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Abstract
In rank aggregation, members of a population rank
issues to decide which are collectively preferred.
We focus instead on identifying divisive issues that
express disagreements among the preferences of in-
dividuals. We analyse the properties of our divi-
siveness measures and their relation to existing no-
tions of polarisation. We also study their robust-
ness under incomplete preferences and algorithms
for control and manipulation of divisiveness. Our
results advance our understanding of how to quan-
tify disagreements in collective decision-making.

1 Introduction
Rank aggregation is the problem of ordering a set of issues
according to a set of individual rankings given as input. This
problem has been studied extensively in computational social
choice (see, e.g., Brandt et al. [2016]) when the rankings are
assumed to represent human preferences over, for example,
candidates in a political election, projects to be funded, or
more generally alternative proposals. The most common ap-
proach in this literature is to find normative desiderata for the
aggregation process, including computational requirements
such as the existence of tractable algorithms for its calcula-
tion and characterisations of the aggregators that satisfy them.
Rank aggregation also has a wide spectrum of applications
from metasearch engines [Dwork et al., 2001] to bioinformat-
ics [Kolde et al., 2012], receiving attention also in the statis-
tical ML literature [Korba et al., 2017].

Previous work on rank aggregation has focused on how to
best elicit which issues are the most agreed upon, without
identifying the issues that divide them. Instead, a wide litera-
ture in economics and the social sciences has developed mea-
sures of social, economic, and political polarisation. Classi-
cal work analysed polarisation in the distribution of wealth,
goods, and opinions [Esteban and Ray, 1994; Duclos et al.,
2004], showing that well-studied notions of inequality are un-
fit to measure polarisation as they do not consider the weight
of sub-populations. Another common approach in social sci-
ence uses the variance of distributions to measure polarisation
(see, e.g., Musco et al. [2018]; Gaitonde et al. [2020]).

In this paper, we put forward a family of functions that
starting from a collection of individual rankings are able to

order issues based on their divisiveness. We compute an is-
sue’s divisiveness by aggregating the disagreement among all
possible sub-populations defined by the relative preference
among the other issues. Our proposal relates to the literature
on three important aspects. First, a parameter in our definition
allows us to move from an adaptation of the classical measure
of polarisation from Esteban and Ray [1994] at one end of the
spectrum to the detection of disagreements from minorities at
the other end. Second, our measures are parameterised by the
rank aggregation function that is used to compute the most
agreed-upon issues. In this way, we can align our notions of
divisiveness with the functions chosen to measure the agree-
ment of the population.1 Third, while existing work focused
on comparing different sets of rankings based on polarisation
[Can et al., 2015], diversity [Hashemi and Endriss, 2014], or
cohesiveness [Alcantud et al., 2015], here, we aim at iden-
tifying the most divisive issues within a complete profile of
rankings. In doing so, we do not need to assume that issues
are independent, as common in the social choice literature.

Our work can further guide how to query a population to-
wards being more inclusive and unified, e.g., through delib-
erative instances. This can include measures that go towards
decreasing divisiveness, such as recent work suggesting the
construction of recommender systems to depolarise a popu-
lation [Stray, 2022], or simply take advantage of this infor-
mation when steering the public debate (recent work from
Ash et al. [2017] suggests that politicians spend more time
on divisive topics than on neutral ones). Our work also con-
tributes to social choice theory, where related notions of pref-
erence diversity have shown to have effects on the probability
of paradoxes [Gehrlein and Lepelley, 2010], the competitive-
ness in matching markets [Hałaburda, 2010], or the compu-
tational complexity of manipulating an election [Wu et al.,
2022]. Moreover, our work can be useful in refining the pref-
erence analysis of applications, such as online forums or sur-
veys, that query a population on their opinions and return ag-
gregated information about the group as a whole.

Contribution and Paper Structure. We extend the no-
tion of divisiveness, introduced by Navarrete et al. [2022],
to a family of measures which take into account the size

1This is particularly important in social choice applications,
where the individual preferences collected are a (possibly strategic)
response to the collective decision-making rule chosen.
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of a sub-population and use the well-studied scoring func-
tions. These extensions allow us to connect divisiveness
to measures of polarisation. We give a theoretical and ex-
perimental analysis of our divisiveness measures by relat-
ing them to other notions and giving bounds on their limit
cases (Section 3). Importantly, we show that our measures
can distinguish between key profiles which other measures
cannot. We then inspect two aspects of control, first, by
studying the effect of removing pairwise comparisons from
the agent’s rankings (Section 4.2 ) and second, by adding
additional controlled agents (Section 4.2). All our code is
available at https://github.com/CenterForCollectiveLearning/
divisiveness-theoretical-IJCAI2023.

Related Work. The notion of divisiveness studied in this
paper builds on the work of Navarrete et al. [2022], who iden-
tify the most divisive issues from proposed government pro-
grams from crowdsourced political preferences. Many pa-
pers start from a profile of rankings and compare them based
on how consensual (equivalently, cohesive) they are [Bosch,
2005; Garcı́a-Lapresta and Pérez-Román, 2010; Alcalde-
Unzu and Vorsatz, 2008, 2013], or in the opposite direc-
tion, i.e., how diverse is the set of preferences [Hashemi
and Endriss, 2014; Karpov, 2017]. In particular, Alcantud
et al. [2015] measures the cohesiveness of a group by aggre-
gating the dissimilarity of their orderings (similarly to Can
et al. [2015] who however focus on polarisation). Most of
these settings are based on pairwise comparisons, except for
Alcalde-Unzu and Vorsatz [2016] and Xue et al. [2020], who
look at patterns of varying sizes in the rank profile. One of the
methods proposed by Hashemi and Endriss [2014] to measure
preference diversity is to average the distance between the in-
dividual rankings and the aggregated one. This is in line with
our approach, but it only provides a measure to compare dif-
ferent populations of rankings without going to the level of
single issues. We note that also an influential theory of di-
versity not based on preferences but on (binary) features of
not necessarily independent alternatives has been proposed
by Nehring and Puppe [2002].

2 Basic Definitions
This section introduces the basics of rank aggregation and
scoring rules. We put forward our definition of divisiveness,
then we compare it with existing notions of polarisation.

2.1 Preliminaries
Rankings. Let I = {a, b . . . } be a finite non-empty set of
m issues. A strict ranking (aka. linear order) on I is an asym-
metric, transitive, and complete binary relation on I. We
let a ≻ b denote the fact that a is strictly preferred to b in
the ranking ≻. In what follows, we will write ≻= acdb for
≻= a ≻ c ≻ d ≻ b, reading preferences from left to right.
The set of all strict rankings over I will be denoted by L(I).
We denote with rank(a,≻) the rank of a in ≻ with the first
position being 1 and the last being m.

Individual Rankings. Let a finite non-empty set of N =
{1, . . . , n} agents express a strict rankings over I (sometimes
referred to as preferences). We let P = (≻1, . . . ,≻n) denote

the resulting profile of rankings, where ≻i is agent’s i rank-
ing over I. We let Na≻b = {i ∈ N | a ≻i b} be the set of
voters in N who prefer a to b. The restriction of profile P
to the agents in X is denoted by PX = ⟨≻i| i ∈ X⟩. When
X = Na≻b we simply write Pa≻b. We call P a consensual
profile if for all i, j ∈ N we have that ≻i=≻j . Every prefer-
ence profile P can be represented as a weighted (anonymous)
profile, i.e., as a set of pairs (wj ,≻j) indicating that wj ∈ N
agents have preference ≻j .
Collective Scoring of Issues. Rank aggregation functions
define a collective ranking of issues based on the agreements
among the individual rankings in a profile. A large num-
ber of rules have been proposed and analysed in the liter-
ature on (computational) social choice and artificial intelli-
gence. We focus on rank aggregators defined by a scor-
ing function, where the collective ranking over issues is ob-
tained via a function s : I × L(I) → [0, 1] that assigns
a score to each issue in a given profile. Notable examples
are the (normalised) Borda score, which counts the number
of issues strictly preferred to a given issue, Borda(a,P) =∑

b∈I\{a}
#(Na>b)
n·(m−1) , where #(X ) is the cardinality of a set

X . Or the normalised Copeland score, which counts the
number of majority contests won by an issue, Cop(a,P) =
#{b∈I\{a} |#(Na>b)>#(Nb>a)}

m−1 .

2.2 Divisiveness
For a given sub-population X ⊆ N and issue a ∈ I, we mea-
sure the divisiveness of a for X as the difference between the
collective scoring of a in sub-population X and in its comple-
ment sub-population N\X .
Definition 1. [Navarrete et al., 2022] The divisiveness of an
issue a ∈ I with respect to a sub-population X ⊆ N in
profile P is defined as:

DIVs(a,X ,P) = |s(a,PX )− s(a,PN\X )|.

If X = ∅ or X = N , we set DIVF (a,X ,P) = 0.
Examples of a sub-population X can be descriptive, such

as agents living in cities (thus N\X are agents living in ru-
ral areas) or agents with a given political orientation (thus,
N\X would be those who do not ascribe to this orientation).
We can now give a definition of divisiveness for issue a that
is independent of a given sub-population by averaging over
all sub-populations Na≻b for all other issues b. We include
an additional parameter α that allows us to take into consid-
eration the size of a sub-population allowing for a weighted
average version of an issue’s divisiveness.
Definition 2. The α-divisiveness DIVs

α(a,P) of an issue a∈I
in profile P , with α ∈ [0, 1] and ℓ ∈ R+, is defined as:

1

m− 1

∑
b∈I
a̸=b

(
ℓ
#(Na>b) ·#(Nb>a)

n2

)α

DIVs(a,Na≻b,P).

When α = 0 and s = Borda , our definition is a refor-
mulation of the divisiveness measure from Navarrete et al.
[2022]. When α = 1, Definition 2 can be interpreted as one
of the polarisation measures of Duclos et al. [2004] and Es-
teban and Ray [1994], calculated on the distribution of ranks
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that issue a received from individuals. We refer to the multi-
plicative factor of the measure defined in Definition 2 in each
summand as the α-factor. The α-factor is maximal when
#(Na≻b) = #(Nb≻a) = n/2, and we will often set ℓ = 4
so that the α-factor is at most 1. ℓ is a normalising factor left
open in line with Esteban and Ray [1994].

Intuitively, as α increases in Definition 2, the relevance of
the size of the disagreeing sub-population increases. The fol-
lowing example presents the limit case of α = 0 where the
size of disagreeing sub-populations is ignored, resulting in a
different divisiveness ranking than α = 1.

Example 1. Consider 2k agents giving their preferences in
profile P over issues I = {a, b, c, d, e, f} as such:

≻1 (1 agent) cadfeb
≻2 (k − 1 agents) badfec
≻3 (k agents) bedfac

Assume now that k = 5 and ℓ = 4 (the normalising factor).
Table 1 presents, for issue a, the table of disagreements (in
terms of Borda score difference) between the 5 possible sub-
populations defined by the pairwise comparisons of a with the
remaining issues.

Issue x s(Pa≻x) s(Px≻a) disagreement α-factor

b 0.8 0.46 0.3 0.36
c 0.46 0.8 0.3 0.36
d 0.8 0.2 0.6 1
e 0.8 0.2 0.6 1
f 0.8 0.2 0.6 1

Table 1: Details of the calculations for divisiveness for issue a, set-
ting ℓ = 4 and k = 5 and with s = Borda .

From Table 1, we can compute DIVBorda
0 (a,P) by averag-

ing the disagreements and weighting by the α-factors to ob-
tain DIVBorda

1 (a,P). Repeating this process for every issue
gives us the values of divisiveness in Table 2.

x Borda(x,P) DIVBorda
0 (x,P) DIVBorda

1 (x,P)

a 0.5 0.493 0.408
b 0.9 1 0.36
c 0.1 1 0.36
d 0.6 0 0
e 0.5 0.493 0.408
f 0.4 0 0

Table 2: Normalised Borda score and divisiveness for α = 0, 1 of
issues in the profile of Example 1 with k = 5 and ℓ = 4.

The most divisive issue for DIVBorda
0 is b and c, who are at

the opposite extreme of the ordering for the first agent with re-
spect to the rest of the population, while the most divisive for
DIVBorda

1 are a and e, who are second or second-to-last for
all agents, yet this divides the population into two. Observe
that this holds for any k ≥ 5, showing a class of examples
where the ranking of α-divisiveness differs significantly de-
pending on if α = 0 or α = 1.

2.3 Rank-variance
Related literature in the social sciences often measures po-
larisation using notions of variance, which we now adapt to
rankings. Let µP(a) = 1

n

∑
i∈N rank(a,≻i) be the aver-

age rank of an issue a ∈ I in a profile of rankings P . The
rank-variance of issue a is defined as follows:

V ar(a,P) =
1

n

∑
i∈N

(rank(a,≻i)− µP(a))
2

The following example shows a profile in which the rank-
ing of issues by variance differs from divisiveness (assuming
α = 0 and s = Borda).
Example 2. Consider the following preference profile:

≻1 (10 agents) abcde
≻2 (10 agents) ebcda
≻3 (1 agent) acbde
≻4 (1 agent) ebdca

The rank-variance and the divisiveness using Borda and
α = 0 for each issue is the following:

a b c d e

V ar(x,P) 4 0.045 0.090 0.045 4
DIVBorda(x) 1 0.074 0.037 0.074 1

This shows that issue c has higher variance than issues b
and d but lower divisiveness (Kendall’s tau correlation be-
tween the two rankings is τ ≈ 0.5).

Unlike other notions of polarisation, we focus on the
comparisons between our divisiveness measures and rank-
variance as they both return information about a single issue
rather than about the population as a whole.

3 Measuring Divisiveness and Polarisation
In this section, we present some basic properties of our defi-
nition of divisiveness, showing in particular that with α = 0
it does not coincide nor is correlated with standard notions of
polarisation. We also show how our definitions can be used to
identify the sub-population that is most divided on an issue.

3.1 Divisiveness Bounds
We first observe that if s is a polynomially computable func-
tion, then so is DIVs

α for any α. Moreover, if s is anonymous
and neutral (as in the classical social choice terminology2) so
is DIVs

α for any α. A direct consequence of our definitions is
that 0 ≤ DIVs

α(a,P) ≤ 1, for any α. We now characterise
the extremes of the spectrum.

First we give the sufficient conditions for minimal divisive-
ness with the Borda and Copeland scorings. Let a profile
P be rank-unanimous on a if for all i, j ∈ N we have that
rank(a,≻i)=rank(a,≻j). Profile P is unanimous if ≻i=≻j

for all i, j ∈ N . The next result shows that divisiveness is
minimal when consensus is maximal, following this, we will
discuss the converse of this statement in a few different ways.

2A function taking profiles of linear orders as input is anonymous
if permuting the individual rankings does not change the result. It is
neutral if all issues are treated equally, i.e., permuting the name of
the issues results in the ranking obtained by applying the same name
permutation to the previous result.
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Proposition 1. If profile P is rank-unanimous on a then
DIVBorda

α (a,P) = 0, while not necessarily true for DIVCop
α .

If P is unanimous, then DIVCop
α (a,P) = 0 for all a ∈ I.

Proof. If P is rank-unanimous on a, then for all b ∈ I\{a}
we have that Borda(a,Pa≻b) − Borda(a,Pb≻a) = 0, and
thus DIVs

α(a,P) = 0. This does not necessarily hold for
DIVCop : consider 3 agents with the following rankings over
issues I = {a, b, c, d}, forming profile P: ≻1= abcd,
≻2= cbad, and ≻3= dbac. Observe that for all i ∈ N that
rank(b,≻i) = 2, hence P is rank-unanimous on b. However,
DIVCop

0 (b,P) = 1
3 . Finally, if P is unanimous, any notion of

divisiveness will be equal to zero, as either Na≻b or Nb≻a is
empty for any pair a, b ∈ I.

Profile P is fully polarised if it is split into two equally-
sized sub-populations with completely opposite preferences
(m is even). If n is even, P is fully polarised if ≻i=≻1 for
i = 1, . . . , n/2, and ≻i=≻2 for i = n/2 + 1, . . . , n, where
rank(a,≻1) = m − rank(a,≻2) for all a ∈ I . If n is odd,
one of the sub-populations has one more agent than the other.
Let a be the top-ranked issue in ≻1 (hence ranked last in ≻2).
We show that divisiveness is maximal in such profiles:
Proposition 2. If P is fully polarised and n is even, then
DIVBorda

α (a,P) = 1 when ℓ = 4, where a is the top-ranked
issue in one of the two sub-populations. If P is fully polarised
and n is odd, then DIVCop

α (a,P) equals the α-factor.

Proof. If P is fully polarised and n is even, then each sum-
mand of DIVBorda

α (a,P) is 1, as all agents in Na≻b rank a
first, all in Nb≻a rank a last, and #(Na≻b)=#(Nb≻a). Thus,
DIVBorda

α (a,P)=1. If P is fully polarised and n is odd, then
a is a Condorcet winner in the larger sub-population and a
Condorcet loser in the other. Thus, DIVs(a,Na>b,P)=1
for each b ∈ I\{a}. As sub-populations differ by 1,

DIVCop
α (a,P) =

(
n2−1
n2

)α

when ℓ = 4.

In fully polarised profiles, two issues have maximal divi-
siveness: the top-ranked issues in ≻1 and ≻2. Moreover, in
any profile, at most two issues can have maximal divisiveness.

Finally, uniform profiles contain each of the m! possible
rankings over the m issues, and each ranking is equally rep-
resented in the profile (note that n is even). They represent
a fully noisy population of preferences. While the measure
of polarisation proposed by Can et al. [2015] cannot distin-
guish between uniform and fully polarised profiles, we show
that the ranking of divisiveness is strict in the former while
in the latter all issues have the same divisiveness. The fol-
lowing proposition is straightforward due to the symmetry of
uniform profiles:
Proposition 3. If P is a uniform profile, then DIVs

α(a,P) =
DIVs

α(a,P) for all a, b ∈ I.

For a uniform profile P , DIVBorda
α (a,P) = 1

m−1 when
ℓ = 4, as the average Borda score between two sub-
populations Na≻b and Nb≻a differs by 1/m−1. Whereas
DIVCop

α (a,P) = 1 when ℓ = 4, as the divide of the two sub-
populations always ensures that a always wins every majority
contest in Na≻b and always loses in Nb≻a.

3 6 9 12 15 18
# issues

0.2

0.0

0.2

0.4

0.6

0.8

1.0

KT

UM10

KT(DivBorda,DivCopeland)
KT(DivBorda,Variance)
KT(DivCopeland,Variance)

Figure 1: The average Kendall’s tau correlation between each pair
of divisiveness rankings using Borda and Copeland with α = 0,
and the rank variance, varying the number of issues. The average is
taken from 100 profiles with 100 agents generated by UM10.

3.2 Divisiveness and Rank Variance
We conducted experiments on synthetic preference profiles
to test whether divisiveness with α = 0 correlates with the
rank-variance defined in Section 2.3. We computed Kendall’s
tau correlation (KT) of DIVBorda

0 and DIVCop
0 with the rank

variance (cf. Section 2.3). We tested 100 profiles of rankings
generated via the impartial culture (IC) and the Urn model
with a correlation of 10% and 50% (named UM10 and UM50,
respectively). Rankings were generated using the PrefLib li-
brary [Mattei and Walsh, 2017, 2013].

Using the Urn model with 10% correlation as an exam-
ple, we plot in Figure 1 the average Kendall’s tau correla-
tion. We observe that the three measures are correlated when
profiles are on a few issues but that the values of correlation
decrease significantly as we increase the number of issues,
and therefore increase the possible rankings for the measures
to return. The correlation between the rank variance and
the divisiveness computed using Borda is higher than using
Copeland. The correlation between divisiveness using Borda
and divisiveness using Copeland shows a similar decreasing
trend. Similar results are captured for the impartial culture
scenario, but the correlation decreases even more for the case
of KT (DIVBorda

0 , DIVCop
0 ) and KT (DIVCop

0 ,Variance). A
possible explanation of this decreasing correlation is that
rank-variance only considers an issue’s position in each in-
dividual ranking discarding which the rankings’ structures
(which are ranked above or below the issue in question).

3.3 Maximally Divided Sub-Populations
In addition to providing a ranking of issues based on their
divisiveness, Definition 2 can also be used to identify the par-
tition that maximally divides the population for an issue. This
is a seemingly hard computational problem, as there is an
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exponential number of sub-populations to consider, but we
show that it can be solved efficiently for the Borda score.
Proposition 4. For any profile P and issue a ∈ I, finding the
sub-population X ⊆ N that maximises DIVBorda

0 (a,X ,P)
can be done in polynomial time.

Proof. Consider an arbitrary preference profile P . For an
arbitrary issue a ∈ I, we will use the following algorithm
to find the sub-population X such that DIVBorda

0 (a,X ,P) is
maximal. We first order the agents with respect to their rank-
ing of issue a. Thus, without loss of generality, we can as-
sume that for each i ∈ [1, n− 1] we have that rank(a,≻i) ≥
rank(a,≻i+1). Note that if two agents rank a at the same
level, their ordering is irrelevant. We will now prove that
any sub-population X that gives the maximum value of
DIVBorda(a,X ,P) will partition N such that for some k ∈
[1, n − 1] we have that X = {1, · · · k} and thus N\X =
{k + 1, · · · , n}. Our polynomial algorithm then tests each
of the n − 1 partitions defined by Xk = {1, · · · , k} and re-
turns the one that maximises DIVBorda

0 (a,Xk,P). Clearly, in
each of these partitions Xk, calculating DIVBorda

0 (a,Xk,P)
can be done in polynomial time.

We now prove that any X that maximises
DIVBorda

0 (a,X ,P) is of the form Xk = {1, · · · , k} for
some k. To do so, we consider some X such that there exists
some i ∈ X yet i − z /∈ X , for z ∈ [1, i − 1]. We need to
show that the set X ′ = (X\{i}) ∪ {i − z} is more divisive
than X , thus DIVBorda

0 (a,X ′,P) ≥ DIVBorda
0 (a,X ,P).

It is clear that Borda(a,PX ) ≤ Borda(a,PX ′) due to our
assumption on the ordering of the agents in P in decreasing
order of rank of a. For similar reasons, we have that
Borda(a,PN\X ) ≥ Borda(a,PN\X ′). Therefore, it must
be the case that DIVBorda

0 (a,X ′,P) ≥ DIVBorda
0 (a,X ,P).

Thus, we can transform any X that maximises divisiveness
into a sub-population of the form Xk by performing a finite
number of swaps, as described above.

Determining the complexity of finding maximally divided
sub-populations under DIVCop

0 does not seem trivial, and we
leave it as an open problem.

4 Divisiveness Control
Manipulation and control have been widely studied for rank
aggregation procedures. Manipulation is when an individ-
ual misrepresents their reported ranking to improve the score
of their favourite candidate. A classical result showed that
manipulation can be performed in polynomial time for the
Borda score [Bartholdi et al., 1989]. Instead, control is when
an external agent aims at altering the score of a designated
candidate by performing actions such as removing agents or
candidates from the profile of ranking. To give an exam-
ple, preventing a candidate from being the Copeland winner
by adding new rankings was shown to be a computationally
hard problem. For an introduction to the computational com-
plexity of these problems, we refer to the survey from Fal-
iszewski and Rothe [2016]. In this section, we focus on two
approaches to control the measure of divisiveness: (i) by re-
moving pairwise comparisons from the agents’ rankings and

Figure 2: The average Kendall’s tau correlation between the divi-
siveness ranking under DIVBorda

0 computed on the full ranking with
respect to incomplete rankings. The horizontal axis shows the per-
centage of pairwise comparisons of the incomplete profile with re-
spect to the complete one. The experiment is run on 100 preference
profiles drawn from UM10. The different markers on the lines rep-
resent different numbers of issues in {4, 6, 8, 10, 14, 18}

(ii) by adding new agents (which could, e.g., be performed
by bots on any platform that crowdsources individual prefer-
ences). This section focuses on the less studied divisiveness
measure with α=0 and hence we omit α from DIVs

α.

4.1 Removing Pairwise Comparisons
This section studies the disruption of the divisiveness mea-
sure by the deletion of pairwise comparisons from the rank-
ings. This can be thought of as sabotage, as the control ac-
tions here do not have a clear goal, e.g., making a single issue
the most divisive one. Instead, the aim of this control problem
is to disrupt the divisiveness ranking such that it no longer re-
sembles the ranking under complete preferences. To do so,
we evaluate through simulations what percentage of pairwise
comparisons of the agents’ full rankings are required to be
able to compute the divisiveness measure accurately.

As we are removing parts of the rankings given by the
agents, we need to compute divisiveness on incomplete rank-
ings as in the original definition by Navarrete et al. [2022].
When s = Cop, we see that the definition of divisiveness
is well-defined on incomplete rankings. However, on incom-
plete rankings, we use the win rate instead of Borda when
calculating the divisiveness, noting that they are equivalent
on complete rankings. We define the win rate of an issue a to
be

∑
b∈I\{a}

#(Na>b)
#(Na≻b∪Nb≻a)·(m−1) .

We generated 100 profiles for each of the three preference
generation methods IC, UM10, and UM50, varying the num-
ber of issues m ∈ [3, 18]. We compared the average Kendall’s
tau correlation between the divisiveness ranking computed
on the full rankings and the adapted measure of divisive-
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ness computed on sub-profiles containing X% of the pairwise
comparisons of the complete one (X ∈ [10, 100] increasing
by increments of 10). Here, pairwise comparisons are deleted
from the profile at random.

The main message of this simulation is that disrupting di-
visiveness by deleting pairwise comparisons is easy. Figure 2
focuses on the case when the average KT is taken over 100
profiles with 100 agents created via the UM10 method. It
shows that if there are sufficiently many issues (say more than
10), then deleting between 10 and 20% of the pairwise com-
parisons in the profile is sufficient to significantly decrease
the accuracy of divisiveness (the correlation between com-
plete and incomplete divisiveness is below 0.5). We also ob-
serve an inversion of the curves when the number of issues
exceeds 6, tending towards an exponential shape. Our find-
ings imply that with a large number of issues and under the
assumption of moderately correlated preferences, the almost-
totality of the pairwise comparisons needs to be elicited from
agents to obtain an accurate measure of divisiveness.

4.2 Control by Adding Rankings
The next form of control we study is the addition of fake
rankings by an external agent. Modelling this type of con-
trol is particularly realistic when the divisiveness measures
are used in online forums, where attacks by bots are com-
monplace (such as in the experimental setting of Navarrete
et al. [2022]). Similar problems were previously studied in
the literature, such as Sybil attacks in online elections [Meir
et al., 2022]. We start by presenting an example in which a
single agent is able to alter the divisiveness ranking.
Example 3. Consider four agents and four issues I =
{a, b, c, d}. Consider that three agents have submitted their
preferences, one agent with ≻1, and two with ≻2. The fourth
agent has the truthful preference of ≻3:

≻1 (1 agent) bcad
≻2 (2 agents) abcd
≻3 (1 agent) acbd

If the fourth agent submits their truthful preference, we have
that: DIVBorda(a,P) = 12/27, DIVBorda(b,P) = 7/27,
DIVBorda(c,P) = 8/27, and DIVBorda(d,P) = 0. Thus,
a is currently the most divisive issue. As all agents agree that
d is the worst of all the issues, it is the least divisive issue.

If the agent with truthful preference ≻3 wants to manip-
ulate the divisiveness measure in order to make the issue b
more divisive, then they can submit a preference ≻′

3= cadb
giving profile P ′ = (≻1, (2,≻2),≻′

3). In doing so, the mea-
sure of divisiveness changes as such: DIVBorda(a,P ′) =
19/54, DIVBorda(b,P ′) = 38/54, DIVBorda(c,P ′) = 19/54,
and DIVBorda(d,P ′) = 6/54. Thus, by submitting ≻′

3, the
agent succeeded in making b the most divisive issue.

Example 3 shows that one agent can manipulate the divi-
siveness measure. We now show that the problem of control
by adding rankings can be solved easily by showing a simple
heuristic, which we call INJECTs.

INJECTs takes as input a profile P and an issue a which it
aims to make the most divisive by adding new agents to the
profile. It first computes the ranking over issues defined by

s(x,P), which we denote by ≻s. This is used to create the
two rankings which will be added to the profile to increase
the divisiveness of a, namely ≻odd and ≻even. The former
modifies ≻s by putting issue a first and leaving the rest of the
ranking unchanged. The latter modifies ≻s symmetrically by
putting a in the last position and leaving the remaining part of
the order unchanged. In this way, ≻odd and ≻even resemble
the ranking of agreements computed using s, with the only
difference being the position of a that alternates between first
and last. INJECTs then alternates between adding ≻odd and
≻even to profile P until the issue a is the most divisive. We
show that INJECTs always terminates and succeeds in making
the target issue the most divisive.

Proposition 5. INJECTBorda always terminates for α = 0.

Proof. Let a be the target issue. If a is already the most di-
visive issue in P then INJECTBorda terminates immediately.
Else, we first prove that DIVBorda(a,P ′) > DIVBorda(a,P)
for any profile P ′ obtained by using INJECTBorda on a pro-
file P . Take an arbitrary profile P , issue a ∈ I, and k
such that P ′ = (P , (k,≻odd), (k,≻even)), where N ′ are
the agents in P ′. Take an arbitrary b ∈ I\{a}, we have
that DIVBorda(a,N ′

a≻b,P ′) > DIVBorda(a,Na≻b,P) as
Borda(a,P ′

a≻b) ≥ Borda(a,Pa≻b) and Borda(a,Pb≻a) ≥
Borda(a,P ′

b≻a), with at least one of the two inequalities
being strict. To see this, observe that all injected agents
rank a the highest in P ′

a≻b and the lowest in P ′
b≻a (and

a is not the most divisive issue). Thus, we proved that
DIVBorda(a,P ′) tends to 1 as k increases. To conclude, note
that the rank of any issue b ∈ I\{a} in the injected sub-
profile ((k,≻even),(k,≻odd)) varies only by one position.
Thus, with k large enough the divisiveness of any issue b ̸= a
cannot tend to 1.

Proposition 6. INJECTCop always terminates in polynomial
time for α = 0.

Proof. Let k = 2n + 2 and a be the target issue, where n is
the number of voters in P . By definition, DIVCop

0 (a,P ′) =
1/m−1

∑
b∈I\{a} |Cop(a,P ′

a≻b) − Cop(a,P ′
a≻b)|. As k is

sufficiently large, for all b ∈ I\{a} we have that a is a Con-
dorcet winner in P ′

a≻b, since n + 1 copies of ≻odd were
added with a as the top issue. Symmetrically, a is a Con-
dorcet loser in P ′

b≻a. Thus, we have that Cop(a,PNa≻b
) =

1 and Cop(a,PNb≻a
) = 0, which in turn implies that

DIVCop
0 (a,P ′) = 1. By the uniqueness of a Condorcet

winner, we have that no other issue b ̸= a can have
DIVCop

0 (b,P ′) = 1, concluding the proof.

The previous result shows that INJECTs can manipulate the
divisiveness ranking. However, it does not provide a bound
on how many agents INJECTBorda are required and only pro-
vides a large bound for INJECTCop , namely k = 2n + 2.
To complement this, we conducted simulations to estimate
how many new agents INJECTs needs to alter the divisiveness
ranking. For each m ∈ [2, 11] and each of three profile gen-
eration methods (IC, UM10, UM50), we considered 100 pro-
files to test how many new agents INJECTs required to make
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Figure 3: Percentage of new agents added by INJECTBorda to make
the least divisive issue the most divisive. The average divisiveness
of the other issues is also plotted in grey. Averages are computed
over 100 IC profiles of 100 agents and 8 issues.

the target issue the most divisive. Figure 3 focuses on IC pro-
files with 8 issues. It shows the divisiveness rankings of the
8 issues in the initial profile (at 0%) and their evolution when
INJECTBorda inserts additional rankings to make the least di-
visive issue the most divisive (the highlighted line at the 8th

position). In particular, by adding around 35% new agents
we can make the least divisive issue the most via our simple
algorithm. In crowdsourcing applications with wide partici-
pation this percentage implies that too many additional agents
might need to be injected without being noticed. Yet, we re-
call that INJECTs is a simple heuristic, and this percentage
could be lower with a more efficient procedure. Furthermore,
we see that the average divisiveness ranking of the other is-
sues converges to the middle of the ranking. We obtained
similar results by varying the number of issues and the pro-
file generation methods.

We also tested how many additional agents INJECTBorda

required to reach easier targets, such as making either the sec-
ond most divisive issue or an issue in the middle of the divi-
siveness ranking the most divisive issue. Figure 4 presents
our findings for s = Borda and m = 8, computed on 100
profiles generated using either IC or UM50. Clearly, if the
task of control is harder, INJECTBorda needs additional agents
to meet its target. More importantly, if we compare the per-
formance of INJECTBorda on different preference generation
methods, we see that more correlated profiles (using UM50
in our case) are harder to control no matter the target issue.

Given the results, we see that INJECTs can be an effective
way of manipulating, but it simulates a static scenario. We
also note that this way of manipulating requires very little in-
formation about the original profile, i.e., the controlling agent
just need to know the current ranking of agreement given by
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Figure 4: Percentage of agents added by INJECTBorda with 8 issues,
to make the 2nd, 4th or 8th most divisive issue the most. The average
is taken over 100 profiles for 100 agents generated using IC and
UM50 (represented by a solid or dashed line, respectively).

the scoring s. Furthermore, our results show that INJECTs

can be used just to increase an issue’s rank in the divisive-
ness ranking, rather than insisting that it becomes the most
divisive.

5 Conclusions and Future Work
This paper extends the notion of divisiveness given by Navar-
rete et al. [2022] to a family of measures and applies them
to complete rankings over issues. We ground these measures
by highlighting their behaviour at limit cases and comparing
them to other notions of disagreement and polarisation. We
also point out how we can find a sub-population for which
an issue is most divisive in polynomial time when consider-
ing the Borda score, yet, no such algorithm was found for the
Copeland score. The main contribution of this paper is the
study of the robustness of the divisiveness measures to ex-
ternal control. We showed via simulations that by randomly
removing pairwise comparisons from the rankings, the cor-
relation between the divisiveness ranking of the full vs par-
tial rankings can drop significantly, especially when there are
many issues. Furthermore, we show that a simple algorithm
can affect the divisiveness ranking by inserting (a possibly
large number of) controlled fake rankings.

This paper opens many directions for future work. First,
how can our divisiveness measures be modified to be more
robust to external control. Second, our divisiveness measures
can be used to compare how divisive or polarised is a given
population (instead of focusing on comparisons of single is-
sues). Finally, following in the social choice theory tradition,
we will explore axiomatic characterisations of divisiveness.
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