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Abstract

We study a scenario where an adjudication task
(e.g., the resolution of a binary dispute) is out-
sourced to a set of agents who are appointed as
jurors. This scenario is particularly relevant in a
Web3 environment, where no verification of the ad-
judication outcome is possible, and the appointed
agents are, in principle, indifferent to the final ver-
dict. We consider simple adjudication mechanisms
that use (1) majority voting to decide the final ver-
dict and (2) a payment function to reward the agents
with the majority vote and possibly punish the ones
in the minority. Agents interact with such a mecha-
nism strategically: they exert some effort to under-
stand how to properly judge the dispute and cast a
yes/no vote that depends on this understanding and
on information they have about the rest of the votes.
Eventually, they vote so that their utility (i.e., their
payment from the mechanism minus the cost due
to their effort) is maximized. Under reasonable as-
sumptions about how an agent’s effort is related to
her understanding of the dispute, we show that ap-
propriate payment functions can be used to recover
the correct adjudication outcome with high proba-
bility. Our findings follow from a detailed analysis
of the induced strategic game and make use of both
theoretical arguments and simulation experiments.

1 Introduction
We consider the problem of incentivizing jurors to properly
assess case evidence, so that the resulting adjudication is bet-
ter than random. The problem is motivated by dispute resolu-
tion in Web3 systems, where a reliable solution would find
numerous applications in, e.g., supply chain management,
banking, and commerce [Schwartzbach, 2021].

Web3 typically assumes no trusted authorities and adju-
dication must therefore be delegated to ordinary users (or
agents), who are appointed as jurors and get compensated
for this activity. Such agents are anonymous and cannot eas-
ily be held accountable for their actions. They are largely
indifferent to the outcome of the adjudication case and typ-
ically strategize to maximize their utility. As such, paying

a fixed reward to the agents for their participation is insuf-
ficient; they can then just vote randomly, without putting in
any effort to assess the case evidence, producing a useless
adjudication outcome. Instead, to produce a non-trivial adju-
dication, payments to/from the agents should be in some way
conditioned on their vote. Hopefully, if the agents are satis-
fied with their payments, they will make a reasonable effort
to assess the case evidence and collectively come up with a
correct adjudication. We ask the following natural question.

How can payments be structured to motivate strate-
gic jurors to collectively produce a correct adjudi-
cation when they are indifferent to the outcome?

We consider binary (yes/no) adjudication tasks and the fol-
lowing simple mechanism. Each agent submits a vote with
her opinion and the adjudication outcome is decided us-
ing majority. Agents are rewarded for voting in accor-
dance with the final verdict and less so for voting other-
wise. This approach has been deployed in real systems like
Kleros [Lesaege et al., 2019; Lesaege et al., 2021]. Kleros is
already deployed on Ethereum and, at the time of writing, it
has allegedly settled more than one thousand disputes.

1.1 Our Contribution
Our main conceptual contribution is a new model for the be-
haviour of strategic agents. The model aims to capture the
two important components of strategic behaviour while par-
ticipating in an adjudication task. The first one is to decide the
effort the agent needs to exert to get sufficient understanding
of the task and form her opinion. The second one is whether
she will cast this opinion as vote or she will vote for the op-
posite alternative. We assume that, when dealing with an ad-
judication task, agents do not communicate with each other.
Instead, each of them has access to the outcome of similar
tasks from the past. An agent can compare these outcomes
to her own reasoning for them, which allows her to conclude
whether her background knowledge is positively correlated,
negatively correlated, or uncorrelated to the votes cast by the
other agents. Payments can be used to amplify the agent’s
incentive to take such correlation into account. A strategic
agent then acts as follows. If there is positive correlation, her
opinion for the new adjudication task will be cast as vote. If
the correlation is negative, she will cast the opposite vote. If
there is no correlation, the agent will vote randomly.
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We assume that each adjudication task has a ground truth
alternative that we wish to recover. Agents are distinguished
into well-informed and misinformed ones. Well-informed
(respectively, misinformed) agents are those whose opinions
get closer to (respectively, further away from) the ground
truth with increased effort. The ground truth is unobservable
and, thus, the agents are not aware of the category to which
they belong.

After presenting the strategic agent model, we characterize
the strategies of the agents at equilibria of the induced game.
We use this characterization to identify a sufficient condition
for payments so that equilibria are simple, in the sense that
the agents either vote randomly or they are all biased towards
the same alternative. Next, we focus on a simple scenario
with a population of well-informed and misinformed agents
with complementary effort functions and show how to effi-
ciently find payments that result in adjudication that recovers
the ground truth with a given probability. Finally, we conduct
experiments to justify that strategic play of a population with
a majority of well-informed agents results in correct adjudi-
cation when payments are set appropriately.

1.2 Related Work
Voting, the main tool we use for adjudication, has received
enormous attention in the social choice theory literature —
originating with the seminal work of Arrow [1951] — and its
recent computational treatment [Brandt et al., 2016]. How-
ever, the main assumption there is that agents have prefer-
ences about the alternatives and thus an interest for the voting
outcome, in contrast to our case where agents’ interest for the
final outcome depends only on whether this gives them com-
pensation or not. Strategic voter behaviour is well-known to
alter the intended outcome of all voting rules besides two-
alternative majority voting and dictatorships [Gibbard, 1973;
Satterthwaite, 1975]. Positive results are possible with the
less popular approach of introducing payments to the voting
process; e.g., see Posner and Weyl [2018].

The assumption for a ground truth alternative has been
also inspired from voting theory [Caragiannis et al., 2016;
Conitzer and Sandholm, 2005; Young, 1988]. In a quite pop-
ular approach, votes are considered as noisy estimates of an
underlying ground truth; typically, agents tend to favor the
ground truth more often than the opposite ones. Our as-
sumption for a majority of well-informed agents is in ac-
cordance with this. However, an important feature here is
that the ground truth is unobservable (also after the fact).
This is a typical assumption in the area of peer prediction
mechanisms for unverifiable information (see Faltings and
Radanovic [2017], Chapter 3), where a set of agents are used
to decide about the quality of data. However, that line of work
has a mechanism design flavour and assumes compensations
to the agents so that their evaluation of the available data is
truthful (e.g., see Witkowski et al. [2018]). This is signifi-
cantly different than our modeling assumptions here. In par-
ticular, any evaluation of the quality of the agents — a task
that is usually part of crowdsourcing systems; e.g., see Shah
et al. [2015] — is in our case infeasible. Still, our payment
optimization is similar in spirit to automated mechanism de-
sign [Sandholm, 2003] but, instead of aiming for truthful

agent behaviour, we have a particular equilibrium as target.
Numerous works study voting scenarios where agents ex-

pend varying effort to obtain better or worse signals [Gers-
bach, 1995; Persico, 2004; Gerardi and Yariv, 2008; Miche-
lini et al., 2022]. This line of work typically assumes parties
have preferences on the outcome and tries to design mech-
anisms that incentivize truthful behavior. By contrast, we
study scenarios where agents are indifferent to the outcome
and use payments to obtain a good outcome.

2 Modeling Assumptions and Notation
We assume that adjudication tasks with two alternatives are
outsourced to n agents. We use the integers in [n] =
{1, 2, . . . , n} to identify the agents. For an adjudication task,
each agent casts a vote for one of the alternatives and the
majority of votes defines the adjudication outcome. In the
case of a tie, an outcome is sampled uniformly at random.
To motivate voting, payments are used. A payment function
p : [0, 1] → R indicates that agent i gets a payment of p(x)
when the total fraction of agents casting the same vote as i
is x. Payments can be positive or negative (corresponding to
monetary transfers to and from the agents, respectively). We
make no additional assumptions on the payment functions.

The objective of an adjudication task is to recover the un-
derlying ground truth. We denote by T the ground truth
and by F the other alternative. We use the terms T -vote
and F -vote to refer to a vote for alternative T and F , re-
spectively. To decide which vote to cast, agents put an ef-
fort to understand the adjudication case and get a signal of
whether the correct adjudication outcome is T or F . Each
agent i is associated with an effort function fi : R≥0 → [0, 1]
which relates the quality of the signal received by an agent
with the effort she exerts as follows: the signal agent i gets
when she exerts an effort x ≥ 0 is for the ground truth al-
ternative T with probability fi(x) and for alternative F with
probability 1 − fi(x). We partition the agents into two cat-
egories, depending on whether their background knowledge
is sufficient so that the quality of the signal they receive in-
creases with extra effort (well-informed agents) or worsens
(misinformed agents). We assume that effort functions are
continuously differentiable and have fi(0) = 1/2. The ef-
fort function for a well-informed agent i is strictly increasing
and strictly concave. The effort function for a misinformed
agent is strictly decreasing and strictly convex. The func-
tions fi(x) = 1 − e−x

2 and fi(x) = e−x

2 are representative
examples of effort functions for a well-informed and a misin-
formed agent, respectively.

Agents are rational. They are involved in a strategic game
where they aim to maximize their utility, consisting only of
the payment they receive minus the effort they exert. In par-
ticular, we assume the agents are entirely indifferent to the
outcome. This may lead to voting differently than what their
signal indicates. We denote by (λi, βi) the strategy of agent
i, where λi is the effort put and βi is the probability of cast-
ing a vote that is identical to the signal received (and, thus,
the agent casts a vote for the opposite alternative with prob-
ability 1 − βi). A strategy of βi = 1 thus corresponds to an
agent voting truthfully. Allowing for βi < 1 models a sce-
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nario in which the agents participate mainly to make money
and may try each possible strategy that can be beneficial to
them (which is the typical assumption in blockchain environ-
ments). The utility of an agent is quasilinear, i.e., equal to
the amount of payments received minus the effort exerted.
We assume that agents are risk neutral and thus aim to max-
imize the expectation of their utility. Denote by mi the ran-
dom variable indicating the number of agents different than i
who cast a T -vote. Clearly, mi depends on the strategies of
all agents besides i but, for simplicity, we have removed this
dependency from our notation. Now, the expected utility of
agent i when using strategy (λi, βi) is

E[ui(λi, βi,mi)]

= −λi + fi(λi)βi · E
[
p

(
1 +mi

n

)]
+ fi(λi)(1− βi) · E

[
p

(
n−mi

n

)]
+ (1− fi(λi))βi · E

[
p

(
n−mi

n

)]
+ (1− fi(λi))(1− βi) · E

[
p

(
1 +mi

n

)]
= −λi + E

[
p

(
1 +mi

n

)]
+ (βi(2fi(λi)− 1)− fi(λi)) ·Q(mi). (1)

The quantities p
(
1+mi

n

)
and p

(
n−mi

n

)
are the payments

agent i receives when she votes for alternatives T and F , re-
spectively. The four positive terms in the RHS of the first
equality above are the expected payments for the four cases
defined depending on the signal received and whether it is
cast as a vote or not. In the second equality, we have used the
abbreviation

Q(mi) = E
[
p

(
1 +mi

n

)
− p

(
n−mi

n

)]
,

which we also use extensively in the following. Intuitively,
given the strategies of the other agents, Q(mi) is the addi-
tional expected payment agent i gets when casting a T -vote
compared to an F -vote.

We say that a set of strategies, in which agent i ∈ [n]
uses strategy (λi, βi), is an equilibrium in the strategic game
induced, if no agent can increase her utility by unilater-
ally changing her strategy. In other words, the quantity
E[ui(x, y,mi)] is maximized with respect to x and y by set-
ting x = λi and y = βi for i ∈ [n].

3 Equilibrium Analysis
We are now ready to characterize equilibria. We remark that
the cases (a), (b), and (c) of Lemma 1 correspond to the in-
formal terms no correlation, positive correlation, and negative
correlation used in the introductory section.
Lemma 1 (equilibrium conditions). The strategy of agent i
at equilibrium is as follows:
(a) If |f ′i(0) ·Q(mi)| ≤ 1, then λi = 0 and βi can have any

value in [0, 1].

(b) If f ′i(0) · Q(mi) > 1, then λi is positive and such that
f ′i(λi) ·Q(mi) = 1 and βi = 1.

(c) If f ′i(0) ·Q(mi) < −1, then λi is positive and such that
f ′i(λi) ·Q(mi) = −1 and βi = 0.

Proof. First, observe that when agent i selects λi = 0, her
expected utility is,

E(ui(0, βi,mi)] = E
[
p

(
1 +mi

n

)]
− 1

2
Q(mi),

i.e., it is independent of βi. So, βi can take any value in [0, 1]
when λi = 0.

In case (b), we have f ′i(0) · Q(mi) > 0 which, by the
definition of the effort function fi, implies that (2fi(λi) −
1) · Q(mi) > 0 for λi > 0. By inspecting the dependence
of expected utility on βi at the RHS of Eq. (1), we get that
if agent i selects λi > 0, she must also select βi = 1 to
maximize her expected utility. Similarly, in case (c), we have
f ′i(0)·Q(mi) < 0 which implies that (2fi(λi)−1)·Q(mi) <
0 for λi > 0. In this case, if agent i selects λi > 0, she also
selects βi = 0 to maximize her expected utility.

So, in the following, it suffices to reason only about the
value of λi. Let

∆i(λi) =
∂E[ui(λi, βi,mi)]

∂λi
= −1 + (2βi − 1)f ′(λi) ·Q(mi) (2)

denote the derivative of the expected utility of agent i with
respect to λi. For (a), by the strict concavity/convexity of fi,
we have |f ′i(λi) ·Q(mi)| < 1 for λi > 0 and,

∆i(λi) = −1 + (2βi − 1)f ′i(λi) ·Q(mi)

≤ −1 + |2βi − 1| · |f ′i(λi) ·Q(mi)| < 0.

Hence, the expected utility of agent i strictly decreases with
λi > 0 and the best strategy for agent i is to set λi = 0.

Otherwise, in cases (b) and (c), the derivative ∆i(λi) has
strictly positive values for λi arbitrarily close to 0 (this fol-
lows by the facts that f is strictly convex/concave and con-
tinuously differentiable), while it is clearly negative as λi
approaches infinity (where the derivative of f approaches
0). Hence, the value of λi selected by agent i at equi-
librium is one that nullifies the RHS of (2), i.e., such that
f ′i(λi) · Q(mi) = 1 in case (b) and f ′i(λi) · Q(mi) = −1 in
case (c).

Using Lemma 1, we can now identify some properties
about the structure of equilibria.
Lemma 2. For any payment function, no effort by all agents
(i.e., λi = 0 for i ∈ [n]) is an equilibrium.

The proof of Lemma 2 is omitted. We will use the term non-
trivial for equilibria having at least one agent putting some
effort.

The next lemma reveals the challenge of adjudication in
our strategic environment. It essentially states that for every
equilibrium that yields probably correct adjudication, there
is an equilibrium that yields probably incorrect adjudication
with the same probability.
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Lemma 3. For any payment function, if the set of strate-
gies (λi, βi)i∈[n] is an equilibrium, so is the set of strategies
(λi, 1− βi)i∈[n].

We say that an equilibrium is simple if there exists an al-
ternative a ∈ {T, F} such that all agents cast a vote for alter-
native a with probability ≥ 1/2. Intuitively, this makes pre-
diction of the agents’ behaviour at equilibrium easy. Together
with Lemma 1, this implies that, in a simple equilibrium, an
agent putting no effort (i.e., λi = 0) can use any strategy βi.
For agents putting some effort, a well-informed agent uses
βi = 1 if a = T and βi = 0 if a = F and a misinformed
agent uses βi = 0 if a = T and βi = 1 if a = T .

Lemma 4 (simple equilibrium condition). When the payment
function p satisfies

p

(
2 +m

n

)
− p

(
1 +m

n

)
+ p

(
n−m
n

)
− p

(
n−m− 1

n

)
≥ 0, (3)

for every m ∈ {0, 1, . . . , n− 2}, all equilibria are simple.

It can be verified that the payment function

p(x) =

{
ω
xn , x ≥ 1/2

− `
xn , x < 1/2

with ω ≤ ` satisfies the condition of Lemma 4. We refer
to this function as the award/loss sharing payment function.
Essentially, the agents with the majority vote share an award
of ω while the ones in minority share a loss of `. Note that
for ω = `, the payment function is strictly budget balanced
unless all votes are unanimous. This is similar to the payment
function used in Kleros. A sufficient condition for simple
equilibria which is quite broad but does not include Kleros’
payments is the following.

Corollary 5. When the payment functions are monotone non-
decreasing, all equilibria are simple.

4 Selecting Payments for Correct
Adjudication

We now focus on the very simple scenario in which some
of the n agents are well-informed and have the same effort
function f and the rest are misinformed and have the effort
function 1 − f . Can we motivate an expected x-fraction of
them to vote for the ground truth?

Of course, we are interested in values of x that are higher
than 1/2. This goal is directly related to asking for a high
probability of correct adjudication. Indeed, as the agents
cast their votes independently, the realized number of T -
votes is sharply concentrated around their expectation and
thus the probability of incorrect adjudication is exponentially
small in terms of the number of agents n and the quantity
(x − 1/2)2. This can be proved formally by a simple appli-
cation of well-known concentration bounds, e.g., Hoeffding’s
inequality [Hoeffding, 1963].

So, our aim here is to define appropriate payment functions
so that a set of strategies leading to an expected x-fraction

of T -votes is an equilibrium. We will restrict our attention
to payments satisfying the condition of Lemma 4; then, we
know that all equilibria are simple. We will furthermore show
that all equilibria are symmetric, in the sense that all agents
cast a T -vote with the same probability. This means that there
are λ > 0 and β ∈ {0, 1} so that all well-informed agents use
strategy (λ, β) and all misinformed agents use the strategy
(λ, 1− β).
Lemma 6. Consider the scenario with n agents, among
which the well-informed agents use the same effort function
f and the misinformed agents use the effort function 1 − f .
If the payment function p satisfies the condition of Lemma 4,
then all equilibria are symmetric.

Lemma 6 implies that, for x > 1/2, an equilibrium with
an expected x-fraction of T -votes has each agent casting a T -
vote with probability f(λ) = x; the well-informed agents use
the strategy (λ, 1) and the misinformed agents use (λ, 0). As
agents vote independently, the random variables mi follow
the same binomial distribution Bin(n−1, x) with n−1 trials,
each having success probability x. Also, notice that the fact
that the effort function is strictly monotone implies that λ is
uniquely defined from x as λ = f−1(x).

We now aim to solve the optimization task of select-
ing a payment function p which satisfies the conditions of
Lemma 4, induces as equilibrium the strategy (λ, 1) for
well-informed agents and the strategy (λ, 0) for misinformed
agents, ensures non-negative expected utility for all agents
(individual rationality), and minimizes the expected amount
given to the agents as payment. As all agents cast a T -vote
with the same probability and the quantities mi are identi-
cally distributed for different is, it suffices to minimize the
expected payment

x · E
[
p

(
1 +mi

n

)]
+ (1− x) · E

[
p

(
n−mi

n

)]
(4)

of a single agent. By the definition of expected utility in equa-
tion (1), restricting this quantity to values at least as high
as f−1(x) gives the individual rationality constraints for all
agents. Furthermore, by Lemma 1, the equation,

f ′(f−1(x)) ·Q(mi) = 1, (5)

gives the equilibrium condition for both well-informed and
misinformed agents.

We can solve the optimization task above using linear pro-
gramming. Our LP has the payment parameters p(1/n),
p(2/n), . . . , p(1) as variables. The linear inequalities (3) for
m ∈ {0, 1, . . . , n − 2} form the first set of constraints, re-
stricting the search to payment functions satisfying the con-
ditions of Lemma 4. Crucially, observe that the quantities
E
[
p
(
1+mi

n

)]
and E

[
p
(
n−mi

n

)]
and, subsequently, Q(mi),

can be expressed as linear functions of the payment parame-
ters. Indeed, for t = 0, 1, . . . , n − 1, let z(t) = Pr[mi =
t] be the known probabilities of the binomial distribution
Bin(n− 1, x). Clearly,

E
[
p

(
1 +mi

n

)]
=

n−1∑
t=0

z(t) · p
(

1 + t

n

)
,
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Figure 1: Minimal payment functions that ensure the existence of a
simple equilibrium with an x-fraction of the agents casting a T -vote
on average, so that all agents have non-negative expected utility. The
scenario uses n = 100 and the effort function f(x) = 1 − e−x

2
.

The payment functions obtained by solving the linear program from
Theorem 7 for x ∈ {0.51, 0.6, 0.75, 0.99} are shown. The sharp
decline of the curve for x = 99% is due to the LP solver wanting
to keep the expected fraction of voters casting a T -vote at exactly
99%. We suspect that this is not a unique solution and a smoother
payment function would also be close to the minimal payments.

and,

E
[
p

(
n−mi

n

)]
=

n−1∑
t=0

z(t) · p
(
n− t
n

)
.

Thus, the objective function (4), the individual rationality
constraint, and the equilibrium condition constraint can be
expressed as linear functions of the LP variables. Overall, the
LP has n variables and n + 1 constraints (n inequalities and
one equality). We may summarize this discussion as follows.

Theorem 7. Consider the scenario with n agents, where the
well-informed ones have the same effort function f and the
misinformed ones have the same effort function 1− f . Given
x ∈ (1/2, 1), selecting the payment function that satisfies the
conditions of Lemma 4, induces an equilibrium in which all
agents have non-negative expected utility and an expected x-
fraction of agents casts a T -vote so that the expected amount
given to the agents as payment is minimized, can be done in
time polynomial in n using linear programming.

Our approach can be extended to include additional con-
straints (e.g., non-negativity or monotonicity of payments),
provided they can be expressed as linear constraints of the
payment parameters. Fig. 1 depicts four payment solu-
tions obtained by solving the above LP for n = 100 and
the effort function f(x) = 1 − e−x

2 , and values of x ∈
{0.51, 0.60, 0.75, 00.99}.

5 Computational Experiments
Our goal in this section is to justify that appropriate selection
of the payment parameters can lead to correct adjudication
in practice, even though Lemma 3 shows the co-existence of
both good and bad equilibria. The key property that favours
good equilibria more often is that, in practice, jurors are on
average closer to being well-informed than misinformed. For-
mally, this means that 1

n ·
∑

i∈[n] fi(x) > 1/2 for every x > 0.
Due to the lack of initial feedback, it is natural to assume

that agents start their interaction by putting some small effort
and convert their signal to a vote. We claim that this, together
with their tendency to being well-informed, is enough to lead
to correct adjudication despite strategic behaviour. We pro-
vide evidence for this claim through the following experiment
implementing the scenario we considered in Section 4.

We have n agents, a ρ-fraction of whom are well-informed
and the rest are misinformed. Agent i’s effort function is
fi(x) = 1 − e−x

2 if she is well-informed and fi(x) = e−x

2 if
she is misinformed. We consider the minimal payment func-
tions, defined as the solution of the linear program detailed
in the last section, parameterized by the fraction x of agents
intended to vote for the ground truth. A small subset of these
payment functions can be seen in Fig. 1. In addition, we con-
sider two different payment functions, both defined using a
parameter ω > 0:
• p(x) = ω if x ≥ 1/2 and p(x) = 0, otherwise.
• p(x) = ω

xn if x ≥ 1/2 and p(x) = − ω
xn , otherwise.

With the first payment function, each agent gets a payment of
ω if her vote is in the majority, while she gets no payment oth-
erwise. With the second payment, the agents in the majority
share an award of ω, while the agents in the minority share
a loss of ω. Notice that both payment functions satisfy the
conditions of Lemma 4. We will refer to them as threshold
and award/loss sharing payment functions, respectively.

In our experiments, we simulate the following dynamics of
strategic play. Initially, all agents put an effort of ε > 0 and
cast the signal they receive as vote. In subsequent rounds,
each agent best-responds. In particular, the structure of the
dynamics is as follows:
Round 0: Agent i puts an effort of ε and casts her signal as

vote.
Round j, for j = 1, 2, . . . , R: Agent i gets mi as feedback.

She decides her strategy βi ∈ {0, 1} and effort level
λi ≥ 0. She draws her signal, which is alternative T
with probability fi(λi) and alternative F with probabil-
ity 1 − fi(λi). If βi = 1, she casts her signal as vote;
otherwise, she casts the opposite of her signal as vote.

In each round after round 0, agents get the exact value of
mi as feedback (as opposed to its distribution)1 but maximize
their expected utility with respect to the components λi and
βi of their strategy. Hence, the only difference with what we
have seen in earlier sections is that the calculation of expected

1An alternative implementation would assume that mi takes the
number of T -votes in a randomly chosen previous round. The results
obtained in this way are qualitatively similar to those we present
here.
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utility considers the actual value of payments and not their
expectation, i.e.,

E[ui(λi, βi,mi)] = −λi + p

(
1 +mi

n

)
+ (βi(2fi(λi)− 1)− fi(λi)) ·Q(mi),

where

Q(mi) = p

(
1 +mi

n

)
− p

(
n−mi

n

)
.

By applying Lemma 1, we get the following characterization
of the best-response of agent i in round j > 0.
Corollary 8. The best response of agent i receiving feedback
mi is as follows:
(a) If |Q(mi)| ≤ 2, then λi = 0 and βi can take any value

in [0, 1].

(b) Otherwise, λi = ln |Q(mi)|
2 .

(b.1) If agent i is well-informed andQ(mi) > 2 or agent
i is misinformed and Q(mi) < −2, then βi = 1.

(b.2) If agent i is misinformed and Q(mi) > 2 or agent
i is well-informed and Q(mi) < −2, then βi = 0.

In our experiments, we consider an agent population of
fixed size n = 100, with the fraction of well-informed agents
ranging from 0 to 1. We simulate the dynamics described
above for R = 50 rounds and repeat each simulation 20
times. For each experiment, we measure the frequency with
which the majority of votes after the Rth round is for the
ground truth alternative T . We do so for both the thresh-
old and award/loss sharing payment functions, with param-
eter ω ∈ [0, 5] for the threshold payment functions and
ω ∈ [0, 100] for the award/loss sharing one. We also consider
the payment functions that arise as solutions to the linear pro-
grams considered in the previous section. In each experiment,
we play with the values of two parameters simultaneously.
We consider 100 values on each axis and plot the resulting
data using a heatmap, with each data point corresponding to
the average correctness observed during the experiment.

In the first experiment (Fig. 2.a), we consider the thresh-
old payment function and vary the size of the reward ω and
the fraction ρ of well-informed agents. We consider a reason-
ably high starting effort of ε = 1, corresponding to a prob-
ability of 0.816 of receiving the ground truth as signal. We
observe two distinct regions as we vary the size of the pay-
ment. Initially, when the payment is too small (i.e. ω ≤ 2.5),
the outcome of the adjudication is mostly random. When the
payment increases above the threshold, we observe a sharp
phase transition independent of ρ, where the correctness is
extremified by the payment in the following sense: when ρ is
sufficiently large (respectively, small), the mechanism recov-
ers the ground truth with high (respectively, low) probability.

In the second experiment (Fig. 2.b), we consider the
award/loss sharing payment function. The range of ω is
changed from [0, 5] to [0, 100]. All other parameters are kept
the same. We obtain similar results as for the threshold pay-
ment function, i.e. the outcome is mostly random below a
threshold above which we observe a sharp phase transition
where the outcome of the mechanism is extremified.

In the third experiment (Fig. 2.c), we observe the effect on
the correctness by the initial effort. We fix the threshold pay-
ment function with ω = 3 such that mechanism has a chance
to recover the ground truth, and let ε range from 0 to 5. We
observe that, when ε is small, the outcome of the mechanism
is mostly random, while the outcome quickly extremifies as
ε increases. This means the mechanism only works if the
agents initially put in sufficient effort. The results are simi-
lar for both the award/loss sharing payment function and the
minimal payment functions.

In the fourth experiment (Fig. 2.d), we consider the pay-
ment functions obtained from Theorem 7. A subset of the
payment functions we use are depicted in Fig. 1. Here, in-
stead of varying the size of the reward, we vary the parameter
x used as input to the linear program. This parameter rep-
resents the intended fraction of agents voting for the ground
truth at equilibrium. We let x range from 0.51 to 1 in incre-
ments of 0.01. Here, we observe that for x close to 0.5 and for
x close to 1, the mechanism is extremified, while for x close
to 0.75 and ρ close to 0.5 the outcome of the mechanism is
mostly random. This is rather unexpected since if a 0.75-
fraction of the agents vote for the ground truth, the majority
vote will be for the ground truth almost certainly. Indeed, we
observe that in these games when ρ ≈ 0.5, the agents exert ef-
fort close to zero, hence producing the random outcome. We
claim that despite this behavior, the ground truth is still an
equilibrium, it is just not a stable equilibrium and the parties
converge to the trivial equilibrium.

In a fifth experiment (Fig. 2.e), we consider a different
set of minimal payment functions, obtained by relaxing the
equality constraint Eq. (5) to a lower bound inequality. This
has the effect of no longer requiring an exact x-fraction of
the agents vote for the ground truth, but instead gives a
lower bound on their number. This slightly changes the pay-
ment functions, though they are qualitatively similar to those
shown in Fig. 1. Here, we again vary the fraction ρ of well-
informed agents on the y-axis, and the intended fraction x of
agents voting for the ground truth, ranging from x = 0.51
to x = 1 in increments of 0.01. However, we obtain differ-
ent and considerably better results than those in Fig. 2.d. In
particular, we obtain a good adjudication outcome for any x
when ρ > 0.75.

In our sixth and final experiment (Fig. 2.f), we aim to ex-
plain the enigmatic behaviour of the LP-computed payments
for x ≈ 0.75. We fix the payment function to be the min-
imal payment function with x = 0.75 and vary the number
of rounds as R = 1 . . . 100. We do not take into account
round 0 where all parties exert ε > 0 effort in the estima-
tion of the correctness of the outcome. We observe that the
outcome is extremified when the number of rounds is small
and decays as we increase the number of rounds. We can
explain this result by considering the payment function for
x = 0.75 in Fig. 1 whose distribution is mostly flat when the
outcome is close to being a tie. Here, the value of Q(mi) is
small so the agent will lower the effort they exert, making it
more likely that the outcome will be disputed. This creates a
pull towards the trivial equilibrium. By contrast, the curves
for x ∈ {0.51, 0.99} have a higher slope close to 0.5, which
makes this effect less pronounced. This explains why the ad-
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Figure 2: Heatmap of the correctness of the adjudication, plotted with the fraction of well-informed agents on the y-axis, with six varying
x-axes. In each plot, we run R = 50 rounds with a jury of size n = 100, using 1000 samples for each data point. The color of a data point
indicates the average measured correctness with the given parameters, using the viridis color scale displayed in the legend on the right. Yellow
corresponds to good recovery, while dark blue corresponds to poor recovery of the ground truth, while random outcomes are represented by
turquoise. The six x-axes are as follows: (a) Size of the reward for the threshold payment function, ranging from ω = 0 to ω = 5, with
ε = 1. (b) Size of the reward for the award/loss sharing payment function, ranging from ω = 0 to ω = 100, with ε = 1. (c) The initial effort
ε, ranging from ε = 0 to ε = 5, with the payment function being the threshold payment function with ω = 3. (d) The intended fraction x
of agents voting for the ground truth, ranging from x = 0.51 to x = 1, with the payment function defined by Theorem 7. (e) The intended
fraction x of agents voting for the ground truth, ranging from x = 0.51 to x = 1, with the payment functions obtained from Theorem 7 by
relaxing Eq. (5) to an inequality. (f) The number of rounds, ranging from R = 1 to R = 100, with the payment function being the minimal
payment function with x = 0.75 from Fig. 1.

judication outcome is mostly random for x ≈ 0.75. By de-
sign, the linear program finds minimal payments that ensure
there is an equilibrium where an x-fraction of the agents vote
in favor of the ground truth. However, it does not constrain
the solution to have the property that the good equilibrium is
stable. In some sense, the fact that the non-trivial equilbrium
is stable when x is far from 0.5 is happenstance and begs
the deeper question why the solutions to the linear program
are of the form we observe. Intuitively, it makes sense that
attaining a high accuracy requires large payments. A simi-
lar phenomenon seemingly holds for accuracies close to 0.51
which can be explained informally as follows. Combinatori-
ally, there are only a few ways to attain an accuracy of 0.51
which necessitates the use of large punishment and rewards
when the vote is close to being a tie. By contrast, for larger ρ,
there are more ways to attain an accuracy of 0.75 in the major-

ity, hence loosening the requirements on the payments. This
suggests that the case x = 0.75 does not provide positive re-
sults in practice because of instability of equilibria. It would
be interesting to explore whether it is possible to extend our
approach with additional natural constraints that ensure the
non-trivial equilibrium is also stable.

Our experiments suggest that several classes of payment
functions can be used to recover the ground truth with high
probability, provided the agents are well-informed on aver-
age. Clearly, there is much work yet to be done in design-
ing payment functions with desirable properties: while the
threshold function and the award/loss sharing function seem
to recover the ground truth reliably, it might be difficult in
practice to pinpoint the location of the phase transition, as this
requires estimating the effort functions used by actual jurors.
The same holds true for the minimal payment functions.
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