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Abstract
We introduce new power indices to measure the a
priori voting power of voters in liquid democracy
elections where an underlying network restricts
delegations. We argue that our power indices are
natural extensions of the standard Penrose-Banzhaf
index in simple voting games. We show that com-
puting the criticality of a voter is #P-hard even
when voting weights are polynomially-bounded in
the size of the instance. However, for specific set-
tings, such as when the underlying network is a bi-
partite or complete graph, recursive formulas can
compute these indices for weighted voting games
in pseudo-polynomial time. We highlight their the-
oretical properties and provide numerical results to
illustrate how restricting the possible delegations
can alter the voters’ voting power.

1 Introduction
Voting games have been used extensively to study the a priori
voting power of voters participating in an election [Felsenthal
and Machover, 1998]. A priori voting power means the power
granted solely by the rules governing the election process.
Notably, these measures do not consider the nature of the bill
nor the affinities between voters. The class of I-power mea-
sures (where I represents influence) “calculate” how likely
a voter will influence the outcome. Several I-power mea-
sures have been defined, the best known being the Penrose-
Banzhaf measure in simple voting games [Banzhaf III, 1964;
Penrose, 1946]. In simple voting games, an assembly of vot-
ers come to a collective decision on a proposal which voters
may either support or oppose. The Penrose-Banzhaf measure
is as follows: voters are assumed to vote independently from
one another; a voter is as likely to vote in favour or against the
proposal. It then measures the probability of a voter altering
the election’s outcome, given this probabilistic model.

Simple voting games have been extended in several direc-
tions to take into account more complex and realistic frame-
works. For example, taking into account abstention [Freixas,
2012], several levels of approval [Freixas and Zwicker, 2003],
or coalition structures [Owen, 1981]. Hence, new power in-
dices have been designed to better understand voters’ critical-
ity in these frameworks. However, elections with delegations

have been largely unexplored with respect to a priori voting
power. Still, frameworks such as Proxy Voting (PV) [Miller,
1969; Tullock, 1992] or Liquid Democracy (LD) [Behrens et
al., 2014; Brill, 2018] have received increasing interest in the
AI community due to their ability to provide more flexibility
and engagement in the voting process. Thus, studying these
frameworks via their distribution of a priori voting power is
an interesting research direction.

Our Contribution. We extend simple voting games to
model elections where voters can delegate their votes along
a social network, modelled as a digraph G. Our model en-
capsulates both the LD and PV settings. We design a new
I-voting power measure to quantify the voters’ criticality in
these settings. We argue that our power measure is a natural
extension of the Penrose-Banzhaf measure, and we illustrate
the intuitions behind it through various examples. When G
is an arbitrary digraph, we show that the computation of our
measure is #P-hard in Weighted Voting Games (WVGs) even
when voters’ weights are polynomially-bounded in the num-
ber of voters. However, we prove that it can be computed for
WVGs in pseudo-polynomial time in the PV setting, in which
G is directed bipartite with all arcs going from one side (pos-
sible delegators) to the other (proxies), and in the LD setting
when G is complete. Last, we complement our theoretical re-
sults with numerical results to illustrate how introducing del-
egations modifies voters’ a priori voting power.1

1.1 Related Work
Voting Power. Measuring a voter’s voting power in a spe-
cific setting quantifies how critical they are in deciding the
outcome of the election. A voter i’s voting power can be con-
sidered as the difference in probability of i voting for the issue
when the outcome is also in favour and i voting for the issue
when the outcome is not [Gelman et al., 2002]. We give an
overview of some standard measures (we recommend [Lu-
cas, 1974] for an overview of voting power and [Felsenthal
and Machover, 2005] for a historical overview).

The measure introduced by Shapley and Shubik [1954]
quantifies the voter’s expected pay-off, known as P-power,
unlike the other measures we will discuss. P-power differs
in motivation from I-power as it cares about a voter being in

1Omitted proofs and additional results can be found in the long
version of this article [Colley et al., 2023].
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the winning coalition, sharing the coalition’s utility among
its members, with those not in the coalition receiving utility
0. In contrast, I-power has a policy-seeking motivation and
is, therefore, concerned with the voter’s stance on the issue.

I-power was independently given a mathematical expla-
nation by Penrose [1946], Banzhaf III [1964], and Cole-
man [1971]. It counts, for an agent i, in how many of the
2n possible profiles changing i’s vote from 0 to 1 changes the
outcome. The Banzhaf measure (or absolute Banzhaf index)
is denoted by β′, whereas the Banzhaf index is the relative
quantity denoted by β (found from normalising β′).

Extending the Notion of Voting Power. Standard voting
power measures are defined on binary issues. Yet, as the
study of voting models has advanced, so has the study of vot-
ing power. One generalisation is to the domain of the avail-
able votes, thus, moving away from binary decisions on the
issue. Influenced by Felsenthal and Machover [2001], proba-
bilistic models of voting power with abstention and a binary
outcome are well-studied [Felsenthal and Machover, 1997;
Freixas, 2012]. Freixas and Lucchetti [2016] extended the
Banzhaf index by introducing two measures of being pos-
itively critical, i.e., changing your vote from being for the
issue to abstaining and abstaining to being against the is-
sue. Voting games with approvals form a subclass of vot-
ing games with varying levels of approvals in both the input
and output of the election [Freixas and Zwicker, 2003]. An-
other well-studied extension of the standard notions of voting
power measures in WVGs is to allow for randomised weights.
The Shapley-Shubik index has been well-studied in these set-
tings [Filmus et al., 2016; Bachrach et al., 2016]. Boratyn et
al. [2020] also studied the Banzhaf index in this setting; this
is close to our own work when focusing on PV elections.

Proxy Voting (PV) and Liquid Democracy (LD). PV al-
lows agents to choose their proxy from a list of representa-
tives who will vote on their behalf. In some models, a del-
egator may only choose a proxy from the list of representa-
tives [Abramowitz and Mattei, 2019; Alger, 2006; Cohensius
et al., 2017]. In other models, delegators can also vote di-
rectly yet still cannot receive votes [Green-Armytage, 2015;
Miller, 1969; Tullock, 1992].

Models of LD allow voters to either vote on the issue
or delegate their vote to another voter, which can be tran-
sitively delegated further. Some examples of recent ad-
vancements in the study of LD are: extending the model
to account for different situations, whether it be ranked
delegations [Brill et al., 2022; Colley et al., 2022; Kot-
sialou and Riley, 2020] or allowing for multiple intercon-
nected issues [Brill and Talmon, 2018; Jain et al., 2022;
Colley and Grandi, 2022]; assessing how successful LD
is in finding a ground truth [Halpern et al., 2021; Kahng
et al., 2018]; or studying (non-cooperative) game-theoretic
aspects [Bloembergen et al., 2019; Escoffier et al., 2020;
Markakis and Papasotiropoulos, 2021; Noel et al., 2021].

Our closest work is that of Zhang and Grossi [2021], who
study a version of the Banzhaf measure in LD. Their measure,
for a given delegation graph, determines how critical an agent
is in changing the outcome. Our work differs as we focus on
a priori voting power, where no prior knowledge is known

about the election, such as a specific delegation graph.

2 Model
Let V be a set of n voters taking part in an election to decide
if some binary proposal should be accepted or not. Each voter
has different possible actions: they may vote directly, either
for (1) or against (−1) the proposal, or delegate their vote to
another voter. A voter who decides to vote (resp. delegate)
will be termed a delegatee (resp. delegator). An underlying
social network G = (V,E) restricts the possible delegations
between the agents, hence voter i ∈ V can only delegate to
a voter in their out-neighbourhood NBout(i) = {j ∈ V |
(i, j) ∈ E}. We will consider in more detail two cases: when
G is complete and when G is bipartite with all arcs going
from one side to the other, where the former corresponds to
the LD setting when voters can choose any other voter as a
delegate and the latter corresponds to the PV setting.
Definition 1. Given a digraph G = (V,E), a G-delegation
partition D is a map defined on V such that D(i) ∈ NBout(i)∪
{−1, 1} for all i ∈ V . We let D be the set of all such parti-
tions and D−, D+, and Dv be the inverse images of {−1},
{1} and {v} for each v ∈ V under D.

A direct-vote partition divides the voters into partition cells
that correspond to a possible voting option. We let absten-
tions model situations where delegators do not have a delega-
tee voting on their behalf (e.g., due to delegation cycles).
Definition 2. A direct-vote partition of a set V is a map T
from V to the votes {−1, 0, 1}. We let T−, T 0, and T+ denote
the inverse images of {−1}, {0} and {1} under T .

A G-delegation partition D naturally induces a direct-vote
partition TD by resolving the delegations. First, we let voters
in D−, and D+ also be in T−, and T+, respectively. From
this point, for some ◦ ∈ {−,+}, if v′ ∈ Dv and v ∈ T ◦, then
v′ ∈ T ◦. This continues until no more voters can be added to
T+ or T−. The remaining unassigned agents abstain and thus
are in T 0. This procedure assigns agents their delegate’s vote
unless it leads to a cycle. In this case, their vote is recorded
as an abstention.

Next we define a partial ordering ≤ among direct-vote par-
titions: if T1 and T2 are two direct-vote partitions of V , we
let: T1 ≤ T2 ⇔ T1(x) ≤ T2(x), ∀x ∈ V .
Definition 3. A ternary (resp. binary) voting rule is a map
W from the set {−1, 0, 1}n (resp. {−1, 1}n) of all direct-vote
partitions (resp. all direct-vote partitions without abstention)
of V to {−1, 1} satisfying the following conditions:

1. W (1) = 1 and W (−1) = −1 where 1 = (1, . . . , 1︸ ︷︷ ︸
×n

);

2. Monotonicity: T1 ≤ T2 ⇒ W (T1)≤W (T2).2

Note that ternary (and binary) voting rules only use the
direct-vote partition to find an outcome, i.e., only the infor-
mation of which agents voted directly or indirectly in favour

2Not all ternary voting rules satisfy monotonicity, e.g., a
weighted voting rule with an additional quorum condition. How-
ever, we enforce this condition such that we may only look at the
election result when the voter favours the proposal on the one hand
and against the proposal on the other to define criticality.
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Figure 1: The underlying network G used in Example 1. While
all edges give us E, the solid edges give us a valid G-delegation
partition where the superscripts of + or − represent the direct votes
of the delegatees. Each node’s subscript refers to its voting weight.

or against the proposal or abstained. Thus, these rules do not
need the delegations to find an outcome.

A ternary (resp. binary) voting rule is symmetric if
W (T ) = −W (−T ), where −T is the direct-vote partition
defined by −T (x) = −(T (x)), ∀x ∈ V . Moreover, for ease
of notation, we may also use W (T+, T−) to denote W (T ),
noting that T 0 can be obtained from T+ and T−.

Weighted Voting Games. Weighted Voting Games
(WVGs) express ternary voting rules compactly, with a
quota q ∈ (0.5, 1] and a map w : V → N>0 assigning
each voter a positive weight. Given a set S ⊆ V , we let
w(S) =

∑
i∈S w(i). In a WVG with weight function w, we

let W (T ) = 1 if and only if w(T+) > q×w(T+ ∪T−), i.e.,
the proposal is accepted if the sum of the voters’ weights for
the proposal is greater than a proportion q of the total weight
of non-abstaining voters; otherwise, the proposal is rejected.

Example 1. Consider agents V = {a, b, · · · ,m} connected
by the underlying network G as depicted in Figure 1. The
solid lines give a valid G-delegation partition D with D+ =
{c, i}, D− = {a, b, h}, Da = {d}, Db = {e}, Dc = {f, g},
Dd = {j, k}, Dℓ = {m}, and Dm = {ℓ}. This G-
delegation partition induces the following direct-vote par-
tition: T+ = {c, f, g, i}, T− = {a, b, d, e, h, j, k}, and
T 0 = {ℓ,m}. Consider W induced by the WVG where
q = 0.5 and w(a) = 3, w(b) = w(d) = 2 and the re-
maining voters x ∈ V \{a, b, d} have weight w(x) = 1.
The proposal is rejected under this G-delegation partition as
w(T+) = 4 ≤ 7.5 = q · w(T+ ∪ T−).

We conclude this subsection with some notation. Given a
set X , let Pk(X) denote the set of k ordered partitions of
X . By ordered partitions, we mean that ({1}, {2, 3}) should
be considered different to ({2, 3}, {1}). Next, given a voting
rule W , a voter i ∈ V , and (X,Y, Z) three non-intersecting
subsets of V \ {i}, we define:

δWi,−→+(X,Y, Z)=
W (X∪Z∪{i}, Y )−W (X,Y ∪Z∪{i})

2
.

We say a voter i ∈ V is critical when they can affect the
outcome of the vote. Thus for three non-intersecting sub-
sets of V \ {i}, namely X,Y, Z, where X (resp. Y ) de-
notes the set of voters supporting (resp. opposing) the pro-
posal through their vote of delegation, and Z is the set of
voters delegating directly or indirectly to i, then i is critical
iff δWi,−→+(X,Y, Z) > 0. We say a voter i ∈ V is positively

(resp, negatively) critical if by changing a positive (resp. neg-
ative) vote to a negative (resp. positive) one, the outcome
will also change from being for to against (resp. against to
for) the issue. In Example 1, we see that a is critical in
this G-delegation partition, as V \{a} is partitioned as such
X = {c, f, g, i}, Y = {b, e, h} and Z = {d, j, k} and thus
δWa,−→+(X,Y, Z) = 1−(−1)

2 = 1.

2.1 Modelling a Priori Voting Power
We aim to measure a priori voting power in this setting. An
agent’s voting power is their probability of being able to af-
fect the election’s outcome. Similarly to the intuitions behind
the Penrose-Banzhaf measure, we invoke the principle of in-
sufficient reason. There are two ways of seeing this principle.
The Global Uniformity Assumption. If there is no in-
formation about the proposal or voters, we assume all
G-delegation partitions are equally likely with probability
Πi∈V

1
|NBout(i)|+2 . In Example 1, as |NBout(i)| = 2 for every

i ∈ V , this means that every G-delegation partition occurs
with probability ( 14 )

13.
The Individual Uniformity Assumption. The global uni-
formity assumption is similar to a model in which each voter
delegates with probability pid = |NBout(i)|/|NBout(i)|+2 and
votes with probability piv = 1 − pid = 2/|NBout(i)|+2. Del-
egation (resp. voting) options are chosen uniformly at ran-
dom and voters make their choices independently from one
another. This is consistent with the idea that we have no infor-
mation about voters’ personalities and interests, or the nature
of the proposal. Hence, voters should be equally likely to sup-
port (probability py) or oppose (probability pn) the proposal,
i.e., py = pn = 1/2. Moreover, in ignorance of any con-
currence or opposition of interests between voters, we should
assume that the likelihood of a voter choosing between each
of their possible delegates is equally likely, i.e., the proba-
bility that a delegator i delegates to a voter j ∈ |NBout(i)|
is 1/NBout(i). The individual uniformity assumption is an
extension of the global uniformity assumption in which pid
can be any value in [0, 1] dependent on |NBout(i)|, such that
pid = 0 when NBout(i) = ∅.

For generality, we consider this latter model unless speci-
fied otherwise. We now define the LD Penrose-Banzhaf mea-
sure of a voter i for a given underlying graph G when con-
sidering that the probability of each G-delegation partition is
determined by the individual uniformity assumption.
Definition 4 (LD Penrose-Banzhaf measure). Given a di-
graph G = (V,E) and a ternary voting rule W , the LD
Penrose-Banzhaf measure of voter i ∈ V is defined as:

Mld
i (W,G) =

∑
D∈D

P(D)
W (TD+

i
)−W (TD−

i
)

2
,

where P(D) is the probability of the G-delegation partition D
occurring, and D+

i (resp. D−
i ) is the G-delegation partition

identical to D with the only possible difference being that i
supports (resp. opposes) the proposal.

Mld
i quantifies the probability of sampling a delegation

partition where i is able to alter the election’s outcome (for-
mally stated in the following Theorem).
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Theorem 1. Given a digraph G = (V,E), a ternary voting
rule W , and a voter i ∈ V , we have that:

P(i is critical) = Mld
i (W,G).

Moreover, if NBout(i) = ∅ or W is symmetrical, we have that:

P(i is positively critical) = Mld
i (W,G)/2

= P(i is negatively critical).

This proof relies on the fact that we are summing over the
probability of each D with respect to W (TD+

i
) − W (TD−

i
),

which measures when the voter i is critical. Recall that being
positively critical means that by changing a vote for the issue
to against it, the outcome will also change in the same way
(negatively critical is defined similarly). Furthermore, this
happens equally when NBout(i) = ∅ (the only option is to
vote either for or against the issue) or when W is symmetric.

For the second part of Theorem 1, the condition is neces-
sary as if W reflects unanimity, i.e., W (T ) = 1 if and only if
T = 1, then voters will be more likely to be positively critical
than negatively critical.3 Additionally, observe that the LD
Penrose-Banzhaf measure of voting power extends the stan-
dard Penrose-Banzhaf measure (formalized in Proposition 1)
and that its values are not normalized (i.e., summing over the
agents does not yield 1). The corresponding voting power
index can be defined by normalizing over voters.
Proposition 1. If pid = 0 for all i ∈ V , e.g., if E = ∅, then the
LD Penrose-Banzhaf measure of voting power is equivalent to
the standard Penrose-Banzhaf voting power measure.

3 Hardness of Computation
Computing the standard Penrose-Banzhaf measure in WVGs
is #P -complete [Prasad and Kelly, 1990]. However, it can
be computed by a pseudo-polynomial algorithm that runs in
polynomial time with respect to the number of voters and the
maximum weight of a voter [Matsui and Matsui, 2000]. We
show that the problem of computing the LD Penrose-Banzhaf
measure is #P -hard even when voter’s weights are bounded
linearly by the number of voters. Hence, a similar pseudo-
polynomial algorithm is unlikely to exist. The proof uses an
enumeration trick inspired by that of Chen et al. (2010, The-
orem 1). Informally speaking, this trick shows that one can
solve the #P -hard problem of counting the number of simple
paths between two vertices in a digraph by using a polynomial
number of calls to a subroutine of our power measure compu-
tation problem and inverting a specific Vandermonde matrix.
As a result, note that the type of reduction that is used is a
Turing reduction.
Theorem 2. Given a digraph G = (V,E) and a WVG de-
fined on V , computing the LD-Penrose-Banzhaf power mea-
sure of a voter is #P -hard under Turing reductions even
when voter’s weights are bounded linearly by the number of
voters.

3If the voting rule requires total agreement to accept the proposal,
then voter i will be critical iff all delegatees (other than i) agree on
the proposal. Thus, the probability that i is critical while voting
directly or indirectly in favour of the proposal is higher than i being
critical while voting directly or indirectly against it.

Proof sketch. We give a reduction from the problem of count-
ing simple paths in a digraph which is known to be #P-
complete [Valiant, 1979]. The problem takes as input a di-
graph G = (V,E) and nodes s, t ∈ V . The problem then re-
turns the number of simple paths from s to t in G. Let denote
Pℓ the set of paths of length ℓ between s and t in G. Given
G = (V,E) and s, t ∈ V two vertices, we create |V | + 1
different digraphs Gk = (Vk, Ek) with k ∈ {0, . . . , |V |}
such that Gk is obtained by modifying G to impose some
condition on the out-degree of nodes in V . Thus, in each di-
graph Gk = (Vk, Ek), we consider a WVG where weights
are linearly bounded in |V | and such that voter s is a dictator.
Hence, t is only critical when in s’s delegation path. Under
the individual uniformity assumption, we obtain the critical-
ity of t in each Gk as a weighted sum of values |Pℓ| such that
the weights of these |V | + 1 equations form a Vandermonde
matrix. Inverting this matrix makes it possible to derive the
values |Pℓ| from the criticality of t in each graph Gk, and thus
to solve the problem of counting simple paths from s to t.

While computing the LD Penrose-Banzhaf voting power
measure exactly is hard, it can be approximated easily by us-
ing a standard sampling procedure. We sample enough G-
delegation partitions by simulating the behaviours of the dif-
ferent voters according to the individual uniformity assump-
tion and consider the expected criticality of the voters given
these samples. Relying on Hoeffding’s inequality, one can
then prove that these estimates are within some ϵ of the true
voting power measure (technical details are discussed by Col-
ley et al. [2023]).

In the next two sections, two restricted classes of instances
are discussed. In both, more compact formulations of the LD
Penrose-Banzhaf measure can be designed such that pseudo-
polynomial algorithms can compute the measure exactly.

4 Proxy Voting
This section models a PV setting where G = (V,E) is bipar-
tite with V = (Vd, Vv) and E = {(i, j) | i ∈ Vd, j ∈ Vv}.
The set of delegatees Vv is given in input and is predeter-
mined, e.g., by an election, self-nomination, or sortition.
Each delegatee i ∈ Vv will vote, i.e., NBout(i) = ∅ and
pd = 0, whereas each voter i ∈ Vd can vote or delegate to
any delegatee in Vv , i.e., NBout(i) = Vv .4 Note that, under
our individual uniformity assumption, the probability of del-
egating for each i ∈ Vd is equal as they all have the same
out-degree. We denote this value by pd and let pv = 1 − pd.
Moreover, let nv = |Vv| and nd = |Vd| = n−nv . We provide
a more compact version of the LD Penrose-Banzhaf measure
in this PV setting. We consider binary voting rules as there
are no delegation cycles in this setting (T 0 = ∅).

To measure how critical an agent i can be, we consider
partitions of V \{i} into three sets V +, V −, V i where V +

(resp. V −) represents the n+ (resp. n−) voters whose final
vote is in favour of (resp. against) the proposal, either by
voting directly or indirectly and V i is the set of ni voters who

4Colley et al. [2023] present an alternative PV model where vot-
ers in Vd must delegate to a voter in Vv , showing that voters’ criti-
calities can also be computed by a pseudo-polynomial algorithm.
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delegate to voter i. Note that V +, V −, V i form a partition
of V \{i} and V i = ∅ when i ∈ Vd. We focus on how these
sets intersect Vd and Vv . We define V +

d , V −
d , V +

v , and V −
v

with size n+
d , n−

d , n+
v , and n−

v , respectively, such that V ◦
x =

Vx ∩ V ◦ for x ∈ {v, d} and ◦ ∈ {−,+}.
Given our probabilistic model of delegation partitions, ob-

serve that the probability of having a partition V +, V −, V i

only depends on these cardinalities. More precisely:
– When i ∈ Vv , note that n−

v = nv − 1 − n+
v and ni =

nd − n+
d − n−

d . Hence, we denote this probability of having
such a partition V +, V −, V i by Pv(n

+
v , n

+
d , n

−
d ):

Pv(n
+
v , n

+
d , n

−
d ) =

1

2nv−1
(
pv
2
+pd

n+
v

nv
)n

+
d

× (
pv
2
+pd

n−
v

nv
)n

−
d (

pd
nv

)n
i

. (1)

– When i ∈ Vd, note that n−
v = nv − n+

v and n−
d = nd −

1− n+
d . We let Pd(n

+
v , n

+
d ) denote the probability of having

such a partition of V +, V −:

Pd(n
+
v , n

+
d ) =

1

2nv
(
pv
2
+pd

n+
v

nv
)n

+
d (

pv
2
+pd

n−
v

nv
)n

−
d . (2)

There are some conditions on the integer parameters n+
v , n+

d ,
and n−

d . If i ∈ Vv , we have that n+
v ≤ nv−1, and n+

d +n−
d ≤

nd. If i ∈ Vd, we have n+
v ≤ nv , and n+

d ≤ nd − 1. If
these conditions are not respected, we set Pv(n

+
v , n

+
d , n

−
d ) =

0 (resp. Pd(n
+
v , n

+
d ) = 0).

We now detail Equation 1 (Equation 2 is obtained simi-
larly). The probability of the binary votes of the delegatees
other than i being a certain way is (1/2)nv−1. Then, the prob-
ability that each voter in V +

d (resp. V −
d ) votes in favour of the

proposal is pv/2 + pdn
+
v/nv (resp. against is pv/2 + pdn

−
v/nv)

where the first summand corresponds to the case in which the
voter votes and the second to the one in which they delegate.
Last, the probability that each voter in V i

d delegates to i is
pd/nv. Equation 1 is the product of these terms.

Given the probability of having a partition V +, V −, V i

of V \ {i}, the voting power measure for a voter in our PV
setting i ∈ V can be formulated in the following way.
Proposition 2. Given a bipartite digraph G = (V,E) with
V = (Vd, Vv) and E = {(i, j)|i ∈ Vd, j ∈ Vv} and a binary
voting rule W , the LD Penrose-Banzhaf measure Mld

i (W,G)
of voter i ∈ V can be formulated as:

Mld
i (W,G) =

∑
V +
v ,V −

v

∈P2(Vv\{i})

∑
V +
d ,V −

d ,V i

∈P3(Vd)

Pv(n
+
v , n

+
d , n

−
d )

× δWi,−→+(V
+, V −, V i) if i ∈ Vv.

Mld
i (W,G) =

∑
V +
v ,V −

v

∈P2(Vv)

∑
V +
d ,V −

d

∈P2(Vd\{i})

Pd(n
+
v , n

+
d )

× δWi,−→+(V
+, V −, ∅) if i ∈ Vd.

We return to Example 1 to illustrate our power measures.
Notably, we shall see that a voter in Vv with a small weight
can achieve a higher criticality through delegation.

Agent x ∈ V pd = 0 pd = 0.5 pd = 0.9
a: w = 3 0.511 0.552 0.542
b: w = 2 0.306 0.395 0.438
c: w = 1 0.148 0.303 0.390
d: w = 2 0.306 0.206 0.138

Vd\{d}: w = 1 0.148 0.098 0.065

Table 1: Mld when pd = 0, 0.5, 0.9 for voters V = {a, · · · ,m} in
the PV setting with Vv = {a, b, c} (Values are rounded to 3 d.p.).

Example 2. Consider the voters in Example 1; however,
now in the PV setting, we assume that Vv = {a, b, c} and
Vd = V \Vv and we compute the voters’ LD Penrose-Banzhaf
measures using Proposition 2. The resulting power measures
can be seen in Table 1 when pd = 0, 0.5, 0.9. As those in
Vd have the possibility of voting directly as well as delegat-
ing, they have more influence on the outcome when they are
more likely to vote directly; conversely, those in Vv have less
as they are less likely to receive delegations. When pd = 0,
all agents vote and thus, we return to a standard WVG with
the standard Banzhaf measure where all voters with the same
weight have the same voting power.
Computational Aspects. We turn to some computational
aspects regarding the PV setting. We obtain that the exact
computation of the LD measure of voting power is #P-hard
due to Proposition 1 [Prasad and Kelly, 1990]. More posi-
tively, we show that in WVGs, Mld in the PV setting can
be computed in pseudo-polynomial time, like the Penrose-
Banzhaf measure. This result uses the following lemma.
Lemma 1. Given a WVG with weight function w and an in-
teger c. Computing the number of ways of having a parti-
tion (S1, S2, . . . , Sc) in Pc(S) of a set S ⊆ V with sizes n1,
n2,. . ., nc with

∑c
l=1 nl = |S|, and weights w(S1) = w1,

w(S2) = w2, . . ., and w(Sc) = wc with
∑c

l=1 wl = w(S)
can be computed in pseudo-polynomial time.

Theorem 3. Given a bipartite digraph G = (V,E) with V =
(Vd, Vv) and E = {(i, j)|i ∈ Vd, j ∈ Vv}, a WVG with
weight function w and quota-ratio q, and a voter i, measure
Mld

i can be computed in pseudo-polynomial time.

5 Liquid Democracy with Complete Digraph
This section discusses the case where G = (V,E) is com-
plete, representing LD where any voter can vote directly or
delegate their vote to any other voter. Since the graph is com-
plete, every voter has the same out-degree |V |−1. Under our
individual uniformity assumption, this implies that the prob-
ability to delegate pd is the same for every voter. As with PV,
we provide a more compact formulation of our power mea-
sure by grouping over similar voters instead of summing over
all delegation partitions. By abuse of notation, we say that a
set S of voters form an in-forest when the graph obtained by
having a vertex per voter in S and an arc from i to j when i
delegates to j forms an in-forest. We consider a partition of
V \ {i} into four sets V +, V −, V 0, V i where V + (resp. V −)
is a set of n+ (resp. n−) voters voting directly in favour of
(resp. against) the issue or indirectly by transitively delegat-
ing to a root voter in V + (resp. V −); V 0 is a set of n0 voters
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abstaining as their delegation leads to a delegation cycle; and
V i is the set of ni voters delegating (directly or not) to i. Note
that V +,V −,V 0 and V i form a partition of V \ {i}.

We will use recursive formulas to compute the probabil-
ity of having such a partition into four sets. Let P ld(m, p)
be the probability that the m voters of a set S ⊆ V form
an in-forest where the roots all make the same action; 5 an
action which is chosen by each root voter with probability p.
For instance, P ld(n+, pv/2) would be the probability that the
voters in V + form a forest where each root voter is in favour
of the proposal. Consider an arbitrary voter j ∈ S, and a two
partition (S1, S2) ∈ P2(S \ {j}) with respectively m1 and
m2 = m − 1 − m1 voters. The voters in S1 are those who
delegate directly or indirectly to j, while voters in S2 do not.
Another way of seeing it is that all voters in S1 form an in-
forest where every root delegates to voter j (with probability
pd/(n−1)), while voters in S2 form an in-forest where every
root realizes the same action as in S. Regarding voter j, there
are two possibilities: either voter j realizes the same action as
the roots of S (e.g., voting for the proposal), or they delegate
to a member of S2 (with probability pdm2/(n−1)).

Hence, we obtain the following recursive formula:

P ld(m, p) =
m−1∑
m1=0

(
m− 1

m1

)
P ld(m1,

pd
n− 1

)P ld(m2, p)

× (p+ pd
m2

n− 1
) (3)

with m2 = m − 1 − m1 and base cases P ld(1, p) = p and
P ld(0, p) = 1.

Thus, the probability that V + (resp. V −) forms an in-forest
where the roots vote in favour of (resp. against) the issue is
P ld(n+, pv/2) (resp. P ld(n−, pv/2)); and that the proba-
bility that V i forms an in-forest where the roots delegate to
voter i is P ld(ni, pd/(n − 1)). For V 0, we need a different
formula. Voters in V 0 have their delegation leading to a del-
egation cycle through other voters in V 0 iff each voter in V 0

delegates to another voter in V 0. This occurs with probability

P ld
0 (n0) =

(
pd(n

0−1)/(n−1)
)n0

.
Consequently, the probability of having the four

partition (V +, V −, V i, V 0) of V \{i} is equal to
P ld(n+, pv/2)P

ld(n−, pv/2)P
ld(ni, pd/(n− 1))P ld

0 (n0).
Proposition 3. Given a complete digraph G = (V,E) and
a ternary voting rule W , the LD Penrose-Banzhaf measure
Mld

i (W,G) of voter i ∈ V can be formulated as:

Mld
i (W ) =

∑
V +,V −,V 0,V i

∈P4(V \{i})

P ld(n+,
pv
2
)P ld(n−,

pv
2
)

×P ld(ni,
pd

n− 1
)P ld

0 (n0)δWi,−→+(V
+, V −, V i).

Example 3. We return to the agents V = {a, · · · ,m} from
the previous examples, with the same weights as before; how-
ever, we are in the LD setting where the underlying network is
a complete digraph. In Table 2, we see the power measures of

5P ld(m, p) depends only on |S| and p, and not on the list of
voters in S, and thus is independent in the choice of voters in S.

Agent x ∈ V pd = 0 pd = 0.5 pd = 0.9
a: w = 3 0.511 0.424 0.696
b, d: w = 2 0.306 0.308 0.638

V \{a, b, d}: w = 1 0.148 0.212 0.568

Table 2: Mld
x (rounded to 3 d.p.) for pd ∈ {0, 0.5, 0.9} for v =

{a, · · · ,m} from Example 1 when considering a complete network.

each agent where the probability of delegating varies. When
pd = 0, we are in the standard weighted voting game where
all agents vote directly. When pd = 0.5, those with less voting
weight have their voting power measure increase, this is due
to the possibility of others delegating to them and the voting
weight they control becoming higher. Note that when pd = 1,
all agents are caught in delegation cycles and T 0 = V . Thus,
we also give the measures when pd = 0.9.

In simulated examples, similar to Example 3, we noticed
two trends. First, a flattening effect on the power measures as
pd increased. By this, we mean that the difference between
the lowest and highest measure of power in the WVG (for
any agent) becomes smaller. For instance, in Table 2, this
difference is 0.363, 0.212, and 0.128 for pd = 0, 0.5, and
0.9, respectively. This flattening, in our LD setting, is due to
all voters having the same available voting actions, no mat-
ter their weights. Notably, there can be no dummy agents
when pd > 0, as for any agent, the delegation partition where
all other voters delegate to them has a positive probability.
Second, as illustrated by Table 2, we see that when the proba-
bility of delegating increases, so does the probability of being
critical, especially when the weights are equal.6 As when
pd increases, the number of direct voters decreases while the
expected accumulated weight of an agent increases. Hence,
they are more likely to be critical when they vote directly. Al-
though it seems intuitive that as the probability of delegating
increases, so does the probability of being critical, this is not
generally true. In Table 2, we indeed observe that the critical-
ity of voter a decreases when pd increases from 0 to 0.5.
Computational Aspects. Using Proposition 3 and
Lemma 1, we show that, if the digraph is complete, our
power measure can be computed in pseudo-polynomial time.
Theorem 4. Given a complete digraph G = (V,E), a WVG
with weight function w and quota-ratio q, and a voter i, Mld

i
can be computed in pseudo-polynomial time.

The idea of this result is as follows. We can compute
the number of ways λ of having a partition (S1, S2, S3, S4)
in P4(V \{i}) with sizes n+, n−, n0, ni, and weights w+,
w−, w0, and wi using Lemma 1, and may compute the
product λ × P ld(n+, pv

2 )P ld(n−, pv

2 )P ld(ni, pd

n−1 )P
ld
0 (n0).

The result is the sum of these terms for the different tuples
(n+, n−, n0, ni, w+, w−, w0, wi) for which i is critical. The
number of tuples to be considered is bounded by n3×w(V )3.

6 Experiments
We performed numerical tests on our power measure to test
the impact of the different parameters. For each experi-

6We conjecture that when voting weights are equal, the probabil-
ity of being critical strictly increases with pd.
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Figure 2: The probability of an agent being critical in the PV setting
with pd varying from 0 to 1. We have |V | = 100, |Vv| ∈ {20, 50},
and W is a WVG with all weights equal to 1 and q = 0.5. This
experiment sampled over 100,000 delegations partitions.

ment, we estimate the criticality of voters by sampling over
delegation-partitions due to the long runtimes required for ex-
act calculations. Colley et al. [2023] give the sampling details
as well as additional experimental results.

We first computed the criticality of voters with a variety of
underlying networks. First, we observed a strong correlation
between the voters’ criticality and their in-degree in the net-
work. This follows the intuition that the higher the in-degree
of a voter, the higher the number of voters that can delegate
to them. Second, we noticed that the type of the underlying
network had a large impact on the differences between the
voters’ criticality. In particular, inequality in voting power
was the largest on preferential attachment networks [Barabási
and Albert, 1999] and the smallest on small-world networks
[Watts and Strogatz, 1998]. We will now focus on two special
cases, bipartite digraphs and complete digraphs.

6.1 The Number of Delegators in Proxy Voting
In the experiments on proxy voting, we study the case when
all voters have the same voting weight and delegators can del-
egate to any delegatee, as in Section 4. Note that within either
Vv or Vd, all voters have the same voting power. We inspect
the effect of pd in the PV setting, i.e., does the probability of
those in Vd delegating affect the probability of being critical
for both those in Vv and Vd. We set |V | = 100 and look at
two different amounts of delegatees, |Vv| ∈ {20, 50}.

In Figure 2, when pd = 0 we obtain the standard voting
model where all agents vote directly and thus have the same
chance of being critical. In both instances, as pd increases,
so does the delegatees’ probability of being critical, yet the
probability of the delegators being critical decreases, reflect-
ing the intuition that there is some transfer of power from the
delegators to the delegatees when pd increases. Observe that
the difference between the criticality of the delegators and
delegatees is smaller when |Vv| = 50 than when |Vv| = 20
for every value of pd, as a higher number of delegatees share a
lower number of delegators. Thus in the PV setting, increas-
ing |Vv| will flatten the distribution of criticalities.

0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

pd

M
ld i
(W

)

i with w(i) = 1

i with w(i) = 2

i with w(i) = 5

Figure 3: The probability of an agent being critical when the under-
lying graph is complete, varying pd from 0 to 0.9. We have |V |=100
in a WVG W with 50 (resp. 30, 20) voters with weights of 1 (resp.
2, 5) and q=0.5 and sampled over 10,000 delegations partitions.

6.2 The Effect of Voters’ Weights in the LD Model
We study the impact of pd in the LD model where the under-
lying network is complete as in Section 5. We have |V | = 100
voters, with 50 voters (resp. 30 and 20) having weight 1 (resp.
2 and 5). The quota of the WVG remains q = 0.5. We vary
pd between 0 and 0.9. In the case pd = 1, all voters delegate
to each other, and thus they all have a criticality of 1. In Fig-
ure 3, we see that voters with higher weights have more voting
power. We observe a flattening effect: the initial gap between
the criticality of agents with different weights becomes in-
creasingly small as pd increases. As in Table 2, the criticality
of voters with smaller weights always increases with pd while
it is not the case for voters with weight 5.

7 Conclusion
This paper continues the tradition of extending the notion of
a priori voting power to new voting models. We have intro-
duced the LD Penrose-Banzhaf measure to evaluate how crit-
ical voters are in deciding the outcome of an election where
delegations play a key role. We study a general setting where
an underlying graph restricts the possible delegations of the
voters. We provided a hardness result on the computation of
our measure of voting power. Nevertheless, we designed a
sampling procedure to estimate them as well as two pseudo-
polynomial algorithms that can be used when the graph re-
stricting the delegations is either bipartite or complete.

There are several possible directions for future work. First,
one could study the same models with more voting options,
such as abstention. We have restricted ourselves to two voting
options (approving or disapproving) to keep these new mod-
els simple. Another direction would be to find the conditions,
such as adding or removing neighbours, that affect the power
measure. Additionally, by extending the Coleman indices,
one could study how to differentiate the ability to support an
initiative from vetoing it in our setups. Lastly, analysing real-
election data using our model is a promising option.
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was supported by the PRAIRIE 3IA Institute under grant
ANR-19-P3IA-0001 (e). Hugo Gilbert acknowledges the
support from the project THEMIS ANR-20-CE23-0018 of
the French National Research Agency (ANR).

References
[Abramowitz and Mattei, 2019] Ben Abramowitz and

Nicholas Mattei. Flexible representative democracy: An
introduction with binary issues. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pages
3–10, 2019.

[Alger, 2006] Dan Alger. Voting by proxy. Public Choice,
126(1):1–26, 2006.

[Bachrach et al., 2016] Yoram Bachrach, Yuval Filmus, Joel
Oren, and Yair Zick. A characterization of voting power
for discrete weight distributions. In Proceedings of the
25th International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, NY, USA, July 9-15, 2016,
pages 74–80, 2016.

[Banzhaf III, 1964] John F Banzhaf III. Weighted voting
doesn’t work: A mathematical analysis. Rutgers L. Rev.,
19:317, 1964.

[Barabási and Albert, 1999] Albert-László Barabási and
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Hugo Gilbert. Measuring a priori voting power–taking
delegations seriously. arXiv preprint arXiv:2301.02462,
2023.

[Escoffier et al., 2020] Bruno Escoffier, Hugo Gilbert, and
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