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Abstract
We consider a multi-issue election setting over a set
of possibly interdependent issues with the goal of
achieving proportional representation of the views
of the electorate. To this end, we employ a pro-
portionality criterion suggested recently in the lit-
erature, that guarantees fair representation for all
groups of voters of sufficient size. For this cri-
terion, there exist rules that perform well in the
case where all the issues have a binary domain and
are independent of each other. In particular, this
has been shown for Proportional Approval Voting
(PAV) and for the Method of Equal Shares (MES).
In this paper, we go two steps further: we gener-
alize these guarantees for issues with a non-binary
domain, and, most importantly, we consider exten-
sions to elections with dependencies among issues,
where we identify restrictions that lead to analo-
gous results. To achieve this, we define appropriate
generalizations of PAV and MES to handle condi-
tional ballots. In addition to proportionality consid-
erations, we also examine the computational prop-
erties of the conditional version of MES. Our find-
ings indicate that the conditional case poses addi-
tional challenges and differs significantly from the
unconditional one, both in terms of proportionality
guarantees and computational complexity.

1 Introduction
Proportional representation of voters’ preferences is an im-
portant desideratum in a wide range of social choice set-
tings, including parliamentary elections [Pukelsheim, 2014],
approval-based multiwinner voting [Lackner and Skowron,
2022], and participatory budgeting [Peters et al., 2021]. In
two recent papers, Freeman et al. [2021] and Skowron and
Górecki [2022] studied a public decision model, where a col-
lective decision needs to be taken on a given set of unrelated
binary (yes/no) issues. In real life scenarios, these kinds of
situations are often handled via majority rule: an issue is im-
plemented if and only if more than 50% of the voters are in
favor of it; and while this might be the most straightforward
decision rule, it comes at a disadvantage: It is not propor-
tional. For instance, consider a scenario where three binary

decisions need to be taken, and the electorate is split into two
groups. The first group of voters, which makes up two thirds
of the electorate, votes “yes” on every issue, while the second
group votes “no” on all issues. Majority rule would set all
issues to “yes,” completely ignoring the preferences of one
third of the electorate. One might argue that setting two is-
sues to “yes” and one issue to “no” would be a more fair so-
lution. Such considerations led Freeman et al. [2021] and
Skowron and Górecki [2022] to adopt several proportional-
ity notions and proportional voting rules from the setting of
approval-based multiwinner voting to their model.

The model studied by the above-mentioned previous works
has two important limitations. Firstly, the issues under con-
sideration are only allowed to be binary, which makes it im-
possible to model scenarios where an issue has more than two
possible alternatives. Secondly, their setting does not allow
any dependencies between the issues, although in some sit-
uations it might be the case that the approval of an issue is
dependent on the decision taken for another. The more gen-
eral setting for proportional decision-making that we study
here is based on the conditional approval voting framework
introduced by Barrot and Lang [2016]. This setting allows for
more than two choices per issue as well as for dependencies
between the issues; consequently, it addresses both limita-
tions discussed above. The following example illustrates the
type of situations that our model can deal with.

Example 1. Consider a scenario, where a municipality has
decided that the following projects will be funded: (1) a pub-
lic park, (2) a pedestrian infrastructure, and (3) a commu-
nity center. However, the location of these sites is not fixed
yet, and the voters should decide on whether to build each
project at the Southside, the Centralside, or the Northside
district. Obviously, the domain of each issue here is of size
three. Voter 1, a resident of Southside, is voting in favor of
building the park in her neighborhood and therefore casts an
(unconditional) approval ballot for this option. The prefer-
ences of the other voters are more complicated: Voter 2 is
concerned about the traffic congestion that a new community
center could cause and votes for building a community center
at any location only if a pedestrian infrastructure is built at
the same location as well. Finally, voter 3 doesn’t want any
two projects built in the same location. Hence her approval
for any project depends on the decisions made for the other
two projects.
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In this paper, we focus on the proportionality concept that
was introduced by Skowron and Górecki [2022], which pro-
vides strong guarantees for all groups of voters of sufficient
size. These guarantees are considered as more powerful than
other previously studied ones, which were only able to en-
sure proportional representation to groups of voters that have
similar preferences. Such “cohesive” groups are rare to be
found in practice in the unconditional setting [Bredereck et
al., 2019], let alone when dependencies between issues exist.

Contribution. The main challenge left open by Skowron
and Górecki [2022] lies in incorporating in their model de-
pendencies between issues, which can be seen as a stepping-
stone to the building of a theory of fairness for general public
decision settings. Motivated by this, we first introduce appro-
priate generalizations of Proportional Approval Voting (PAV)
and the Method of Equal Shares (MES), which are two promi-
nent rules with provable guarantees on proportional represen-
tation for binary, unrelated issues. We then make progress
along two fronts. First, we generalize the known guarantees
to elections over issues with non-binary domains. Secondly,
and most importantly, we consider elections with dependen-
cies among issues, where we identify sufficient restrictions
that lead to analogous results. Our work is the first that pro-
vides guarantees of proportionality for elections with condi-
tional ballots. Moreover, for the conditional version of MES,
we also study computational aspects. Our results demonstrate
that the conditional setting poses additional challenges and
differs significantly from the unconditional one, both in terms
of proportionality and complexity. As an example, we show
that MES is hard to implement in the general conditional case,
whereas it has been known to be tractable in unconditional
elections. Another highlight of our work is that PAV and
MES achieve proportionality bounds under different assump-
tions (that have some degree of complementarity), and thus,
one cannot reach yet an absolute conclusion when compared
against each other, under the conditional framework, in con-
trast to the unconditional setting.

Related Work. On a high level, there are three lines of
research that are related to our paper. First, our work is
closely related to approval-based multiwinner voting [Lack-
ner and Skowron, 2022]. Starting with [Aziz et al., 2017]
and [Sánchez-Fernández et al., 2017], a plethora of pro-
portionality notions have been defined and studied. Orig-
inally defined for multiwinner voting, proportionality no-
tions have more recently been extended to more general set-
tings such as participatory budgeting [Peters et al., 2021;
Brill et al., 2023]. Quantitative proportionality notions have
also been studied by Aziz et al. [2018] and Skowron [2021].

Secondly, our work is related to multi-issue decision-
making and seat-posted elections. With the exception of
the aforementioned papers by Skowron and Górecki [2022]
and Freeman et al. [2021], these have not been studied
from a proportionality perspective. Instead, the literature
has focused on issues such as Anscombe’s and Ostrogorski’s
paradoxes [Anscombe, 1976; Fritsch and Wattenhofer, 2022;
Laffond and Lainé, 2006] or axiomatic comparisons between
preferences and decisions over issues and the entire decision
space [Dindar and Lainé, 2022; Aslan et al., 2022].

Third, our work is utilizing a model of conditional approval
voting over combinatorial domains. This was introduced
by Barrot and Lang [2016], who also proposed three vot-
ing rules for incorporating dependencies between issues and
studied (mainly axiomatic) properties. Later on, the works
by Markakis and Papasotiropoulos [2020; 2021], focused on
the algorithmic aspects of the winner determination problem
under the conditional analog of the (minisum) approval vot-
ing rule and also considered the computational complexity of
controlling the election outcome, under the same rule. Apart
from approval-based elections, the presence of preferential
dependencies remains a major challenge and several frame-
works have been considered, as it has been extensively dis-
cussed by Lang and Xia [2016] and Chevaleyre et al. [2008].

2 Preliminaries
In this section, we introduce the setting of conditional ap-
proval voting, we define the proportionality notion we are in-
terested in, and define the two voting rules that will be the
focus of our work.

2.1 Conditional Election Setting
In describing conditional approval elections, we closely fol-
low the notation and terminology of the previous papers on
the topic, by Barrot and Lang [2016] and Markakis and Pa-
pasotiropoulos [2020; 2021]. We consider a group N =
{v1, v2, . . . , vn} of n voters that needs to make a deci-
sion over a set of m possibly interdependent issues I =
{I1, I2, . . . , Im}. Each issue Ij , is associated with a domain
Dj = {a1

j , a
2
j , . . . , a

d
j} that corresponds to the alternatives

for this issue. Without loss of generality, we assume that
|Dj | = |Dj′ | ≥ 2, ∀j, j′ ∈ [m] (if not, one can add dummy
alternatives) and we denote the domain size by d.

A conditional approval voting instance, or simply an in-
stance, is determined by a tuple P = (I,N,B), where B de-
notes the conditional approval ballots of the set of voters N
over the issues of I . In what follows, we describe the format
of conditional approval ballots.

Each voter vi ∈ N is associated with a directed graph,
whose vertex set coincides with the set of issues, referred to
as her dependency graph, Gi = (I, Ei). A directed edge
(Ik, Ij) ∈ Ei, means that according to voter vi, issue Ij is
affected by Ik. We use Γi(Ij) to denote the (possibly empty)
set of direct predecessors, i.e., in-neighbors, of issue Ij in
Gi and Γ∗i (Ij) = Γi(Ij) ∪ {Ij}. Voters cast conditional ap-
proval ballots that are expressed as follows: For an issue Ij
with |Γi(Ij)| = 0, voter vi casts a standard (unconditional)
approval ballot, stating explicitly all the alternatives of Dj

that are approved by her, the number of which varies from 0
to d. For the case that |Γi(Ij)| > 0, voter vi needs to spec-
ify all the combinations of alternatives for issues in Γ∗i (Ij)
that she approves, i.e., that make her satisfied w.r.t. issue Ij .
These combinations are expressed in the form {s : t}, where
s ∈ ×I`∈Γi(Ij)D`, and t ⊆ Dj . Such a ballot signifies the
satisfaction (i.e., approval) of a voter with respect to issue Ij ,
when the in-neighbors of Ij in Gi are set to the alternatives
specified by s, and the selection for Ij belongs to t. We note
that we do not impose that voters submit a ballot for every
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issue (they can abstain if they are not satisfied with any out-
come w.r.t. certain issues). In the case that all voters have
the same dependency graph, we let ∆in denote the maximum
in-degree of this graph.

Given a conditional approval voting instance, the global
dependency graph is the undirected simple graph G that re-
sults from ignoring the orientation of edges in the graph
(I,
⋃
i∈[n]Ei), where Ei is the edge set of vi’s dependency

graph. We use Γ(Ij) to denote the (possibly empty) set of
neighbors of issue Ij in G and Γ∗(Ij) = Γ(Ij)∪{Ij}. More-
over, ∆ denotes the maximum degree of any vertex in G.
Note that if Γ(Ij) = ∅ for all j ∈ [m], then a conditional
approval voting election degenerates to a classical approval
election over m issues.

For any I ′ ⊆ I , any tuplew ∈ ×Ij∈I′Dj , i.e., that includes
an alternative from Dj for every issue Ij ∈ I ′, is referred to
as a suboutcome. If w specifies a value for all issues of an
instance P = (I,N,B), we simply call it an outcome of P .
A conditional approval voting rule is a function that maps
each conditional approval voting instance P to an outcome
w. Given an outcome w, we let ui(w) denote the number of
issues with respect to which voter vi is satisfied under w. If
w is clear from the context, we simply refer to this as ui. The
following example illustrates our setting.

Example 2. Consider an instance where n = 3 voters decide
uponm = 3 issues, namely I1, I2, I3, with domain size d = 3
and domainsDi = {xi, yi, zi}, i ∈ {1, 2, 3}. The conditional
approval ballots of the voters are specified in the table that
follows, in which, an entry “–” indicates that the voter cannot
be satisfied w.r.t. the corresponding issue under any outcome.

voter v1 voter v2 voter v3

issue I1 x1 – x1, y1

x3 : x2

issue I2 x2, y2, z2 y3 : y2 y2

z3 : z2

issue I3 – x3 y1y2 : (x3, z3)

The dependency graphs of the voters, namely G1, G2, G3

are depicted in the figure below, together with the global de-
pendency graph G, which has maximum degree ∆ = 2.

2.2 Proportionality Criterion
We now define a (parameterized) notion of proportionality
that generalizes the one suggested by Skowron and Górecki
[2022]. The basic rationale behind any proportionality defini-
tion is the intuitive idea that any fraction of voters should have
the ability to influence a corresponding fraction of decisions:

A group of voters that makes up a β-fraction of the
electorate should be able to decide on βm issues.

In particular, such a criterion requires that minority opinions
are represented as well (proportionally to their size).

To formalize this notion, an important parameter is the set
of issues that a voter can be possibly satisfied with. Namely,
for a voter vi ∈ N , we let Ri denote the set of issues Ij ∈ I ,
for which vi has submitted at least one conditional approval
ballot (or unconditional if Γi(Ij) = ∅), i.e., there is at least
one selection of alternatives for Γ∗i (Ij) that makes vi sat-
isfied w.r.t. issue Ij . Formally, Ri = {Ij ∈ I : ∃w ∈
×I`∈Γ∗i (Ij)D` that satisfies vi w.r.t. Ij}. To avoid trivialities,
we assume that |Ri| > 0 for all vi ∈ N . By definition, voter
vi cannot be satisfied with respect to any issue in I \ Ri, un-
der any outcome. In Example 2, we have R1 = {I1, I2},
R2 = {I2, I3}, R3 = {I1, I2, I3}.

For a group V ⊆ N of voters, we let rV denote the num-
ber of issues for which all voters of V approve at least one
alternative, i.e., rV = | ∩i∈V Ri|. In Example 2, we have
rN = 1, r{v1,v2} = 1 and r{v2,v3} = 2. The role of rV is im-
portant in the definition below in which, the proportionality
guarantee of a group of voters takes into account the maximal
number of issues that all members of the group care about.
Definition 1. A conditional voting rule is α-proportional, for
some α ∈ [0, 1], if for every conditional approval voting in-
stance P = (I,N,B) with |N | = n and for every V ⊆ N ,
there exists a voter vi ∈ V such that if w is the winning out-
come under the considered rule, then

ui(w) > αrV
|V |
n
− 1.

The parameter α in the definition represents the degree of
proportionality that a voting rule can guarantee. Ideally, we
would like to have α-proportional rules for α = 1, as this
would mean that the elected outcome aligns with the views of
the electorate in a proportional manner. However, as we will
soon show, such a rule does not exist and more relaxed values
will need to be considered. In the unconditional case, and
with a binary domain for each issue, it was shown by Skowron
and Górecki [2022] that α = 1

2 is achievable. In our more
general setting, we will see that the degree of proportionality
cannot be expressed by a constant; rather, it will be a function
of the input instance, dependent on d and ∆.

2.3 Conditional Voting Rules
We focus on two conditional rules, that constitute natural gen-
eralizations of their well-studied unconditional versions.

Conditional Proportional Approval Voting (cPAV)
An outcome w of a conditional approval election in an in-
stance P = (I,N,B) gains a score of

∑ui(w)
k=1

1
k from every

voter vi who is satisfied with w with respect to ui(w) issues.
The cPAV score of w is

∑
vi∈N

∑ui(w)
k=1

1
k , or, in words, it is

the sum of the scores that it gains from all the voters of the
electorate. The outcome that achieves the highest cPAV score
is the winning one under cPAV. Note that the only difference
between the unconditional definition of PAV [Thiele, 1895;
Janson, 2016] and the version we suggest here, comes from
the way that a voter’s satisfaction w.r.t. an issue is defined.
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Conditional Method of Equal Shares (cMES)
The unconditional version of cMES was introduced by Peters
and Skowron [2020] (and was originally being referred to as
“Rule X”). In our more general setting, the rule consists of
two phases, and the first one works in rounds. Initially, each
voter is given a budget m, equal to the number of issues and
all issues are being considered as unfixed. Fixing an issue
will cost a price of n. Unlike in the unconditional version
of the rule, we also allow that several issues are fixed at the
same time, in which case the price to be paid is n times the
number of issues to be fixed. For any round t of the first
phase and an issue Ij ∈ I that has not been fixed yet, denote
by Γu(Ij) the set of all issues in ∪vi∈NΓ∗i (Ij) that remain
unfixed until round t. For every such issue Ij , for every set
I ′ ⊆ Γu(Ij), and for every possible (sub)outcome w on the
issues of I ′, we perform the following: First, we identify the
set of voters S(w) who have a positive remaining budget and
are satisfied with respect to Ij under w; second, we calculate1

the price p(w), which is such that if each voter in S(w) paid
p(w) or all the money she has left, then the voters from S(w)
would altogether pay n · |I ′|. Finally, among the above, we
determine the set of issues I ′ and the suboutcome w with a
minimal value for p(w); we reduce the budget of every voter
in S(w) by p(w) (or to 0 if their current budget is less than
p(w)); we set the decision on the issues of I ′ to w, and we
continue with the next round, until no further purchase can
be made. It might happen that after this procedure, there are
issues for which the decision has not been set. For these, in
the second phase, we select an alternative arbitrarily.

A natural case for elections with conditional ballots, that
we pay special attention to, is when all the voters agree on
the dependencies among issues, i.e., when they have the same
dependency graph. In some scenarios, this may even be en-
forced by the election organizer, either for uniformity reasons
or when there are obvious enough dependencies among issues
that apply to all voters. With a common graph, the execution
of cMES becomes a bit simpler. In particular, for a yet un-
fixed issue Ij ∈ I , we only look at the single subset of the
in-neighborhood of Ij , say I ′, that has not been fixed in the
previous rounds. For this set I ′, we check all possible sub-
outcomes w to identify the voters who can get satisfied with
respect to Ij , and continue in the same manner as in the de-
scription of cMES above.

3 Conditional PAV
We begin our study by examining cPAV, the conditional ver-
sion of Proportional Approval Voting; a voting rule that ex-
hibits significant proportionality guarantees in the binary and
unconditional case [Skowron and Górecki, 2022]. The main
result of this section is the identification of a proportionality
guarantee under a certain assumption (Theorem 1). Before
delving into this, we present an example that establishes that,
as in the unconditional setting, we should not have too high
expectations in terms of the α-value that is achievable.
Example 3. Consider an instance P = (I,N,B), with m
issues, such that m is a multiple of d∆+1 and furthermore,

1The calculation of p(w) for a given w can be done easily, see
e.g. the proof of Theorem 4.

suppose that m can be written as m = k(∆ + 1), for an
integer k. Assume also that the issues of I can be partitioned
in k sets, namely M1,M2, . . . ,Mk, of size (∆ + 1) each, so
that issues from Mi are not dependent on issues from Mj for
any voter, and for any i 6= j. Let there also be d∆+1 voters.
We fix an i ∈ [k] and we focus on a single set of issuesMi. We
will make each issue of Mi dependent on all the remaining ∆
issues of the group Mi, for all voters. This means that the
global dependency graph is a disjoint union of cliques.

To describe the voters’ preferences, note that there are ex-
actly d∆+1 possible outcomes for the issues of any single
clique. We define the preferences so that for every possi-
ble outcome in each clique, there is exactly one voter who
is satisfied with that outcome, with respect to all the ∆ + 1
issues. Furthermore this voter is dissatisfied in any other
outcome with respect to all these issues. For instance, say
we fix a suboutcome x = (x1, . . . , x∆+1) for a particular
clique. Then, we will have exactly one voter whose ballot
is {x−1 : x1, x−2 : x2, . . . , x−(∆+1) : x(∆+1)}, where
x−i denotes the tuple (x1, . . . , xi−1, xi+1, . . . x∆+1). Thus,
observe that if x is indeed the final selection for the clique un-
der consideration, the satisfaction of the corresponding voter,
with respect to these issues, equals exactly ∆ + 1. We use the
same construction of preferences for the issues of the remain-
ing cliques. Hence, for every V ⊆ N , it holds that rV = m.

Observation 1. There does not exist a voting rule that is α-
proportional for α = 1.

Proof. Consider the instance P of Example 3, pick an ar-
bitrary voting rule and let w be its winning outcome in P .
Since the voters do not agree on any issue under any out-
come, there exists at least one voter vi satisfied with at most
m
n issues. If vi is satisfied with strictly less than m

d∆+1 issues,
then consider the set V = {vi}. Proportionality requires that
ui(w) ≥ m |V |n = m

d∆+1 , which is a contradiction. Hence, it
must be that all voters are satisfied with exactly m

d∆+1 issues.
If we focus now on V = N , it should hold that ui(w) > m−1
for all vi ∈ N , which is not the case.

In fact, Example 3 has further negative implications.

Remark 1. Consider a rule that is reasonably fair to the
voters, in the sense that it does not treat any voter in a sig-
nificantly different manner. Then in Example 3, every voter
would have to be satisfied with respect to exactly m

d∆+1 is-
sues. But then, looking at V = N would imply that the rule
cannot be α-proportional, for any α > 1

d∆+1 .

The previous discussion highlights that most probably, the
best we could expect is a proportionality guarantee of α =

1
d∆+1 . We have not yet been able to obtain such a general
result for all instances. The main technical difficulty with
conditional elections is the analysis of the PAV score. This is
more challenging to handle now because the satisfaction of a
voter can change more abruptly when we alter the value of a
single issue, due to the effect this may have on other issues.
On the positive side, we can prove a guarantee by restricting
the voters’ preferences. It remains an open problem to deter-
mine whether such restrictions could be relaxed or removed.
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Assumption 1. For every voter vi ∈ N , any two issues in Ri
are either located in different components or are at a distance
of at least 4 from each other in the global dependency graph.

In other words, the assumption states that if a voter can be
satisfied w.r.t. some issue, she cannot be satisfied w.r.t. to any
other “nearby” issue in the global dependency graph. Hence it
intends to capture voters who express preferences for a rather
limited number of issues per component, which allows us to
control the total satisfaction achieved by the voters.
Theorem 1. Under Assumption 1, cPAV is α-proportional for
α = 1

(1+∆2)d∆+1 .

Proof. Consider a conditional election instance (I,N,B) in
which Assumption 1 holds, let G be its global dependency
graph, and w its cPAV winning outcome. For any fixed issue
Ij , our proof will be based on a counting argument, where
we will examine all possible ways of changing the alterna-
tives chosen for Ij and its neighbors in w. Let sj be a
(sub)outcome that specifies an alternative for every issue in
Γ∗(Ij). Let δw(sj), be the difference of the cPAV score if
we change every issue of Γ∗(Ij) from its value in w to the
value indicated by sj , minus the cPAV score of w. We de-
note by Fj the set of all possible suboutcomes sj such that
sj(I

′) 6= w(I ′), for at least one issue I ′ ∈ Γ∗(Ij), so that
sj does impose an outcome different from w. Given that
|Γ∗(Ij)| ≤ ∆ + 1, it holds that |Fj | ≤ d∆+1 − 1.

The main component of the proof is the estimation of the
expression

∑
Ij∈I

∑
sj∈Fj

δw(sj), denoted by Sw for sim-
plicity. Before we proceed, recall also that if ui is the number
of issues that vi is satisfied with underw, the voter contributes
to the cPAV score the quantity 1 + 1

2 + · · ·+ 1
ui

. At what fol-
lows we will use Γ(Γ(Ij)) to denote the set of issues that are
at distance 2 from Ij in G. We consider now two cases.

First, we consider an issue Ik with respect to which voter
vi is satisfied under w. We will take into account all possible
tuples sj in the expression Sw, that may affect the satisfac-
tion of vi for this issue. These are precisely the suboutcomes
sk ∈ Fk, the suboutcomes s` ∈ F` that correspond to any
issue I` ∈ Γ(Ik), and also the suboutcomes s` ∈ F` for any
issue I` ∈ Γ(Γ(Ik)). Let us denote by F ′k the set of all these
suboutcomes. In worst case, any change of w by the values
indicated by some s ∈ F ′k may cause voter vi to become
dissatisfied with respect to issue Ik. Observe also that by
Assumption 1, the suboutcomes from F ′k cannot affect any
other issues that voter vi is satisfied with under w, in other
words, vi will remain satisfied with all the other ui − 1 is-
sues that she was satisfied with under w. Therefore, when
we change w according to a suboutcome s ∈ F ′k, either the
voter vi does not contribute anything to Sw, or her contribu-
tion will be negative, and equal to−1/ui due to the definition
of cPAV. To bound the number of tuples that can create this
negative contribution, we need to estimate |F ′k|. To do this,
note that the set Γ∗(Ik)∪Γ(Γ(Ik)) contains exactly Ik itself,
its neighbors, and its neighbors of neighbors which altogether
correspond to at most (1 + ∆ + ∆(∆− 1)) = 1 + ∆2 issues.
Given also that for every such issue Ij , the number of differ-
ent tuples sj ∈ Fj to consider is d∆+1 − 1, it is true that
|F ′k| ≤ (1 + ∆2)(d∆+1 − 1). Thus, the total contribution of

voter vi is in worst case at least − (1+∆2)(d∆+1−1)
ui

. Since we
know that under w, there are exactly ui issues that vi is satis-
fied with, we conclude that for every i ∈ [n] the contribution
of vi to Sw is at most −ui(1+∆2)(d∆+1−1)

ui
.

Second, consider the |Ri| − ui issues that vi is dissatisfied
under w, but for which we know that there exists an assign-
ment of values that satisfy vi (by definition of Ri). Fix any
such issue, say Ik. We know that in Fk there exists at least
one suboutcome, say sk, that can make vi satisfied with re-
spect to Ik. By Assumption 1, we know that changing w
according to sk cannot affect the remaining issues that vi is
satisfied with under w. Hence, there is at least one subout-
come, sk, for which voter vi contributes a positive value to
Sw, which equals 1

ui+1 . Therefore, for every i ∈ [n] the con-

tribution of vi to Sw is at least |Ri|−ui

ui+1 .
The optimality of w implies that δw(sj) ≤ 0, for every

sj ∈ Fj and for every j ∈ [m]. Furthermore,−(d∆+1−1) ≤
0 and hence the following hold:

0 ≥
∑
Ij∈I

∑
sj∈Fj

δw(sj)

≥
∑

vi∈N :ui>0

−ui(1 + ∆2)(d∆+1 − 1)

ui
+
∑
vi∈N

|Ri| − ui
ui + 1

≥
∑
vi∈N

(
−(1 + ∆2)(d∆+1 − 1) +

|Ri| − ui
ui + 1

)
=
∑
vi∈N

(
|Ri|+ 1

ui + 1
− (1 + ∆2)d∆+1

)
Equivalently,

∑
vi∈N

|Ri|+1
ui+1 ≤ (1 + ∆2)d∆+1n, and if we

fix any set V ⊆ N , the following hold:∑
vi∈V

|Ri|+ 1

ui + 1
≤ (1 + ∆2)d∆+1n

Using the fact that |Ri| ≥ rV , and by a rearrangement of the
terms, we also have that∑

vi∈V

1

ui + 1
≤ (1 + ∆2)d∆+1n

rV + 1
. (1)

Due to the harmonic and arithmetic mean inequality,
n∑

i∈[n]
1
xi

≤ 1
n

∑
i∈[n] xi, and by fixing xi to 1

ui+1 we get

∑
vi∈V

1

ui + 1
≥ |V |2∑

vi∈V (ui + 1)
=

|V |2

|V |+
∑
vi∈V ui

. (2)

Combining the relations (1) and (2) gives (after reordering)

1

|V |
∑
vi∈V

ui ≥
|V |
n

rV + 1

(1 + ∆2)d∆+1
− 1

>
1

(1 + ∆2)d∆+1

|V |
n
rV − 1.

Consequently, for every V ⊆ N , there exists a voter vi ∈ V ,
for which ui(w) > 1

(1+∆2)d∆+1

|V |
n rV − 1.
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Despite the negative results indicated by Example 3, Theo-
rem 1 provides the first guarantee of proportionality for con-
ditional approval elections. On the downside, even in the
unconditional setting, determining the winning outcome for
PAV is NP-hard.

Implications for the Unconditional Case. Assumption 1
trivially holds if all voters submit unconditional ballots since
then, any two issues belong to different components in the
global dependency graph (which does not have any edges).
For this case, ∆ = 0 and the α-value achieved by Theorem
1 is 1

d . This strictly generalizes the result of Skowron and
Górecki [2022], that deals only with the case of d = 2, and
had left as an open problem the cases with higher values of d.
Note also that Example 3 still works for ∆ = 0, which makes
the result of Theorem 1 tight in the unconditional case, for any
domain size, generalizing once again the analogous result.

4 Conditional MES
The computational intractability of PAV in the unconditional
setting motivated the study of other rules, such as the Method
of Equal Shares (MES), that overcome computational barriers
and at the same time have desirable characteristics from the
perspective of proportional representation. In this section, we
extend this line of work to conditional elections, by focusing
on the conditional version of MES as defined in Section 2.3.
We start with studying algorithmic properties of cMES, and
then proceed to proportionality guarantees.

4.1 Computational Complexity of cMES
The main result of this subsection is that Conditional MES
is not, in general, computable in polynomial time, which is
a noteworthy characteristic that differentiates it from its un-
conditional variant. This holds even for binary domains and
rather simple dependency graphs, when either the maximum
in-degree is large (Theorem 2) or the dependency graphs of
the voters do not coincide (Theorem 3). Despite these nega-
tive results, there are well-motivated restricted families of in-
stances for which we can compute cMES in polynomial time.
In particular, when neither of the aforementioned conditions
hold, a winning outcome can be computed efficiently (Theo-
rem 4). Finally, for the case of different dependency graphs,
we have also identified a restriction that implies polynomial-
time computability (Theorem 5).

Theorem 2. The winning outcome under cMES cannot be
computed in polynomial time, unless P=NP, even when the
voters have a common dependency graph.

In the proof of Theorem 2, we have used in an essential
way the fact that the maximum in-degree of the common de-
pendency graph is large enough, and certainly non-constant.
However, we expect that this represents rather extreme cases,
and that in practical scenarios for conditional voting, it is
more important to focus on the case of bounded in-degree,
which has also been the focus of previous works on com-
putational aspects of such elections, see e.g. [Markakis and
Papasotiropoulos, 2021]. Even in this case, the NP-hardness
remains, when the voters have different dependency graphs.

Theorem 3. Assuming ties are broken in favor of the largest
set of buyers, the winning outcome under cMES cannot be
computed in polynomial time, unless P=NP, even with a con-
stant maximum in-degree in each voter’s dependency graph.

Proof. To prove the statement, we reduce from 3SAT. Given
a 3SAT instance, Π, on q variables, namely x1, x2, . . . , xq ,
and r clauses, namely c1, c2, . . . , cr, we create a conditional
election instance P = (I,N,B) of |I| = q+r+1 issues and
|N | = q + r + 1 voters, as follows:

• We create a binary issue I0 of domain {z1, z2} and we
add a voter voting unconditionally for z1.

• For every j ∈ [q], i.e. for every variable xj of Π, we
add a binary issue Ij of domain {tj , fj}. We refer to
these issues as variable-issues. Furthermore, we add a
variable-voter for every j ∈ [q], who is only voting for
{tj : z1, fj : z1} and is dissatisfied with any other issue.

• For every clause cj of Π, j ∈ [r], we add a binary issue
I ′j of domain {posj ,negj}. We refer to these as clause-
issues. Furthermore, we add a clause-voter who only
cares to be satisfied w.r.t. I0, and is voting for {cj ∧
posj : z1}, where cj contains at most 3 variable-issues.

Observe that the maximum in-degree in every voter’s de-
pendency graph is at most 4. Furthermore, every voter is only
interested in getting satisfied w.r.t. a single issue I0.

Lemma 1. The instance Π is a YES-instance if and only if
there exists an outcome that satisfies all voters w.r.t. I0.

In the remaining proof we will show that one cannot ef-
ficiently determine the set of voters who should pay for the
first purchase in a run of cMES, unless P=NP. To do this, we
establish the following claim: the set of all voters N , is the
largest in cardinality set of voters that can jointly buy a set of
alternatives at a minimum per voter cost in the first iteration
if and only if the 3SAT formula is satisfiable.

For the forward direction, suppose that the formula is sat-
isfiable. Then by Lemma 1, there is an outcome that satis-
fies all voters. This implies that the voters can buy an out-
come of all the q + r + 1 issues, and the per voter cost
would be p(w) = q + r + 1. If this was not the minimum
possible per voter cost in the first iteration of cMES, then
there was a different purchase, say for a suboutcome w′, with
p(w) < q + r + 1, due to the tie-breaking rule. We need to
check whether there exists such a set of κ voters, that are will-
ing to buy a suboutcome w′ on λ issues, where κ < q+r+1,
and such that p(w′) < q + r + 1. But then, with λ issues,
we have p(w′) = λ(q+r+1)

κ and λ(q+r+1)
κ < q + r + 1 if and

only if λ < κ. However, it must be the case that λ ≥ κ. To
see why, consider an arbitrary set of voters S that includes
a variable-voters, b clause-voters and possibly the voter who
votes for I0 unconditionally. In order for such a set of voters
to buy a suboutcome, note that the issue I0 has to be included,
and furthermore, each variable-voter requires her own vari-
able issue to be included as well. For every clause-voter, we
also have to include the corresponding clause issue, hence in
total the set of issues that will be fixed is at least a + b + 1.
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Thus, it is impossible that some set of κ voters can decide to
buy together a suboutcome on less than κ issues.

For the reverse direction, suppose that in the first iteration
of cMES, the set selected to buy alternatives is the set of all
voters. Since, the ballot of every voter contains a distinct
issue, this means that the voters have bought an alternative
for all the issues in order to be concurrently satisfied with I0.
Then, by Lemma 1, the SAT formula is satisfiable. Hence,
we have shown that we can run efficiently the first iteration
of cMES in the instance we constructed, if and only if we can
decide if the SAT formula is satisfiable.

Moving to positive results, we demonstrate below that
when we have a common dependency graph and the in-degree
is bounded, cMES can be implemented efficiently. We find
this to be a natural case (which complements the tractability
landscape for cMES with Theorems 2 and 3), since there are
numerous scenarios where the voters are likely to have the
same perception on the dependence structure among issues.
Recall that in these instances, ∆in is the maximum in-degree.
Theorem 4. If all the voters have the same dependency
graph, and ∆in is bounded by a constant, then the winning
outcome of cMES can be computed in polynomial time.

We conclude the computational analysis of cMES with one
more positive result, applicable to the more general setting
where voters can have different dependency graphs.
Theorem 5. If each connected component of the global de-
pendency graph has no more than a constant number of ver-
tices, then the winning outcome under cMES can be computed
in polynomial time.

4.2 Proportionality Considerations of cMES
We first prove that in the conditional case, there is a family of
instances for which cMES is strictly worse in terms of pro-
portionality than cPAV.
Proposition 1. If ∆ ≥ 1, for any ρ ∈ R≥1, cMES is not
1
ρ -proportional, even for instances that satisfy Assumption 1.

Therefore, restrictions of a different flavor than Assump-
tion 1 are necessary in order to end up with a bounded pro-
portionality guarantee for cMES. To understand when to ex-
pect a good behavior from cMES, it is important to revisit
first the unconditional case, where an assumption was also
needed to achieve any proportionality bound. More precisely,
the guarantee for MES by Skowron and Górecki [2022] was
established under the assumption that there are no abstainers,
i.e., every voter approves at least one alternative from every
issue, hence rV = m. In the conditional setting, we will use
a generalization of this statement, in the following form: no
matter how the in-neighbors of an issue are set, a voter can
still be satisfied with at least one alternative of that issue.
Assumption 2. For every issue Ij and for every voter vi, we
assume that for every combination of values for the issues in
Γi(Ij), there is a choice for Ij that satisfies vi with respect
to Ij . When Γi(Ij) = ∅, we simply assume that vi approves
at least one alternative from the domain of Ij .

We note that Assumption 2 is incomparable to the assump-
tions needed for the polynomial algorithms of Section 4.1 and
also that it implies rV = m for any set of voters V .

Theorem 6. Under Assumption 2, cMES is α-proportional
for α = 1

(∆+1)d∆+1 . When all voters have the same depen-
dency graph, then the same bound holds with ∆ replaced by
∆in, the maximum in-degree over all issues.

For the case of a common dependency graph for all voters,
we show that we can also go a small step further by slightly
relaxing Assumption 2, in a way that Theorem 6 still holds
and at the same time no significant improvements on the pro-
portionality bound would be possible. Before that, we give
the following notation: consider an instance P = (I, V,B),
the voters of which have the same dependency graph. Then
for every issue Ij ∈ I , let Γin(Ij) be the set of in-neighbors
of issue Ij in the dependency graph and let Z(Ij) = {Ik ∈
I such that Ik ∈ Γin(Ij) ∧ Ij ∈ Γin(Ik)}.
Assumption 3. For every issue Ij and for every voter vi, we
assume that for every combination of values for the issues
in Γin(Ij) \ Z(Ij), there is a choice of values for the issues
in Z(Ij) ∪ {Ij} that satisfies vi with respect to Ij . When
Γin(Ij) = ∅, we simply assume that vi approves at least one
value from the domain of Ij .

It is easy to verify that, for the case of a common de-
pendency graph, Theorem 6 still works under this weaker
assumption. The reason is that the issues in Z(Ij) cannot
be fixed before the round where Ij gets fixed, as they de-
pend on it. Hence, in the proof of Theorem 6, we only need
to impose the condition of Assumption 2 for the issues in
Γin(Ij) \ Z(Ij). Furthermore, we exhibit below that under
Assumption 3, a proportionality guarantee that is significantly
better than the result of Theorem 6 is impossible.
Observation 2. For ∆in ≥ 1 and d ≥ 2, cMES is not

1
d∆in+1 -proportional, even for instances that satisfy Assump-
tion 3 and even if all voters have the same dependency graph.
Implications for the Unconditional Case. A corollary of
Theorem 6 that concerns the unconditional case is the gener-
alization of the proportionality guarantee for MES from the
case of binary decisions to any domain size d (which was left
as an open question by Skowron and Górecki [2022]), while
meeting the lower bound of 1

d from Example 3.

5 Conclusions
Our main results establish that both cPAV and cMES can
achieve proportionality bounds, under different assumptions.
PAV seems to favor situations where the satisfaction score of
a voter is somewhat restricted, whereas MES has a better be-
havior when voters are “easier” to please for every issue.

Concerning potential future work, we first note that we do
not have yet a complete picture about the tightness of our
bounds. Also it has been challenging to understand whether
the assumptions used can be relaxed, and to what extent. The
assumption on MES seems to be quite critical even in its un-
conditional variant; as for PAV, we are optimistic that relax-
ations might be possible. One can also study the behavior of
other rules under the conditional setting, or think of further
ways to generalize MES, based on how a purchase is made
and who participates in each purchase. In general, we believe
that proportional representation in combinatorial domains is
a fascinating area, worth further exploration.
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Jérôme Lang, and Nicolas Maudet. Preference handling

in combinatorial domains: From AI to Social Choice. AI
Magazine, 29(4):37–37, 2008.
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