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Abstract
We study four NP-hard optimal seat arrangement
problems, which each have as input a set of n
agents, where each agent has cardinal preferences
over other agents, and an n-vertex undirected graph
(called seat graph). The task is to assign each agent
to a distinct vertex in the seat graph such that ei-
ther the sum of utilities or the minimum utility is
maximized, or it is envy-free or exchange-stable.
Aiming at identifying hard and easy cases, we ex-
tensively study the algorithmic complexity of the
four problems by looking into natural graph classes
for the seat graph (e.g., paths, cycles, stars, or
matchings), problem-specific parameters (e.g., the
number of non-isolated vertices in the seat graph
or the maximum number of agents towards whom
an agent has non-zero preferences), and preference
structures (e.g., non-negative or symmetric prefer-
ences). For strict preferences and seat graphs with
disjoint edges and isolated vertices, we correct an
error in the literature and show that finding an envy-
free arrangement remains NP-hard in this case.

1 Introduction
To designate seating for self-interested agents–seat arrange-
ment–is a fundamental and ubiquitous task in various situa-
tions, including seating for offices and events [Lewis and Car-
roll, 2016; Vangerven et al., 2022], one-sided matching [Gale
and Shapley, 1962; Alcalde, 1994], graphical resource allo-
cation with preferences between the agents [Massand and Si-
mon, 2019], project management and team sports [Gutiérrez
et al., 2016], and hedonic games with additive prefer-
ences [Bogomolnaia and Jackson, 2002; Aziz et al., 2013;
Woeginger, 2013]. The available seats, either physical or not,
can be modeled via an undirected graph, called seat graph,
where each vertex corresponds to a seat and two vertices are
connected through an edge if the corresponding seats are ad-
jacent. Simple graphs can already model many real-world
situations, such as paths for rows of seats in meetings, grids
or graphs consisting of disjoint edges for offices, or cliques
(complete subgraphs) for groups or teams in games and coali-
tion formation. Since agents have preferences over each
other, their utility for a seat may depend on who sits next to
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Figure 1: Left: Preference graph. The seat graph is a triangle with
one isolated vertex. We use red arcs in the preference graph to de-
note negative preferences and black for positive ones. Middle and
right: Two possible seat arrangements.

them. As such, not every seat arrangement is desired. From
a social welfare perspective, one may aim for an arrangement
that maximizes the total or the minimum utility of the agents.
The corresponding combinatorial problems are called MAX
WELFARE ARRANGEMENT (MWA) and MAXMIN UTIL-
ITY ARRANGEMENT (MUA), respectively. From a game-
theoretical perspective, however, one may aim for an arrange-
ment where no agent envies the seat of another agent or no
two agents would rather want to exchange their seats. The
corresponding decision problems are called ENVY-FREE AR-
RANGEMENT (EFA) and EXCHANGE-STABLE ARRANGE-
MENT (ESA), respectively. We provide an example with
four agents p1, p2, p3, p4 in Figure 1. The preferences of the
agents are depicted as an arc-weighted directed graph, called
preference graph. An arc from agent p to agent q with weight
w ̸= 0 means that p has a preference of w towards q. The
missing arcs represent 0 preferences. The utility of each agent
is additive, i.e., it is the sum of preferences of all the agents
seated next to him. In arrangement σ1 (see Figure 1), the util-
ities of p1, p2, p3, and p4 are −1, 3, 0, and 2, respectively.
Hence, the minimum utility is −1 and the sum of utilities,
i.e., welfare, of σ1 is 4. Arrangement σ1 maximizes the wel-
fare, but it is not exchange-stable since p1 and p3 envy each
other’s seat and form an exchange-blocking pair, i.e., they can
increase their utility by swapping their seats. Consequently,
it is not envy-free. Arrangement σ2 only maximizes the min-
imum utility, and is envy-free and exchange-stable.

In this work, we provide a refined complexity analysis of
the four seat arrangement problems MWA, MUA, EFA, and
ESA; the first three problems are known to be NP-hard even
for rather restricted cases, such as when the largest compo-
nent of the seat graph has constant size ℓ = 3 and the pref-
erences are symmetric and non-negative, while ESA is NP-
hard even when ℓ = 2 [Bodlaender et al., 2020a] and the pref-
erences are strict [Cechlárová and Manlove, 2005], i.e., no
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agent has the same preferences towards two distinct agents.
However, these hardness results do not necessarily transfer to
the case when ℓ > 3 as all four problems become trivial if the
seat graph is just a complete graph. In other words, the com-
plexity of seat arrangement may also depend on other aspects,
such as the seat graph classes and other parameters. Hence,
we systematically and extensively study the algorithmic com-
plexity through a combination of three aspects:
Aspect 1: Seat graph classes. We distinguish between path-,
cycle-, clique-, stars-, and matching-graphs which means that
the graphs induced by the non-isolated vertices consist of
a single path, a single cycle, a complete subgraph, disjoint
stars, and disjoint edges, respectively. Note that seat arrange-
ment can also be used to model coalition formation or task
management [Shehory and Kraus, 1998], so the connectivity
between the seats can be more sophisticated than just sim-
ple paths and cycles. For instance, in task assignment, when
communication between agents must go through a central
point, a stars-graph may be needed. More concretely, in a
sensor drone network one may divide drones into groups to
save communication costs, and choose a center drone for each
group through which other drones talk to the outside. In coali-
tion formation, clique-graphs model the case where the task
is to form a large coalition, together with singleton agents.
Aspect 2: Parameters. We specifically look at two structural
parameters, namely the number k of non-isolated vertices in
the seat graph and the maximum number ∆+ of agents known
to an agent. Parameter k has computational motivation since
all four problems would be trivial if every seat is isolated.
Hence, k measures the distance from triviality. Moreover,
in many scenarios, such as task assignment, there may be a
limited number of tasks that should be worked on by more
than one agent, but also many single-agent tasks (i.e., iso-
lated vertices). Parameter ∆+ is motivated by the observa-
tion that each agent typically only knows a few other agents,
and thus the number of non-zero preferences of an agent is
bounded [Bachrach et al., 2013; Cseh et al., 2019b].
Aspect 3: Preference structures. We primarily focus on
two natural restrictions: non-negative preferences which oc-
cur when no agent has enemies and symmetric preferences
where each pair of agents has exactly the same preferences
over each other and which can model mutual acquaintances.

Our contributions. We provide a comprehensive complex-
ity picture (see Table 1) and summarize our key contributions
as follows:
(1) We obtain a number of fixed-parameter tractable (FPT)

algorithms for either k or (k,∆+), i.e., the correspond-
ing problems can be solved in time f(k) · |I|O(1) or
f(k + ∆+) · |I|O(1), where f is a computable function
solely depending on the argument, and |I| denotes the in-
put size. The FPT algorithms for k are for MWA and
MUA under simple seat graphs and are based on color-
coding coupled with book keeping of either the sum of
utilities or the minimum utility. The FPT algorithms for
(k,∆+) apply to all four problems, mostly without any
restrictions on the seat graphs. They are based on ran-
dom separation or kernelization.

(2) We also obtain a number of W[1]-hardness results, most-

ly wrt. k; these exclude any FPT algorithm for k in such
cases. For MUA and MWA, these remain so for clique-
graphs and symmetric preferences, while for EFA and
ESA, they hold for almost all considered seat graph
classes. For EFA and ESA, the proofs are based on a
novel all-or-nothing gadget (see Figure 2) which may be
of independent interest.

(3) We strengthen existing NP-hardness results by showing
that all four problems remain NP-hard even for con-
stant ∆+ and for severe restrictions on the seat graphs and
preference structures. This is done by cleverly tweaking
the preference graph with constant ∆+.

Summarizing, we show that for MUA and ESA, the com-
bined parameter (k,∆+) (aspect 1 alone) always gives rise to
an FPT algorithm, while for MWA and EFA, this is only
the case for symmetric preferences. Additionally, we cor-
rect an error by Bodlaender et al. [2020b] and show that EFA
remains NP-hard for matching-graphs and strict preferences
(see Theorem 10).

Paper outline. In Section 2, we introduce basic concepts
and the four central problems. In Sections 3 to 6, we dis-
cuss results for MWA, MUA, EFA, and ESA, respectively.
In all four sections, we first consider parameter k, then ∆+,
and finally the combination (k,∆+). We conclude in Sec-
tion 7. Due to space constraints, proofs for results or addi-
tional material marked with (∗) are deferred to the technical
report [Ceylan et al., 2023].

Related work. The solution concepts considered in the
four problems are well studied in economics, social choice,
and political sciences [Caragiannis et al., 2012; Shapley
and Roth, 2012; Aziz et al., 2013; Brandt et al., 2016].
Bodlaender et al. [2020a] initiated the study of the four
optimal seat arrangement problems (OSA) and observed
that MWA and MUA generalize the NP-hard SPANNING
SUBGRAPH ISOMORPHISM problem, while ESA general-
izes the NP-hard EXCHANGE-STABLE ROOMMATES prob-
lem [Cechlárová and Manlove, 2005]. Very recently, Chen
et al. [2021] prove that EXCHANGE-STABLE ROOMMATES
remains NP-hard even if each agent has positive preferences
over at most three agents. Derived from this, we show the
same holds for ESA under matching-graphs and with con-
stant ∆+. OSA has been getting more attention recently.
Tomić and Urošević [2021] provide heuristic approaches for
solving MWA where the seat graph consists of equal-sized
cliques. Vangerven et al. [2022] studied a related problem
for parliament seating but the objective is different from ours.

OSA generalizes multi-dimensional matchings [Cseh et
al., 2019a; Bredereck et al., 2020; Chen and Roy, 2022] and
hedonic games with fixed-sized coalitions [Bilò et al., 2022]
where the seat graph consists of equal-sized cliques and
cliques of fixed sizes, respectively. Bilò et al. [2022] con-
sider paths to exchange stability and MWA and strengthened
the complexity result by Bodlaender et al. [2020a] by show-
ing that MWA remains highly inapproximable even if the seat
graph consists of cliques of constant sizes. Massand and Si-
mon [2019] studied a generalization of OSA where the agents
additionally have non-negative valuations over the seats such
that the utility of an agent is the sum of his valuation of the
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MWA MUA EFA ESA
no res./ path/cycle/ no res./ path/cycle/ no res./clique/ matching no res./ path/cycle/ matching

Param. clique stars clique stars path/cycle/stars clique stars
k w1h♢ [T2] fpt [T1] w1h♢ [T6] fpt [T7] w1h♢ [T10] w1h♢[T10] w1h [T18] ?/?/w1h [T18] w1h [T18]
nonneg. w1h [T2] fpt [T1] fpt/P [P1] fpt [T7] w1h [T10] w1h [T10] ?/P [O3] ? – ? –
symm. w1h [T2] fpt [T1] w1h [T6] fpt [T7] w1h [T11] P [♣] ? – fpt [♣,T1] P [♣]
∆+ nph [T4] nph[T4] nph [T8] nph[T8] nph [T12] nph [T12] nph [T19] nph [T19] nph [T19]
nonneg. nph [T4] nph[T4] nph/P [T8,P1] nph[T8] nph [T12] nph [T12] ?/P [O3] ? – ? –
symm. nph [T4] nph[T4] nph [T8] nph[T8] nph [T13] P [♣] ? – ? – P [♣]
k +∆+ w1h [T3] fpt [T1] fpt [T9] fpt [T7] w1h [T16,17] fpt [T15] fpt [T20] fpt [T20] fpt [T20]
nonneg. w1h [T3] fpt [T1] fpt [T9] fpt [T7] fpt [T14] fpt [T14] fpt [T20] fpt [T20] fpt [T20]
symm. fpt [T5] fpt [T1] fpt [T9] fpt [T7] fpt [T14] P [♣] fpt [T20] fpt [T20] fpt [T20]

Table 1: All W[1]-hard (w1h) problems are also in XP. The W[1]-hardness and NP-hardness (nph) results for non-negative preferences
always hold for binary preferences (except MUA on a path-graph wrt. ∆+). “♢” means that hardness holds even for strict preferences. We
omit the case with matching-graphs for MWA and MUA since it is polynomial-time solvable [Bodlaender et al., 2020a] [♣].

assigned seat and his preferences over the agents in his neigh-
borhood. Their results imply that EFA remains NP-hard even
if the preference graph is a cycle with binary preferences, and
that for symmetric preferences, an exchange-stable arrange-
ment can always be obtained from a given arrangement via a
finite number of swaps.

OSA can also be conceptualized as hedonic games with
overlapping coalitions similar to Schelling games which has
been shown to be NP-hard for simple models [Agarwal et
al., 2021; Kreisel et al., 2022]. However, in Schelling games
the preferences are more restricted. We refer to the work of
Bodlaender et al. [2020a] for additional references.

2 Preliminaries
Given an integer t, let [t] denote the set {1, 2, . . . , t}. We
recall the following graph theoretic concepts. Given an undi-
rected graph G and a vertex v ∈ V (G), we use NG(v) to de-
note v’s open neighborhood {w ∈ V (G) | {v, w} ∈ E(G)}.
Given a directed graph F , and a vertex v ∈ V (F ) we
use N−

F (v) and N+
F (v) to denote the set of in- and out-

neighbors of v, respectively.
A seat arrangement instance consists of a set P of n

agents, where each agent p ∈ P has cardinal preferences
over the other agents, specified by the satisfaction function
satp : P \{p} → R for all p ∈ P , and an undirected graph G,
called seat graph, where the number of vertices is the same as
the number of agents, i.e., |V (G)| = n. We derive a weighted
directed graph F = (P,A, (satp)p∈P ) from satp, called pref-
erence graph, where the vertex set is the set P of agents and A
denotes the set of arcs such that an arc from agent p to q
means that satp(q) ̸= 0. Note that, intuitively, negative (resp.
positive) preference values model the degree of dislike (like-
ness) while zero values model indifference. The goal of op-
timal seat arrangement is to find a bijection σ : P → V (G),
called arrangement, which is optimal or fair. A partial ar-
rangement is an injective function σ which assigns only a sub-
set of the agents to the vertices of G, i.e., σ−1(V (G)) ⊂ P .

We look into four different criteria, namely utilitarian
and egalitarian welfares, envy-freeness, and exchange stabil-
ity. Given an arrangement σ, we define the utility of each

agent p ∈ P as the sum of the satisfactions of p towards his
neighbors in σ, i.e., utilp(σ) :=

∑
v∈NG(σ(p)) satp(σ

−1(v)).
By convention, the utilitarian (resp. egalitarian) welfare
of σ is the sum (resp. minimum) of utilities of the
agents towards σ, denoted as wel(σ) :=

∑
p utilp(σ) (resp.

egal(σ) := minp(utilp(σ))). Additionally, for two agents
p, q ∈ P we define the swap-arrangement σ[p↔q] as the
arrangement where just p and q switch their seats in σ,
i.e., σ[p↔q](p) := σ(q), σ[p↔q](q) := σ(p), and all other
agents x ∈ P \{p, q} remain in their seats, i.e., σ[p↔q](x) :=
σ(x). An arrangement σ is called envy-free (resp. exchange-
stable) if no agent envies any other agent (resp. no two agents
envy each other). An agent p ∈ P envies another agent
q ∈ P \ {p} (in σ) if p finds the seat of q more attractive than
his own, i.e., utilp(σ) < utilp(σ[p↔q]), and he is envy-free
if he does not envy any other agents. By definition, envy-
freeness implies exchange stability.

Based on the different criteria, we define four computa-
tional/decision problems.

MWA (resp. MUA)
Input: An instance (P, (satp)p∈P , G).
Task: Find an arrangement σ : P → V (G) with

maximum wel(σ) (resp. egal(σ)).

EFA (resp. ESA)
Input: An instance (P, (satp)p∈P , G).
Question:Is there an arrangement σ : P → V (G)

which is envy-free (resp. exchange-stable)?

In the decision variant of MWA (resp. MUA), the input ad-
ditionally has an integer L, and the question is whether there
is an arrangement σ with wel(σ) ≥ L (resp. egal(σ) ≥ L). It
is straightforward that EFA, ESA, and the decision variants
of MWA and MUA belong to NP.

Let I = (P, (satp)p∈P , G) be an instance of our problems.
We say that the preferences of the agents are
– binary if satp(q) ∈ {0, 1} holds for each {p, q} ⊆ P ,
– non-negative if satp(q) ≥ 0 holds for each {p, q} ⊆ P ,
– positive if satp(q) > 0 holds for each {p, q} ⊆ P ,
– symmetric if satp(q)= satq(p) holds for each {p, q} ⊆ P ,
– strict if satp(q1) ̸= satp(q2) holds for each three distinct
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agents p, q1, q2 ∈ P .
We say that the seat graph is a
– clique-graph if it consists of a complete subgraph (aka.

clique) and isolated vertices,
– stars-graph if each connected component is a star,
– path- (resp. cycle-) graph if it consists of a path (resp.

cycle) and isolated vertices,
– matching-graph if it consists of disjoint edges and isolated

vertices.
We use k (resp. ∆+) to denote the number of non-isolated ver-
tices in the seat graph (resp. maximum out-degree of the ver-
tices in the preference graph). Briefly put, k bounds the num-
ber of relevant seats that have neighbors, while ∆+ bounds
the maximum number of agents that an agent likes or dis-
likes. We observe that all four problems are polynomial-time
solvable for a constant number of non-isolated vertices by a
simple brute-forcing algorithm.

Observation 1 (∗). MWA, MUA, EFA, and ESA are in XP
wrt. k.

We assume basic knowledge of parameterized complexity
such as fixed-parameter tractability (FPT), W[1]-hardness,
and XP, and refer to the following textbooks [Niedermeier,
2006; Cygan et al., 2015] for more details.

3 MAX WELFARE ARRANGEMENT

In this section we study the (parameterized) complexity of
finding an arrangement that maximizes the welfare. Using
color-coding coupled with a book keeping for welfare, we
get fixed-parameter tractability (FPT) for simple graphs:

Theorem 1 (∗). MWA is FPT wrt. k if the seat graph is a
path-, cycle-, or stars-graph.

However, it is W[1]-hard even for restricted preferences
and when the seat graph is a clique-graph since the problem
generalizes the CLIQUE problem which is W[1]-hard wrt. the
solution size [Downey and Fellows, 2013].

Theorem 2 (∗). For clique-graphs, MWA is W[1]-hard
wrt. k, even for strict, or binary and symmetric preferences.

Surprisingly, even if each agent only knows two others, FPT
algorithms (wrt. k) for MWA are unlikely:

Theorem 3. For clique graphs, MWA remains W[1]-hard
wrt. k, even for binary preferences with ∆+ = 2.

Proof. We prove this via a parameterized reduction from
CLIQUE, parameterized by the solution size h [Downey and
Fellows, 2013]. For each vertex vi ∈ V (Ĝ) (resp. edge
eℓ ∈ E(Ĝ)), we create one vertex-agent pi (resp. edge-
agent qℓ), and set satqℓ(pi) = 1 if vi ∈ eℓ. The non-
mentioned preferences are set to zero. The seat graph G con-
sists of a clique of size k := h+

(
h
2

)
and |V (Ĝ)|+ |E(Ĝ)|−k

isolated vertices. Clearly, the preferences are binary. Since
only edge-agents have positive preferences (towards incident
vertices), we infer ∆+ = 2, as desired.

We show that Ĝ admits a size-h clique if and only if there
is an arrangement σ with wel(σ) ≥ h(h − 1). The forward
direction is straightforward by assigning the corresponding

vertex- and edge-agents contained in the h-clique to the non-
isolated vertices in the clique-graph.

For the backward direction, we first observe that at
least

(
h
2

)
edge-agents are non-isolated; otherwise this would

imply that wel(σ) < h(h− 1). If
(
h
2

)
+ x edge-agents are as-

signed to non-isolated vertices with x ≥ 1, then we observe:
(i) Each non-isolated edge-agent qℓ has a positive utility. Oth-
erwise, we can exchange qℓ with a vertex-agent which is inci-
dent to some other non-isolated edge-agent. This would only
increase the welfare. (ii) There are h − x vertex-agents as-
signed to non-isolated vertices. Hence, there can be at most(
h−x
2

)
edge-agents with both endpoints in the clique. Be-

cause of
(
h
2

)
+ x −

(
h−x
2

)
≥ 1 + x ≥ 2, we can always

find two edge-agents with only one endpoint in the clique. If
we exchange one edge-agent with a missing vertex-agent of
the other edges, then the welfare does not decrease. There-
fore, if there is an arrangement σ with wel(σ) ≥ h(h−1), we
can apply these exchange-arguments until there is no more
such pair. This implies that exactly

(
h
2

)
edge-agents (and ex-

actly h vertex-agents) are non-isolated. Moreover, each of
these edge-agents has a utility of two, since otherwise we
cannot reach the desired welfare. As there are h non-isolated
vertex-agents which are incident to

(
h
2

)
edge-agents, it fol-

lows that the corresponding h vertices in Ĝ form a clique.

Except for matching-graphs, MWA remains intractable for
constant ∆+ since it can be rephrased as finding a densest sub-
graph in the preference graph which remains hard for constant
degree; this is also independently noted by Biló et al. [2022]:
Theorem 4 (∗). For binary and symmetric preferences,
MWA remains NP-hard for constant ∆+ and for each con-
sidered seat graph class except the matching-graphs.

The previous hardness results motivate us to study the com-
bined parameters (k,∆+) for symmetric preferences. We
conclude the section with another color-coding based algo-
rithm which is more involved than the one for Theorem 1
since it works for arbitrary seat graphs.
Theorem 5 (∗). For symmetric preferences, MWA is FPT
wrt. k +∆+.

4 MAXMIN UTILITY ARRANGEMENT
In this section, we focus on maximizing the minimum util-
ity. Under non-negative preferences, FPT algorithms (wrt. k)
exist since any non-trivial instance has at most k agents:
Proposition 1 (∗). For non-negative preferences, MUA is
FPT wrt. k, and becomes polynomial-time solvable if the seat
graph is a clique-graph.

The presence of negative preferences excludes any FPT
algorithm (wrt. k) for MUA since it generalizes CLIQUE:
Theorem 6 (∗). MUA is W[1]-hard wrt. k, even for a clique-
graph and for symmetric or strict preferences.

For simple seat graphs, we can again combine color-coding
with dynamic programming to obtain FPT algorithms for the
single parameter k:
Theorem 7 (∗). For stars-, path-, and cycle-graphs, MUA is
FPT wrt. k.
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Unfortunately, MUA cannot be solved in polynomial time
even if each agent knows a few other agents and the prefer-
ences are symmetric, unless P=NP.

Theorem 8 (∗). For symmetric preferences and for each of
the following restrictions, MUA remains NP-hard for con-
stant ∆+: (i) a clique-graph, (ii) a path-graph and non-
negative preferences, (iii) a cycle-graph and binary prefer-
ences, (iv) a stars-graph where each star has two leaves and
binary preferences.

MUA admits a polynomial-size problem kernel for the
combined parameters (k,∆+).

Theorem 9. MUA is FPT wrt. k +∆+.

Proof. The idea is to obtain a polynomial-sized problem ker-
nel, i.e., an equivalent instance of size (k+∆+)O(1), or solve
the problem in polynomial time. First, if the seat graph has no
isolated vertices, then |P | = k and we have a linear-sized ker-
nel. Otherwise, egal(σ) ≤ 0 holds for every arrangement σ.
Further, we observe that in every directed graph with maxi-
mum out-degree ∆+, there is always a vertex with in-degree
bounded by ∆+. That is, the sum of in- and out-degrees of
this vertex is at most 2∆+. Hence, we iteratively select an
agent p with minimum in-degree in the preference graph, put
him to our solution S, and delete all in- and out-neighbors
of p. If, after k steps, we can find a set S of k “independent”
agents (they do not have arcs towards each other), then we can
assign them arbitrarily to the non-isolated vertices. Since the
preference between each two agents in S is zero, the utility
of each agent in S is also zero. Hence, we found an arrange-
ment σ with egal(σ) = 0. If we could not find k independent
agents, then the instance has at most k(1+2∆+) agents since
in each step we deleted at most 1+2∆+ agents. It is straight-
forward that the approach above runs in polynomial time.

5 ENVY-FREE ARRANGEMENT
In this section, we consider envy-freeness. First, we observe
the following for non-negative preferences and we will use it
extensively in designing both algorithms and reductions.

Observation 2. Let p be an agent with non-negative prefer-
ences. Then, for each envy-free arrangement it holds that if p
is isolated, then every q with satp(q)>0 is isolated as well.

By Observation 2, deciding envy-freeness is easy for clique-
graphs when the preferences are additionally symmetric.

Proposition 2 (∗). For clique-graphs, and non-negative and
symmetric preferences, EFA is polynomial-time solvable.

By Observation 1, EFA is polynomial-time solvable for
constant k. In the next two theorems, we show that this result
cannot be improved to obtain FPT algorithms by providing
a parameterized reduction from either CLIQUE or INDEPEN-
DENT SET (wrt. the solution size h). We introduce a novel
all-or-nothing gadget (see Figure 2 for an example) to en-
force that only f(h) many copies of the all-or-nothing gad-
gets can be non-isolated, which correspond to a solution of
size h. In addition, Theorem 10 corrects an error by Bodlaen-
der et al. [2020b] and shows that EFA remains NP-hard for
matching-graphs and strict preferences. A crucial observation
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Figure 2: Preference graph for Theorem 11 for path- or cycle-graphs,
where eℓ = {vi, vj}. The vertex-agents sets {p1i , . . . , p

h(h−1)
i } and

{p1j , . . . , p
h(h−1)
j } are all-or-nothing gadgets, see Claim 11.1(ii).

in this setting is that not every non-isolated agent needs to be
matched with his most preferred agent.

Theorem 10 (∗). For each considered seat graph class, EFA
is W[1]-hard wrt. k even if the preferences are binary or strict.

Theorem 11 (∗). For clique-, stars-, path-, and cycle-graphs,
and for symmetric preferences, EFA is W[1]-hard wrt. k.

Proof sketch. We only show the case with path- and cycle-
graphs via a parameterized reduction from CLIQUE, param-
eterized by the solution size [Downey and Fellows, 2013].
Let (Ĝ, h) be an instance of CLIQUE. For each vi ∈ V (Ĝ),
create h(h − 1) vertex-agents p1i , . . . , p

h(h−1)
i . For each

eℓ ∈ E(Ĝ), create h4 + 1 edge-agents q0ℓ , q
1
ℓ , . . . , q

h4

ℓ .
Since the preferences will be symmetric, we only specify

one value for each pair of agents (see Figure 2 for the cor-
responding preference graph). For each (eℓ, vi) ∈ E(Ĝ) ×
V (Ĝ), we do the following: Set satpsh+z

i
(psh+z+1

i ) = z for
each (z, s) ∈ [h− 1]×{0, . . . , h− 2}, and if s ̸= h− 2, then
set satpsh+2

i
(p

(s+1)h+2
i ) = 1. For each z ∈ {0} ∪ [h4 − 1],

set satqzℓ (q
z+1
ℓ ) = 1 and satq0ℓ (q

2
ℓ ) = satq3ℓ (q

h4

ℓ ) = 1. For
each s ∈ {0} ∪[h− 2], set satq2ℓ (p

sh+2
i )=−1 if vi ∈ eℓ. The

non-mentioned preferences are set to zero. The seat graph G
consists of a path (resp. cycle) with k := h2(h−1)+h(h−1)

vertices and |V (Ĝ)|h(h− 1) + |E(Ĝ)|(h4 + 1)− k isolated
vertices.

It remains to show that Ĝ admits a size-h clique if and
only if I admits an envy-free arrangement. For the “only if”
part, let C be a size-h clique. For the path we begin assign-
ing at one of the endpoints; for the cycle we can begin at
any non-isolated vertex. For each edge eℓ = {vi, vj} ∈ C
and some (not yet used) z, z′ ∈ [h − 1], assign agents
pzhi , . . . , p

(z−1)h+1
i , q0ℓ , q

1
ℓ , p

(z′−1)h+1
j , . . . , pz

′h
j in this order

to the path (resp. cycle). Since each vertex vi ∈ C is incident
to exactly h− 1 edges in C, we can find such z, z′ ∈ [h− 1].
The remaining agents are assigned to isolated vertices. This
arrangement is envy-free because: (i) Every vertex-agent pzi
with vi ∈ C, z ∈ [h(h−1)] has his maximum possible utility.
(ii) Vertex-agents pzi with vi /∈ C, z ∈ [h(h − 1)] are envy-
free since there is no non-isolated agent towards which pzi has
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a positive preference. (iii) All edge-agents q0ℓ , q
1
ℓ with eℓ ∈ C

are envy-free since they have maximum possible utility one.
(iv) The remaining edge-agents assigned to isolated vertices
either have no non-isolated agent towards which they have
a positive preference, or the corresponding agents q0ℓ , q

1
ℓ are

assigned in such a way, that q2ℓ does not envy his neighbors.
Before we prove the “if” part, we observe the following.

Claim 11.1 (∗). Every envy-free arrangement σ satisfies:
(i) For each edge eℓ ∈ E(Ĝ), agents q2ℓ , . . . , q

h4

ℓ are al-
ways assigned to isolated vertices.

(ii) If a vertex-agent pzi with vi ∈ V (Ĝ), z ∈ [h(h − 1)]

is non-isolated, then all agents from {p1i , . . . , p
h(h−1)
i }

are non-isolated. Moreover, if such a set of agents is
non-isolated, then the seats of psh+z

i and psh+z+1
i for

s ∈ {0} ∪ [h− 2], z ∈ [h− 1] are adjacent.
(iii) If q0ℓ or q1ℓ is non-isolated for some eℓ ∈ E(Ĝ), then q0ℓ

and q1ℓ are non-isolated and their seats are adjacent.
(iv) If q0ℓ and q1ℓ are non-isolated for eℓ = {vi, vj} ∈ E(Ĝ),

then both q0ℓ and q1ℓ are adjacent in σ to vertex-agents
corresponding to vi or vj . In particular, q0ℓ and q1ℓ are
adjacent to psh+1

i or psh+1
j with s ∈ {0}∪[h−2], where

the next h seats on the path (resp. cycle) are assigned to
psh+1
i , . . . , p

(s+1)h
i or psh+1

j , . . . , p
(s+1)h
j .

By Claim 11.1(ii), at most h different groups of vertex-agents
can be assigned to the path (resp. cycle), i.e., non-isolated.
By our bound on k, at least 2

(
h
2

)
many edge-agents are non-

isolated. By Claim 11.1(iii), at least
(
h
2

)
many pairs of edge-

agents of the form {q0ℓ , q1ℓ} are non-isolated. Let E′ ⊆ E(Ĝ)
denote the set of edges that correspond to the non-isolated
edge-agents. By Claim 11.1(iv), all vertex-agents that are “in-
cident” to the edges in E′ must also be non-isolated. Since
only h different groups of vertex-agents can be non-isolated,
this corresponds to a clique of size h in Ĝ.

The next two theorems show that achieving envy-freeness
remains hard for bounded maximum out-degree and binary
(resp. symmetric) preferences. The proofs are similar to the
ones for Theorems 10 and 11.

Theorem 12 (∗). For each considered graph class, EFA re-
mains NP-hard for binary preferences with ∆+ = 3.

Theorem 13 (∗). EFA remains NP-hard even for a clique-,
path-, cycle-, or stars-graph and symmetric preferences with
constant ∆+.

Under non-negative or symmetric preferences, we obtain
an FPT algorithm for k + ∆+, which is based on random
separation and dynamic programming.

Theorem 14 (∗). For non-negative or symmetric preferences,
EFA is FPT wrt. k +∆+.

Proof sketch. We only consider the case with non-negative
preferences. Let I = (P, (satp)p∈P , G) be an EFA instance
with non-negative preferences. Then, no non-isolated agent
in an envy-free arrangement can have any in-arcs from iso-
lated agents by the contrapositive of Observation 2. This

means that each non-isolated agent has bounded in- and out-
degree. Hence, we can use random separation to separate
the non-isolated agents from their isolated neighbors. The
approach is as follows: Color every agent independently
with r or b, each with probability 1/2. We say that a col-
oring χ : P → {r, b} is successful if there exists an envy-free
arrangement σ such that

(i) χ(p) = r for each p ∈ W and
(ii) χ(p) = b for each p ∈ (P \W ) ∩N+

F (W ),
where W := {p ∈ P | δG(σ(p)) ≥ 1} denotes the set of non-
isolated agents in σ. Note that by the above reasoning, if
p ∈ W , then it holds N−

F (p) ⊆ W and by the first condition,
all agents in N−

F (p) are colored with r. Since the seat graph
has k non-isolated vertices and the out-degree of each agent
in the preference graph is bounded by ∆+, we infer that |W |+
|(P \W ) ∩ N+

F (W )| ≤ k(1 + ∆+). Hence, the probability
that a random coloring is successful is at least 2−k(1+∆+).

Let Pr be the subset of agents colored with r. We already
know for each weakly connected component C of Pr that the
agents in C are all assigned to either isolated or non-isolated
vertices (see Observation 2). Therefore, the size of each com-
ponent is bounded by k. It remains to decide which compo-
nent to assign to non-isolated vertices and how to assign them.

Let the vertices of the seat graph G be denoted by
{1, 2, . . . , k}. We design a simple algorithm using color-
coding as follows. We color the red agents Pr uniformly at
random with colors [k]. The k colors one-to-one correspond
to the k non-isolated seats in the seat graph. Let σ be a hy-
pothetical envy-free arrangement and χ′ : Pr → [k] a color-
ing. We say χ′ is good (wrt. σ) if the agent at the ith vertex
of G is colored i, i.e., χ′(σ−1(i)) = i, for each i ∈ [k].
Note that given a solution σ, the probability that the k non-
isolated agents are colored with pairwise distinct colors is at
least e−k [Cygan et al., 2015]. Since for each component all
agents are assigned to either non-isolated or to isolated ver-
tices, we can first check for each component, if each color
appears at most once. If there are two agents p1 and p2 with
χ′(p1) = χ′(p2), then this component will be assigned to
isolated vertices in a good coloring. Since there are O(n)
components, this can be done in time O(k2 · n).

For each remaining component, we check whether the
given arrangement is envy-free. In this regard, we ob-
serve that the utility of an agent only depends on the
agents inside the same component as all preferences be-
tween two components are zero. Hence, we compute for
each agent p with χ′(p) = i in a component C his
utility utilp(ρ) =

∑
q∈C\{p},χ′(q)=j,{i,j}∈E(G) satp(q). Sim-

ilarly, we can compute the utility of p in a swap-arrangement,
where p and the agent assigned to seat j ̸= i swap their seats
and determine whether p is envy-free. If not, we can assign
this component to isolated vertices. Since each component
has O(k) agents, this step can be done in time O(k2 · n).

Finally, we use dynamic programming (DP) to select
from the remaining envy-free components those whose colors
match the seats and sizes sum up to k. Let C1, C2, . . . , Cm

be the remaining weakly connected components. We define
a DP table where an entry T [S, i] is true if there is a partial
arrangement assigning the first i weakly connected compo-
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nents, where (i) no two non-isolated agents are colored with
the same color and (ii) each color in S is used once.

We start filling our table for i = 1 as follows:
T [S, 1] = true ⇔ |S| = 0 ∨ S =

⋃
p∈C1

{χ′(p)}.
Each component Ci is either non-isolated or isolated. There-
fore, the following recurrence holds:

T [S, i] = T [S, i− 1] ∨ T
[
S \

⋃
p∈Ci

{χ′(p)}, i− 1
]
.

Since S ⊆ [k], the entries of this table can be computed in
time 2k · nO(1). Summing up, the above algorithm runs in
time 2k ·nO(1). The probability of a successful and good col-
oring is at least 2−k(1+∆+) · e−k. Hence, after repeating this
algorithm 2k(1+∆+) · ek times we obtain a solution with high
probability. Finally, we can de-randomize the random sepa-
ration and color-coding approaches while maintaining fixed-
parameter tractability [Cygan et al., 2015].

For matching-graphs we also obtain fixed-parameter
tractability even for arbitrary preferences.
Theorem 15 (∗). For matching-graphs, EFA is FPT wrt.
k +∆+.

The same approach for matching-graphs does not hold for
other graphs as implied by the next two theorems. The proofs
are once again similar to the ones for Theorems 10 and 11.
Theorem 16 (∗). EFA is W[1]-hard wrt. k, even if ∆+ = 3
and the seat graph is a clique- or stars-graph.
Theorem 17 (∗). EFA is W[1]-hard wrt. k +∆+, even for a
path- or cycle-graph.

6 EXCHANGE-STABLE ARRANGEMENT
In this section we consider the last concept exchange stability.
We first show that an exchange-stable arrangement always ex-
ists for clique-graphs and non-negative preferences.
Observation 3. For clique-graphs and non-negative prefer-
ences, ESA is polynomial-time solvable.

Proof. With non-negative preferences, no agent assigned to
non-isolated vertices envies an isolated agent. Moreover,
each agent is indifferent towards the seats in the clique.
Hence, they will not form any exchange-blocking pair.

In general, the problem remains intractable, even for clique-
or matching-graphs. Particularly, it is unlikely that an FPT
algorithm wrt. k exists, implied by the following.
Theorem 18 (∗). ESA is W[1]-hard wrt. k, even for a clique-,
stars-, or matching-graph.

Proof sketch. We show the case with clique-graphs. We pro-
vide a parameterized reduction from INDEPENDENT SET pa-
rameterized by the solution size h [Downey and Fellows,
2013]. Given an instance (Ĝ, h) of INDEPENDENT SET, we
create for each vertex vi ∈ V (Ĝ) a vertex-agent pi, and two
special agents x1 and x2. For each two vi, vj ∈ V (Ĝ),
the preferences are defined as follows (see Figure 3 for the
corresponding preference graph): If {vi, vj} ∈ E(Ĝ), set
satpi

(pj) = satpj
(pi) = −1. Finally, set satpi

(x2) = h,
satx1

(x2) = −h, satx2
(x1) = h, satx1

(pi) = 1, and

x1 x2

p1 pn̂

. . . . . .
Ĝ

1
−1

h

1
−1 h

−h
h

−1 if adjacent, 0 otherwise

Figure 3: Preference graph for Theorem 18 for clique-graphs.

satx2
(pi) = −1. The non-mentioned preferences are zero.

The seat graph G consists of a clique of size k := h + 1 and
|V (Ĝ)|+ 2− k isolated vertices.

It remains to show that Ĝ admits a size-h independent set
if and only if the constructed instance admits an exchange-
stable arrangement. First, we observe the following.

Claim 18.1. In every exchange-stable arrangement, agent x2

is assigned to an isolated vertex.

Proof of Claim 18.1. Towards a contradiction, suppose that σ
is exchange-stable where x2 is non-isolated. If x1 is isolated,
then utilx2(σ) = −h < 0 and utilx1(σ[x1↔x2]) = h > 0,
implying that {x1, x2} is an exchange-blocking pair, a con-
tradiction. If x1 is non-isolated, then utilx1

(σ) = −1. Since
there is a vertex-agent pi ∈ P assigned to an isolated vertex
and utilpi

(σ[pi↔x1]) > 0, agents x1 and pi form an exchange-
blocking pair, a contradiction. ⋄

Hence, at least h vertex-agents have to be assigned to the
non-isolated vertices in an exchange-stable arrangement. If
one of these non-isolated vertex-agents pi has negative utility,
then pi envies every isolated agent. Depending on whether x1

is assigned to an isolated vertex, agent pi forms an exchange-
blocking pair with x1 or with x2. Therefore, I admits an
exchange-stable arrangement if and only if every non-isolated
vertex-agent has non-negative utility. By Claim 18.1 this is
equivalent to each pair of non-isolated vertex-agents is non-
adjacent, i.e., Ĝ admits a size-h independent set.

Even for constant values of ∆+, ESA remains intractable
for each considered class of seat graphs.
Theorem 19 (∗). ESA is NP-complete for each considered
seat graph class and constant ∆+.

For the combined parameters (k,∆+), ESA becomes fixed-
parameter tractable using the same idea as Theorem 9.
Theorem 20 (∗). ESA is FPT wrt. k +∆+.

7 Conclusion
We obtained a complete complexity picture for MWA, MUA,
and EFA, and left some open questions for ESA (see Ta-
ble 1). Among these open questions, it would be interesting to
know whether the W[1]-hardness result for stars-graphs can
be extended to the case with path/cycle-graphs. Another re-
search direction would be to look for arrangements that max-
imize welfare and are also envy-free or exchange stable. In
particular, is it FPT wrt. k +∆+ to find an arrangement that
maximizes welfare among the exchange-stable arrangements
or maximize the minimum utility among the envy-free ar-
rangements?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2569



Acknowledgments
This work and Jiehua Chen have been funded by the Vi-
enna Science and Technology Fund (WWTF) [10.47379/
VRG18012].

References
[Agarwal et al., 2021] Aishwarya Agarwal, Edith Elkind,

Jiarui Gan, Ayumi Igarashi, Warut Suksompong, and
Alexandros A. Voudouris. Schelling games on graphs. Ar-
tificial Intelligence, 301:103576, 2021.
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David F. Manlove. The exchange-stable marriage prob-
lem. Discrete Applied Mathematics, 152(1-3):109–122,
2005.

[Ceylan et al., 2023] Esra Ceylan, Jiehua Chen, and San-
jukta Roy. Optimal seat arrangement: What are the hard
and easy cases? Technical report, arXiv:2305.10381v1
[cs.GT], 2023.

[Chen and Roy, 2022] Jiehua Chen and Sanjukta Roy. Multi-
dimensional stable roommates in 2-Dimensional Eu-
clidean space. In 30th Annual European Symposium on
Algorithms, volume 244 of Leibniz International Proceed-
ings in Informatics, pages 36:1–36:16, 2022.

[Chen et al., 2021] Jiehua Chen, Adrian Chmurovic, Fabian
Jogl, and Manuel Sorge. On (coalitional) exchange-stable
matching. In Algorithmic Game Theory: 14th Inter-
national Symposium, volume 12885 of Lecture Notes in
Computer Science, pages 205–220, 2021.
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[Cseh et al., 2019b] Ágnes Cseh, Robert W. Irving, and
David F. Manlove. The stable roommates problem with
short lists. Theory of Computing Systems, 63(1):128–149,
2019.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Łukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parame-
terized algorithms. Springer, 2015.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[Gale and Shapley, 1962] David Gale and Lloyd S. Shapley.
College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[Gutiérrez et al., 2016] Jimmy H. Gutiérrez, César A. As-
tudillo, Pablo Ballesteros-Pérez, Daniel Mora-Melià, and
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