2 is queried at
v. Since |D2| = 2 then there are going to be labels λu for t1
at ancestors u of v and labels λz for t1 at descendants z of v
that are equal. Recall that λu would be a feasible choice of a
label ℓt1⋆ for a direct-revelation mechanism M ′. By inspec-
tion, this means that Gλ

i,f contains Gℓ
i,f as a sub-graph. Since

M is NOM then both Gλ
i,f and Gℓ

i,f have no negative-weight
cycles, thus proving that M ′ is NOM.

6 Conclusion

In this work we extend the work on studying the functions
which can be implemented as mechanisms that are not obvi-
ously manipulable. We formalise the constraints required by
incentive compatibility in these settings using the concept of
extensive-form profile labellings and use cycle monotonicity
to characterise the social choice functions that admit NOM
payments. Applying this to mechanisms for single-parameter
agents we find that we may restrict our attention to the sim-
pler direct mechanisms without sacrificing incentive proper-
ties, and similarly for the setting of two players in which
one has a two-value domain. An interesting direction would
be to study what leverage indirect mechanisms for single-
parameter agents do provide over direct mechanisms with re-
spect to other desirable notions, e.g. fairness. It would also
be useful to further explore the relationship between direct-
revelation and extensive-form NOM mechanisms for other
agent domains beyond those covered by Theorems 2 and 3.

Acknowledgements

Carmine Ventre acknowledges funding from the UKRI Trust-
worthy Autonomous Systems Hub (EP/V00784X/1).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2509

References
[Archbold et al., 2023] Thomas Archbold, Bart De Keijzer,

and Carmine Ventre. Non-obvious manipulability for
single-parameter agents and bilateral trade. In Proceed-
ings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), January
2023.

[Aziz and Lam, 2021] Haris Aziz and Alexander Lam. Ob-
vious manipulability of voting rules. In Dimitris Fotakis
and David Rı́os Insua, editors, Algorithmic Decision The-
ory, pages 179–193, Cham, 2021. Springer International
Publishing.

[Babaioff et al., 2015] Moshe Babaioff, Robert D. Klein-
berg, and Aleksandrs Slivkins. Truthful mechanisms with
implicit payment computation. J. ACM, 62(2), may 2015.

[Bade and Gonczarowski, 2017] Sophie Bade and Yannai A.
Gonczarowski. Gibbard-satterthwaite success stories and
obvious strategyproofness. In Proceedings of the 2017
ACM Conference on Economics and Computation, EC ’17,
page 565, New York, NY, USA, 2017. Association for
Computing Machinery.

[Bikhchandani et al., 2006] Sushil Bikhchandani, Shurojit
Chatterji, Ron Lavi, Ahuva Mu’alem, Noam Nisan, and
Arunava Sen. Weak monotonicity characterizes determin-
istic dominant-strategy implementation. Econometrica,
74(4):1109–1132, 2006.

[de Keijzer et al., 2020] Bart de Keijzer, Maria Kyropoulou,
and Carmine Ventre. Obviously Strategyproof Single-
Minded Combinatorial Auctions. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th Interna-
tional Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2020), volume 168 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
71:1–71:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[Dur et al., 2018] Umut Dur, Robert G. Hammond, and
Thayer Morrill. Identifying the harm of manipulable
school-choice mechanisms. American Economic Journal:
Economic Policy, 10(1):187–213, February 2018.

[Ferraioli and Ventre, 2021] Diodato Ferraioli and Carmine
Ventre. Approximation guarantee of OSP mechanisms:
The case of machine scheduling and facility location. Al-
gorithmica, 83(2):695–725, 2021.

[Ferraioli et al., 2019] Diodato Ferraioli, Adrian Meier,
Paolo Penna, and Carmine Ventre. Obviously Strat-
egyproof Mechanisms for Machine Scheduling. In
Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms
(ESA 2019), volume 144 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 46:1–46:15, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[Ferraioli et al., 2022] Diodato Ferraioli, Paolo Penna, and
Carmine Ventre. Two-way greedy: Algorithms for im-
perfect rationality. In Michal Feldman, Hu Fu, and In-
bal Talgam-Cohen, editors, Web and Internet Economics,

pages 3–21, Cham, 2022. Springer International Publish-
ing.

[Kiedanski et al., 2020] Diego Kiedanski, Ariel Orda, and
Daniel Kofman. Combflex: a linear combinatorial auc-
tion for local energy markets. In 2020 IEEE International
Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pages
1–7, 2020.

[Lavi and Swamy, 2009] Ron Lavi and Chaitanya Swamy.
Truthful mechanism design for multidimensional schedul-
ing via cycle monotonicity. Games and Economic Behav-
ior, 67(1):99–124, September 2009.

[Li, 2017] Shengwu Li. Obviously Strategy-Proof Mecha-
nisms. American Economic Review, 107(11):3257–3287,
November 2017.

[Nisan et al., 2007] Noam Nisan, Tim Roughgarden, Éva
Tardos, and Vijay V. Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

[Ortega and Segal-Halevi, 2022] Josué Ortega and Erel
Segal-Halevi. Obvious manipulations in cake-cutting.
Soc. Choice Welf., 59(4):969–988, 2022.

[Psomas and Verma, 2022] Alexandros Psomas and Paritosh
Verma. Fair and efficient allocations without obvious ma-
nipulations. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages
13342–13354. Curran Associates, Inc., 2022.

[Rochet, 1987] Jean-Charles Rochet. A necessary and suffi-
cient condition for rationalizability in a quasi-linear con-
text. Journal of Mathematical Economics, 16:191–200,
1987.

[Roth, 1991] Alvin E. Roth. A natural experiment in the or-
ganization of entry-level labor markets: regional markets
for new physicians and surgeons in the united kingdom.
The American economic review, 81(3):415 – 440, 1991.
Cited by: 209.

[Saks and Yu, 2005] Michael Saks and Lan Yu. Weak mono-
tonicity suffices for truthfulness on convex domains. In
Proceedings of the 6th ACM Conference on Electronic
Commerce, EC ’05, page 286–293, New York, NY, USA,
2005. Association for Computing Machinery.

[Troyan and Morrill, 2020] Peter Troyan and Thayer Mor-
rill. Obvious manipulations. Journal of Economic Theory,
185, 2020. Article 104970.

[Troyan et al., 2020] Peter Troyan, David Delacrétaz, and
Andrew Kloosterman. Essentially stable matchings.
Games Econ. Behav., 120:370–390, 2020.

[Troyan, 2022] Peter Troyan. Non-Obvious Manipulability
of the Rank-Minimizing Mechanism. Papers 2206.11359,
arXiv.org, June 2022.

[Ventre, 2014] Carmine Ventre. Truthful optimization using
mechanisms with verification. Theoretical Computer Sci-
ence, 518:64–79, January 2014.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2510

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Extensive Form Labellings
	The Revelation Principle for Single-Parameter Agents
	Beyond Single-Parameter Domains
	Conclusion

