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Abstract
Recently, some studies on the fair allocation of
indivisible goods notice a connection between a
purely combinatorial problem called the Rainbow
Cycle problem and a fairness notion known as
EFX: assuming that the rainbow cycle number for
parameter d (i.e. R(d)) is O(dβ logγ d), we can find
a (1 − ϵ)-EFX allocation with Oϵ(n

β
β+1 log

γ
β+1 n)

number of discarded goods. The best upper bound
on R(d) is improved in a series of works to O(d4),
O(d2+o(1)), and finally to O(d2). Also, via a sim-
ple observation, we have R(d) ∈ Ω(d) .
In this paper, we introduce another problem in ex-
tremal combinatorics. For a parameter ℓ, we de-
fine the rainbow path degree and denote it by H(ℓ).
We show that any lower bound on H(ℓ) yields
an upper bound on R(d). Next, we prove that
H(ℓ) ∈ Ω(ℓ2/ log ℓ) which yields an almost tight
upper bound of R(d) ∈ Ω(d log d). This in turn
proves the existence of (1−ϵ)-EFX allocation with
Oϵ(

√
n log n) number of discarded goods. In ad-

dition, for the special case of the Rainbow Cycle
problem that the edges in each part form a permuta-
tion, we improve the upper bound to R(d) ≤ 2d−4.
We leverage H(ℓ) to achieve this bound.
Our conjecture is that the exact value of H(ℓ) is
⌊ ℓ2

2 ⌋ − 1. We provide some experiments that sup-
port this conjecture. Assuming this conjecture is
correct, we have R(d) ∈ Θ(d).

1 Introduction
Fair allocation of indivisible goods has been an important
problem in economics and social choice theory [Aziz et al.,
2015; Brams and Taylor, 1996; Steinhaus, 1948; Dubins and
Spanier, 1961; Brams and Taylor, 1995; Kurokawa et al.,
2018; Ghodsi et al., 2018; Lipton et al., 2004; Etkin et al.,
2007; Halpern et al., 2020; Moulin, 2019; Procaccia, 2020;
Pratt and Zeckhauser, 1990; Budish and Cantillon, 2012;
Budish, 2011; Barman et al., 2018] with many applications
in the real world.1 In a fair allocation problem, we have

1See spliddit.org and www.fairoutcomes.com for example.

a set of n agents and a set of m indivisible goods, and
each agent has a valuation function that represents her util-
ity for receiving each subset of goods. The goal is to allo-
cate the goods to the agents fairly [Baklanov et al., 2021;
Brams et al., 2017; Amanatidis et al., 2017; Barman and Kr-
ishnamurthy, 2020; Garg et al., 2019; Garg and Taki, 2020;
Bouveret and Lemaı̂tre, 2016].

A critical challenge in a fair allocation problem is to spec-
ify a reasonable notion of fairness that is simultaneously ro-
bust and practical. For the classic version of the problem
that the resource is a single divisible good, a notion such as
envy-freeness2 perfectly satisfies these conditions: it is com-
monly accepted as a notion that represents fairness, and there
are strong guarantees for the existence of envy-free divisions
[Edward Su, 1999]. However, the applicability of this notion
decreases significantly when dealing with indivisible goods:
even for two agents and one good, envy-freeness can not
be guaranteed. In recent years, several relaxations of envy-
freeness have been introduced to adopt this notion to the in-
divisible setting. Among these notions, EFX is widely be-
lieved to be the most prominent [Caragiannis et al., 2019b;
Chaudhury et al., 2021a; Chaudhury et al., 2021b; Amana-
tidis et al., 2020; Berger et al., 2021; Chaudhury et al., 2020;
Plaut and Roughgarden, 2020].

Definition 1. An allocation is EFX (α-EFX), if for every
agents i and j, agent i does not envy (α-envy)3 agent j af-
ter removal of any good from the bundle of agent j.

See Figure 1 for examples of envy-free, EFX, and α-EFX
allocations. Recent studies suggest that one can obtain strong
guarantees on EFX by discarding a subset of goods [Chaud-
hury et al., 2021b; Caragiannis et al., 2019a]. In a pioneering
work, Chaudhury, Kavitha, Mehlhorn, and Sgouritsa [2021b]
show that it is possible to find an EFX allocation by dis-
carding at most n − 1 goods. Further investigations in this
direction reveal an intriguing connection between EFX and
a purely combinatorial problem called Rainbow Cycle prob-
lem4 [Chaudhury et al., 2021a]. For a multi-partite bidirected
graph, a rainbow cycle is a cycle that passes each part at most

2An allocation is envy-free if each agent prefers her share over
the other agents’ share.

3For α < 1, agent i α-envies agent j, if the value of i for his
bundle is less than α times his value for bundle of agent j.

4The problem is also known as the Fixed Point Cycle.
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Figure 1: In this figure, three different allocations of four goods
to two agents are shown. The valuation of A and B for a good
are shown respectively on the left and right sides of the good, and
the valuations are additive. The left allocation is envy-free since
vA(XA) = 2 + 3 = 5 > vA(XB) = 3 + 1 = 4 and vB(XB) =
4 + 1 = 5 > vB(XA) = 2 + 2 = 4. The allocation in the mid-
dle is EFX since vA(XA) = 6 ≥ maxx∈XB vA(XB \ {x}) = 0
and vB(XB) = 4 ≥ maxx∈XA vB(XA \ {x}) = 4. Fi-
nally, the right allocation is 1/3-EFX, because vA(XA) = 2 ≥
(1/3)maxx∈XB vA(XB \ {x}) = (3 + 3)/3 = 2 and vB(XB) =
7 ≥ (1/3)maxx∈XA vB(XA \ {x}) = 0/3 = 0.

once. The Rainbow Cycle problem is then defined as follows.

Problem 1 (Rainbow Cycle). For a constant d, what is the
maximum value ℓ such that there exists an ℓ-partite bidirected
graph with no rainbow cycle and the following properties: (i)
each part contains at least d vertices, and, (ii) each vertex
receives an incoming edge from all other parts other than the
one containing it. We call such a value ℓ the rainbow cycle
number of d and denote it by R(d).

We refer to Section 2 for a more formal definition of this
problem. The connection between the Rainbow Cycle prob-
lem and EFX notion was first observed by Chaudhury et al.
[2021a]: any upper bound on R(d) yields a corresponding
upper bound on the number of discarded goods.

Theorem 1 (Proved in [Chaudhury et al., 2021a]). For any
constant ε ∈ (0, 1/2], if there exists constants β, γ such that
R(d) ∈ O(dβ logγ d), then we can find a (1 − ε)-EFX allo-
cation with Oϵ(n

β
β+1 log

γ
β+1 n) number of discarded goods.

The first upper bound on R(d) was also proposed by
Chaudhury et al. [2021a]. They proved that R(d) ∈ O(d4)

which bounds the number of unallocated goods by Oϵ(n
4
5 ).

Recently, in two parallel studies [Berendsohn et al., 2022;
Akrami et al., 2022], the bound on R(d) is improved to
O(d2+o(1)) and O(d2), yielding an upper bound of Oϵ(n

2
3 )

on the number of unallocated goods. Note that a trivial lower
bound on R(d) is Ω(d). 5 Therefore, previous results leave
a gap of [Ω(d), O(d2)] between the best upper bound and
the best lower bound. There is a plausible conjecture that
R(d) ∈ O(d).

In this paper, we almost close this gap by showing that
R(d) ∈ O(d log d). To obtain this bound, we introduce an-
other invariant called rainbow path degree which might be of
independent interest. We show that any lower bound on this
invariant implies an upper bound on R(d). Next, we improve
the lower bound on R(d) by providing an upper bound on the
rainbow path degree.

5See [Chaudhury et al., 2021a] for a matching example.
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Figure 2: In this figure, path 1 → 5 → 4 is a rainbow path, and if
we add edge 4 → 1 to the end of the path, we have a rainbow cycle.
On the other hand, path 2 → 3 → 6 → 4 and cycle 2 → 3 → 6 →
4 → 2 are not rainbow path and rainbow cycle respectively as they
go through part 2 twice.

Before ending this section, we mention that apart from
EFX and fair allocation, bounding the rainbow cycles num-
ber itself is an interesting extremal problem. Recently,
Berendsohn, Boyadzhiyska, and Kozma [2022] established
a connection between two combinatorial problems: Per-
mutation Rainbow Cycle problem which is a special case
of Rainbow Cycle problem, and Zero-sum Cycle problem
[Alon and Krivelevich, 2021; Mészáros and Steiner, 2021;
Alon and Caro, 1993; Alon and Dubiner, 1993; Alon and
Linial, 1989; Bialostocki, 1993; Caro, 1996; Schrijver and
Seymour, 1991], which is a problem in zero-sum extremal
combinatorics. Here we also give an improved upper bound
on the permutation rainbow cycle number. We refer to Sec-
tion 3 for more details on our results and techniques.

A short note on a parallel result. We note that parallel and
concurrent to this work, Akrami et al. [2022] also updated
their results on arXiv. In the updated version, their upper
bound on R(d) is improved from O(d2) to O(d log d) via a
probabilistic argument. We emphasis that these two studies
are parallel and independent.

2 Preliminaries
In this paper, our focus is on multi-partite bidirected graphs.
For an ℓ-partite bidirected graph G, we denote its parts by
V1, V2, . . . , Vℓ. Also, for a subset W ⊆ {V1, V2, . . . , Vℓ} we
define G[W ] to be the induced subgraph of G that only in-
cludes vertices that belong to the parts in W . Thus, G[W ]
has |W | parts. A path in graph G is called rainbow if it passes
through each part at most once. The same definition carries
over to cycles. See Figure 2 for an example.

For integers ℓ, d ≥ 0, we define Φℓ,d to be the set of all
multi-partite bidirected graphs G with the following proper-
ties:

• G has exactly ℓ parts,

• each part of G has at least 1 and at most d vertices,

• each vertex of G has exactly one incoming edge from
every other part,

• G admits no rainbow cycle.

In Figure 3, we show an example of a graph in Φℓ,d. We
also define Φ∗,d and Φℓ,∗ as unions of Φℓ,d over all ℓ and d
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Figure 3: The graph shown in this figure is in Φ3,4: it contains ex-
actly 3 parts, each part has at most 4 vertices, and one can check
that two other conditions of Φ3,4 hold as well. Additionally, by the
definition, this graph also belongs to Φ3,∗ and Φ∗,4.

respectively, that is,

Φ∗,d =
⋃
ℓ≥0

Φℓ,d and Φℓ,∗ =
⋃
d≥0

Φℓ,d.

Also, we define R(d) as the largest ℓ such that an ℓ-partite
graph exists in Φ∗,d, i.e.,

R(d) = max
ℓ

s.t. Φℓ,d ̸= ∅.

Our goal is to give an upper bound on R(d) for every d. To
this aim, we introduce another property. Let G be a multi-
partite graph. For every vertex v ∈ G, we define fG(v) as
the number of vertices in G that have a rainbow path to v
except v itself. Given fG(v), for every constant ℓ, we define
the rainbow path degree of ℓ, denoted by H(ℓ) as follows:

H(ℓ) = min
G∈Φℓ,∗

min
v∈G

fG(v).

In other words, H(ℓ) is the maximum possible value that we
are guaranteed that for an ℓ-partite graph G ∈ Φℓ,∗, for every
vertex v ∈ G there are at least H(ℓ) different vertices with a
rainbow path to v. For brevity, we call H(ℓ) the rainbow path
degree of ℓ.

In order to prove an upper bound on R(d), we first prove a
lower bound on H(ℓ). Interestingly, though the definition of
H(ℓ) does not depend on d, our lower bound on H(ℓ) results
in an almost tight upper bound on R(d).

In the last part of this section, we mention Stirling’s for-
mula for approximating factorials. For every n > 1, we have:

√
2πn(

n

e
)ne

1
12n+1 ≤ n! ≤

√
2πn(

n

e
)ne

1
12n . (1)

In the next section, we briefly review our results and tech-
niques.

3 Our Results and Techniques
The main result of this paper is an almost tight upper bound
on the rainbow cycle number by showing that R(d) ∈ Õ(d).
Our techniques are structurally different from previous meth-
ods. Indeed, a primary application of our techniques provides

a simpler proof for R(d) ∈ O(d2). Using a more in-depth
analysis, we improve this bound to O(d log d). To show this,
we prove a lower bound for the rainbow path degree and show
that H(ℓ) ∈ Ω(ℓ2/ log ℓ). This in turn implies that an EFX al-
location exists that discards at most Oϵ(

√
n log n) goods.

For a better understanding of our techniques, let us
overview a simple proof for R(d) ∈ O(d2).6 We prove this
bound by showing that H(ℓ) ∈ Ω(ℓ

√
ℓ). Let G ∈ Φℓ+1,∗

be an ℓ + 1 partite graph with parts {V1, V2, . . . , Vℓ+1} and
let v be a vertex in Vℓ+1. By definition, we know that there
are at least H(ℓ + 1) vertices that have a rainbow path to v.
Denote the set of these vertices by C. Our goal is to pro-
vide a lower bound on |C|. Since the vertices in C belong
to parts V1, V2, . . . , Vℓ, there is a part that contributes at most
H(ℓ+1)/ℓ vertices to C. Without loss of generality, suppose
that this part is Vℓ. Therefore,

|Vℓ ∩ C| ≤ H(ℓ+ 1)/ℓ.

In other words, at most H(ℓ+ 1)/ℓ of the vertices in Vℓ have
a rainbow path to v. Now, consider the vertices that have an
outgoing edge to v. Since G ∈ Φℓ+1,∗, by definition, each
part has a vertex with an outgoing edge to v. For each part
Vi, we assume that vi is the vertex with an outgoing edge to
v. Also, note that for every 1 ≤ i ≤ ℓ − 1, vertex vi has an
incoming edge from part Vℓ. Since vi has an outgoing edge
to v, any vertex in Vℓ that has an outgoing edge to vi has a
rainbow path of length 2 to v and thus belongs to C. Since
|Vℓ ∩ C| ≤ |C|/ℓ, there exists a vertex u ∈ |Vℓ ∩ C| that has
outgoing edges to at least

(ℓ− 1)/(H(ℓ+ 1)/ℓ) ≃ ℓ2/H(ℓ+ 1)

vertices in {v1, v2, . . . , vℓ−1}. Denote these vertices by Ĉ

and suppose without loss of generality that vℓ−1 ∈ Ĉ. We
know that in G[V \{Vℓ−1, Vℓ+1}], the number of vertices that
have a rainbow path to u is at least H(ℓ − 1). These vertices
also have a rainbow path to v: consider their rainbow path
to u, then go to vℓ−1 and then to v. Also, these vertices do
not belong to Ĉ; otherwise, since u has outgoing edges to the
vertices in Ĉ, we have a rainbow cycle. Therefore,

H(ℓ+ 1) ≥ ℓ2/H(ℓ+ 1) + H(ℓ− 1). (2)

Using straightforward calculus one can show that Inequality
(2) implies H(ℓ+ 1) ∈ Ω(ℓ

√
ℓ).

A consequence of this lower bound is an upper bound on
R(d). To see why, assume for simplicity that H(ℓ + 1) is
exactly equal to ℓ

√
ℓ. We show Φd2+1,d is empty. To see why,

consider a vertex in Vd2+1 with a non-zero outgoing degree.
By definition of H(d2 + 1), the number of vertices with a
rainbow path to this vertex is at least d2

√
d2 = d3, which is

equal to the number of vertices in {V1, V2, . . . , Vd2}. Thus,
any outgoing edge from this vertex yields a rainbow cycle.

In Section 4, via a similar but more in-depth analysis, we
show that H(ℓ) ∈ Ω(ℓ2/ log ℓ). A consequence of this result
is the upper bound of O(d log d) on the rainbow cycle num-
ber, which leaves a gap of O(log d) factor between the upper

6We emphasize that in the interest of simplicity, our discussion
in this section is not completely accurate.
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bound and the lower bound for the rainbow cycle number.
Also, in Section 6, we show that H(ℓ) ∈ O(ℓ2) that leaves
a gap of O(log ℓ) factor between the upper bound and lower
bound for the rainbow path degree.

In Section 6, we represent our experimental results on find-
ing the exact value of H(ℓ). Our experiments suggest that for
small values of ℓ, we have H(ℓ) = ⌊ ℓ2

2 ⌋ − 1. Assuming that
this conjecture is correct for every ℓ, we have R(d) ∈ O(d).
As a future direction, one can think of improving the lower
bound on H(ℓ) to Ω(ℓ2).

Also, we consider a special case of the Rainbow Cy-
cle problem called the Permutation Rainbow Cycle problem,
where each vertex has exactly one outgoing edge to each
part. As we mentioned earlier, this problem has some inde-
pendent applications in extremal combinatorics. We improve
the upper bound on the permutation rainbow cycle number to
2d − 3. Next, we leverage the bounds we obtain on H(ℓ) for
small values of ℓ in Section 6 to improve the upper bound to
2d − 4. Furthermore, In Section 6, we consider the relation
between the rainbow cycle number and the rainbow path de-
gree in the permutation case. We show that our conjecture of
H(ℓ) = ⌊ ℓ2

2 ⌋− 1 implies the upper bound of 2d− 3 on Rp(d)
in the permutation case.

4 Upper Bound on the Rainbow Cycle
Number

We now present our results for the Rainbow Cycle problem.
This section is divided into three parts. In the first part, in
Lemma 1, we show that any lower bound on rainbow path
degree implies a corresponding upper bound on rainbow cy-
cle number. Next, we prove two lower bounds on H(ℓ).
As a warm up, we start by showing that H(ℓ) ∈ Ω(ℓ

√
ℓ).

Next, we present the main result of this section, that is,
H(ℓ) ∈ Ω(ℓ2/ log ℓ). This, combined with Lemma 1, yields
the upper bound of R(d) ∈ O(d log d).

Lemma 1 shows a simple connection between H(ℓ) and
R(d). The idea behind the proof of Lemma 1 is simple: the
rainbow path degree of a vertex cannot be more than the total
number of the vertices. 7

Lemma 1. For every β > 0,γ if H(ℓ) ∈ Ω(ℓ1+β logγ ℓ) then
R(d) ∈ O(d

1
β log−

γ
β d).

We use Lemma 1 to prove two upper bounds on R(d). First,
in Lemma 2, we show that H(ℓ) ∈ Ω(ℓ

√
ℓ), which implies

R(d) ∈ O(d2).

Lemma 2. For every ℓ ≥ 1, we have H(ℓ+ 1) ≥ ℓ
√
ℓ/6.

Proof. In order to prove Lemma 2, we use induction on ℓ.
For ℓ = 1, 2 we have:

ℓ
√
ℓ

6
≤ 2

√
2

6
< 1 ≤ H(ℓ+ 1).

7In the interest of space, some of the proofs are deffered to the
appendix.

Now, suppose that the statement holds for every ℓ′ < ℓ.
Our goal is to prove the claim for ℓ. As a contradiction, sup-
pose

H(ℓ+ 1) < ℓ
√
ℓ/6. (3)

This means that there exists a graph G ∈ Φℓ+1,∗ and a vertex
v ∈ G, such that if we define C as the set of the vertices in G
with a rainbow path to v, we have

|C| < ℓ
√
ℓ/6. (4)

Suppose that {V1, V2, . . . , Vℓ+1} is the set of parts in G and
suppose without loss of generality that v ∈ Vℓ+1.

Claim 4.1. Fix a vertex u, and define P as the set of all rain-
bow paths with length at most 2 from u to v. Also, let Ĉ be the
set of all different vertices that have an incoming edge from u

and belong to a path in P . We have |Ĉ| ≤ 2
√
ℓ/3.

By Inequality (4), we know |C| < ℓ
√
ℓ/6. The vertices in

C belong to parts V1, V2, . . . , Vℓ. Therefore, at least one of
these parts contributes less than

√
ℓ/6 vertices to C. Suppose

without loss of generality that Vℓ is one of such parts, i.e.,
|Vℓ ∩ C| <

√
ℓ/6. Since G ∈ Φℓ+1,∗, each part other than

Vℓ+1 has a vertex with an outgoing edge to v. For each part
Vi (i ≤ ℓ − 1), we denote this vertex by vi. Also, note that
each vertex vi has an incoming edge from Vℓ. Since vi has an
outgoing edge to v, any vertex in Vℓ that has an outgoing edge
to vi has a rainbow path of length 2 to v and thus belongs to
C. Hence, at least one of the vertices in Vℓ ∩ C has outgoing
edges to at least

ℓ− 1√
ℓ/6

=
6(ℓ− 1)√

ℓ
(5)

of the vertices in {v1, v2, . . . , vℓ−1}. On the other hand, by
Claim 4.1, we know that each vertex in Vℓ has at most 2

√
ℓ/3

outgoing edges to {v1, v2, . . . , vℓ−1}. Thus, we have

6(ℓ− 1)√
ℓ

≤ 2
√
ℓ

3
,

which means

18(ℓ− 1) ≤ 2ℓ,

that is, ℓ ≤ 16/18. But this contradicts the fact that ℓ >
2.

Corollary 1 (of Lemma 2). By choosing β = 0.5 and γ = 0
in Lemma 1, we have R(d) ∈ O(d2).

Now, we are ready to prove our main result. In Theorem 1,
we show that H(ℓ + 1) ∈ Ω(ℓ2/ log ℓ). The structure of the
proof of Theorem 1 is similar to the proof of Lemma 2. The
difference is that here we generalize Claim 4.1 to consider
paths with length more than 2.

Theorem 1. For every ℓ ≥ 3, we have H(ℓ+1) ≥ ℓ2/20 ln ℓ.

Proof. We use induction on ℓ. For ℓ = 3, 4 we have:

ℓ2

20 ln ℓ
< 1 ≤ ℓ ≤ H(ℓ+ 1).
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Now, suppose that for some ℓ ≥ 5 we know that the statement
of Theorem 1 holds for every 3 ≤ ℓ′ < ℓ and our goal is to
prove the claim for ℓ. As a contradiction, suppose

H(ℓ+ 1) <
ℓ2

20 ln ℓ
. (6)

This means that there exists a graph G ∈ Φℓ+1,∗ and a vertex
v ∈ G, such that exactly H(ℓ + 1) of the vertices in G have
a rainbow path to v, which is less than ℓ2/20 ln ℓ. Suppose
that {V1, V2, . . . , Vℓ+1} is the set of parts in G and suppose
without loss of generality that v ∈ Vℓ+1. We start by proving
Claim 4.2. Claim 4.2 plays a similar role as Claim 4.1. The
main difference is that in Claim 4.2, we consider paths with
length more than 2.

Claim 4.2. Fix a vertex u and an integer k ≤ ℓ − 3, and
define Pk as the set of all rainbow paths with length at most
k from u to v. Also, let Ĉ be the set of all different vertices
that have an incoming edge from u in the paths of Pk. Then,
|Ĉ| ≤ ℓk/4 ln ℓ.

Now, we use Claim 4.2 to prove Claim 4.3.

Claim 4.3. Fix an integer t ≤ ln ℓ. For every k ≤ t and
subset W of {V1, V2, . . . , Vℓ} with ℓ − t + k parts, at least
tk−1/(k− 1)! vertices of each part in W have rainbow paths
with lengths at most k to v in G[W ∪ {Vℓ+1}].

By the pigeonhole principle, there exists a part Vi that con-
tains at most H(ℓ+1)/ℓ vertices with a rainbow path to v. By
choosing k = t in Claim 4.3, we have:

H(ℓ+ 1)

ℓ
≥ tt−1

(t− 1)!

≥ tt−1

( t−1
e )t−1

√
2π(t− 1) · e

1
12(t−1)

Inequality (1)

≥ et−1

e
1

12t

√
2πt

=
et+1

e2+
1

12t

√
2πt

.

If we choose t = ⌊ln ℓ⌋, we have8:

et+1

e2+
1

12t

√
2πt

≥ ℓ

e2+
1

12t

√
2πt

t+ 1 ≥ ln ℓ

≥ ℓ

e2+
1
12

√
2π ln ℓ

1 ≤ t ≤ ln ℓ

≥ ℓ

21
√
ln ℓ

≥ ℓ

20 ln ℓ
ℓ ≥ 5,

which contradicts Inequality (6). This Completes the proof of
Theorem 1.

Corollary 2 (of Theorem 1). By choosing β = 1 and γ = 1
in Lemma 1, we have R(d) ∈ O(d log d).

8Since ⌊ln ℓ⌋ ≤ ln ℓ, the conditions of Claim 4.3 hold.

By Corollary 2, we have the upper bound of O(d log d)
on R(d). Using this upper bound in Theorem 1 we obtain a
new upper bound on the number of discarded goods in EFX
allocations.
Corollary 3. By choosing β = 1 and γ = 1 in Theorem 1,
For every constant ε ∈ (0, 1/2], we can find a (1 − ε)-EFX
allocation with Oϵ(

√
n log n) number of discarded goods.

5 Permutation Rainbow Cycle
In this section, we consider the Permutation Rainbow Cycle
problem. For an integer d > 0, define Πℓ,d, Π∗,d, and Πℓ,∗
respectively as subsets of Φℓ,d, Φ∗,d, and Φℓ,∗ consisting all
graphs G with the additional property that each vertex in G
has exactly one outgoing edge to every other part. Also, we
define Rp(d) as the largest k such that a k-partite graph exists
in Π∗,d, i.e.,

Rp(d) = max
G∈Π∗,d

#(G).

Our result in this section is an improved upper bound on
Rp(d) for every d ≥ 3. Our method slightly improves the
method of Akrami et al. [2022], wherein the authors prove
the upper bound of 2d−2 on Rp(d). Throughout this section,
we show that for d ≥ 4 we have Rp(d) ≤ 2d− 4. In order to
prove this bound, first in Theorem 2 we show that for d ≥ 3,
we have Rp(d) ≤ 2d− 3. In the proof of Theorem 2, we use
the idea of constructing a sequence with certain properties.
This idea has been previously used by Akrami et al. [2022]
to prove the upper bound of 2d − 2. Here, we strengthen the
assumptions on the sequence. Lemma 3 plays a key role in
route to proving our upper bound.

We next show how we can incorporate H(ℓ) in the proof to
improve the upper bound to 2d − 4. Later in Section 6, we
discuss the possibility of obtaining better upper bounds on
Rp(d) via a more effective incorporation of H(ℓ) in the proof.
While it might be possible to obtain 2d − c upper bound for
c > 4 with the same idea, we show that it is not possible to
obtain an upper bound in the form of d + c for a constant
c > 0 using the same method.
Theorem 2. Rp(d) ≤ 2d− 3 for d ≥ 3.

As a contradiction, suppose there is a graph G in Π∗,d con-
sisting of at least 2d − 2 parts, i.e., #(G) ≥ 2d − 2. We
denote by vi,j the j’th vertex in the i’th part of G.

The first important step in order to improve the previous
result is stated in Lemma 3. In this lemma, we show that for
every vertex v there is a vertex u with an outgoing edge to v,
such that no other vertex has outgoing edge to both v and u.
Lemma 3. For each vertex v, there exists some vertex u with
an outgoing edge to v such that for any vertex w with an
outgoing edge to v, w does not have an outgoing edge to u.

Consider vertex v1,1. We know that in every other part,
there exist a vertex with an outgoing edge to v1,1. Without
loss of generality, we assume that for every j, vertex vj,1 is
the vertex with an outgoing edge to v1,1.

Also, by Lemma 3, we know that there exists an index k
such that vk,1 has no incoming edge from any vk′,1 for k′ /∈
{1, k}. Again, without loss of generality, we suppose that
k = 2. Therefore, we have that for every i > 1, vertex vi,1

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2576



Figure 4: An illustration of the final setting of Lemma 4. Striped ver-
tices are σ-reachable and black vertices are σ-rightward-reachable.
Vertex z is σ-reachable but not σ-rightward-reachable because the
path from v1,1 uses the edge from u to z which is not rightward.

has an outgoing edge to v1,1 and for every i > 2, vi,1 does
not have an outgoing edge to v2,1. By definition, we know
that for every i ̸= 2, there exists a vertex in part Vi with an
outgoing edge to v2,1. Without loss of generality, we suppose
that for every i > 2, this vertex in part Vi is vi,2.

Definition 2. Consider a sequence of indices σ =
σ1, σ2, ..., σk, such that σ1 = 1. Given σ, we say a vertex
vσi,j is σ-reachable if there exists a rainbow path from v1,1
to vσi,j in G[{Vσ1 , Vσ2 , . . . , Vσk

}]. Moreover, we say an edge
in G[{Vσ1 , Vσ2 , . . . , Vσk

}] is σ-rightward if it is of the form
(vσj,k

, vσj′,k′ ) where j < j′. A vertex vσi,j is σ-rightward-
reachable if there exists a rainbow path from v1,1 to vσi,j via
σ-rightward edges.

As we mentioned before, it is sufficient to show if G con-
tains at least 2d−2 parts (and d ≥ 3), then we have a rainbow
cycle in G. We use induction to prove this claim. For the base
case d = 3, it has already shown in [Chaudhury et al., 2021a]
that Rp(3) = 3, which means Rp(3) ≤ 2 × 3 − 3. Now,
suppose that the claim holds for every d′ < d and our goal
is to prove the claim for d. As a contradiction, we suppose
that G does not admit any rainbow cycle. We start by proving
Lemma 4.

Lemma 4. There exists a sequence of form σ =
σ1, σ2, . . . , σ2d−3 such that for every 1 ≤ i ≤ 2d − 3, we
have σi ∈ [1, 2d− 2] and the following properties hold:

• σ1 = 1.

• For every 1 ≤ i ≤ 2d− 3, we have σi ̸= 2.

• For every 2 ≤ i ≤ 2d − 4, there are ⌈ i
2⌉ σ-rightward-

reachable vertices in Vσi
.

• There are d − 2 σ-rightward-reachable vertices in
Vσ2d−3

.

Let σ be the sequence that satisfies the properties of
Lemma 4. In Lemma 5, we prove another property for such a
sequence.

Lemma 5. For every sequence σ with properties mentioned
in Lemma 4 and every 2 ≤ i ≤ 2d − 3, vertices vσi,1 and
vσi,2 are not σ-reachable.

Definition 3. If we consider S as a subset of {1, 2, ..., d},
part Vi is one-way S-corresponding to part Vj , if and only if
for each vertex vi,k such that k ∈ S, it has an outgoing edge
to vj,l ∈ Vj , such that l ∈ S.

4 4

2

3

2

3

1 1

5 5

Figure 5: In this example, the left part is one-way {1, 2, 3}-
corresponding to the right part. Moreover, the left part and the
right part are {1, 2, 3, 4}-corresponding, since the left part is one-
way {1, 2, 3, 4}-corresponding to the right part and vice versa.

Definition 4. Parts Vi and Vj are S-corresponding, if and
only if:

• Vi is one-way S-corresponding to Vj

• Vj is one-way S-corresponding to Vi

See Figure 5 for an illustrative example.
Lemma 6. There are three pairwise {1, 2}-
corresponding parts.

Finally, note that by Lemma 6, there exists three pairwise
{1, 2}-corresponding parts in G. Therefore, if we consider
the induced subgraph G′ of G containing vertices with indices
1, 2 in these three parts, since G ∈ Π∗,d, G′ must belong
to Π∗,2. However, we know that Rp(2) = 2, which means
that G′ cannot have more than two parts. This contradiction
shows that, if graph contains at least 2d− 2 parts, then it has
a rainbow cycle. Hence, Rp(d) ≤ 2d− 3.
Improving the upper-bound to 2d−4. We end this section
by a discussion on how we can improve the upper bound to
2d− 4. Recall the definition of H(ℓ). As we show in Section
6, we have H(4) = 7. This means that for every set W of
parts with |W | = 4, for any vertex v ∈ G[W ], there are at
least 7 other vertices that have a rainbow path to v in G[W ].
Since the graph is a permutation graph, the inverse direction
is also true: for any vertex v ∈ G[W ], v has rainbow paths
to at least 7 different vertices in G[W ]. We use this fact to
decrease the upper bound on Rp(d) by one.

Consider part V1 and three arbitrary parts other than V2

(i.e., V3, V4, and V5). It is guaranteed that vertex v1,1 has
rainbow paths to at least 7 different vertices in these three
parts. Therefore, by the pigeonhole principle, vertex v1,1 has
rainbow paths to 3 vertices in one of these parts. Assume
without loss of generality that this part is V5. Now, we create
a shortcut in the sequence by replacing σ2, σ3, σ4, σ5 with
3, 4, 5. Note that though parts V3 and V4 might violate the
properties of the sequence (e.g., rainbow paths to V5 are not
necessarily σ-rightward-reachable), but V5 can be treated the
same way as Vσ5 in the previous sequence, which was the first
part with 3 σ-rightward-reachable vertices. Therefore, we can
continue constructing the sequence from V5 in the same way
as we construct the sequence (first, add σ6 and σ7, next σ8 and
σ9, and so on). This way, we save one part in the sequence
and therefore, the length of the sequence is reduced to 2d−4.
Hence, we can conclude that if we have max(4, 2d−4) parts,
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1

Figure 6: In this figure, you can find a compact form of a graph
that shows H(5) = 11. Due to lack of space and for convenience,
here we only show the induced subgraph of the vertices that have a
rainbow path to vertex 1. Let G be the graph in this figure. In order
to construct the entire Graph, one can proceed as follows. Merge
G and the graph constructed in the proof of Lemma 7 for ℓ = 5
(G′). The vertices of each part in the union graph are the union of
the vertices in the corresponding parts in G and G′. Similarly, the
edges in the union graph are the union of the edges in G and G′. In
addition, some of the vertices in G do not have incoming edges from
some other parts. For such pairs of vertices and parts, we choose an
arbitrary vertex from the corresponding part of G′ and add a directed
edge to that vertex.

then we have a rainbow cycle. As a result, Rp(d) ≤ 2d − 4
for d ≥ 4.

6 Experiments
In order to evaluate H(ℓ), we performed a set of experiments
to calculate H(ℓ) for small values of ℓ. Our algorithm in-
puts ℓ, x and performs an exhaustive search to find a counter-
example for H(ℓ) > x. By the definition of H(ℓ), this counter-
example must have at most x vertices with a rainbow path to
a specific vertex v. If such an example is found, we have
H(ℓ) ≤ x. Otherwise, when there is no such example, we
can imply that H(ℓ) > x. The overall result of running this
experiment is shown in Table 1.

ℓ Lower bound Upper bound
2 1 1
3 3 3
4 7 7
5 11 11
6 15 17
7 - 25

Table 1: Lower bounds and upper bounds on H(ℓ) obtained by the
experiments.

As you can see in Table 1, for 2 ≤ ℓ ≤ 5, the exact value
of H(ℓ) is determined by the experiments. Also, for ℓ = 6, 7,
our experiments provide an upper bound on H(ℓ). Recall that
by Theorem 1, we have H(ℓ) ∈ Ω(ℓ2/ ln ℓ). In Lemma 7, we
prove an upper bound of O(n2) on H(ℓ).

Lemma 7. we have H(ℓ) ≤ (ℓ− 1)(ℓ− 2) + 1.
Note that the upper bound provided by Lemma 7 exactly

matches the upper bounds for H(2),H(3), and H(4). How-
ever, for H(5) this upper bound is not tight. In Figure 6, a
tight example for H(5) is shown. Based on the results ex-
tracted from the experiments, our conjecture is as follows.

Conjecture 1. We conjecture that H(ℓ) = ⌊ ℓ2

2 ⌋ − 1.
Note that if Conjecture 1 holds, then using Lemma 1, we

have R(d) ∈ O(d).
We also performed similar experiments to evaluate Hp(ℓ)

which is an analogous of H(ℓ) for permutation graphs. For-
mally,

Hp(ℓ) = min
G∈Πℓ,∗

min
v∈G

fG(v),

where fG(v) is the number of the vertices in G that have a
rainbow path to v. Interestingly, the results were exactly the
same as the previous case stated.
Conjecture 2. We conjecture that Hp(ℓ) = H(ℓ).

Similar to Lemma 1, we can prove a simple relation be-
tween Hp(ℓ) and Rp(d).
Lemma 8. Given that for some ℓ, Hp(ℓ) > (d − 1)(ℓ − 1),
we have Rp(d) < ℓ.

Lemma 9. For d ≥ 3, Hp(ℓ) ≥ ℓ2

2 − 1 implies Rp(d) ≤
2d− 3.

Proof. We have

Hp(2d− 2) ≥ (2d− 2)2

2
− 1

= 2d2 − 4d+ 1

= (d− 1)((2d− 2)− 1) + (d− 2)

> (d− 1)((2d− 2)− 1). d > 2

Therefore, by Lemma 8, Rp(d) < 2d − 2. Since Rp(d) is an
integer, Rp(d) ≤ 2d− 3.

Lemma 9 shows that even if we prove Conjecture 2 is cor-
rect, we cannot get a better upper bound for Rp(d) with a
simple connection between Rp(d) and Hp(ℓ). However, we
believe proving Conjecture 2 would be a good warm-up in
the way of proving Conjecture 1.
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