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Abstract

Inferring bargainers’ private valuations on items
from their decisions is crucial for analyzing their
strategic behaviors in bilateral sequential bargain-
ing. Most existing approaches that infer agents’
private information from observable data either
rely on strong equilibrium assumptions or re-
quire a careful design of agents’ behavior mod-
els. To overcome these weaknesses, we propose
a Bayesian Learning-based Valuation Inference
(BLUE) framework. Our key idea is to derive feasi-
ble intervals of bargainers’ private valuations from
their behavior data, using the fact that most bar-
gainers do not choose strictly dominated strategies.
We leverage these feasible intervals to guide our
inference. Specifically, we first model each bar-
gainer’s behavior function (which maps his valu-
ation and bargaining history to decisions) via a re-
current neural network. Second, we learn these be-
havior functions by utilizing a novel loss function
defined based on feasible intervals. Third, we de-
rive the posterior distributions of bargainers’ valu-
ations according to their behavior data and learned
behavior functions. Moreover, we account for the
heterogeneity of bargainer behaviors, and propose
a clustering algorithm (K-Loss) to improve the effi-
ciency of learning these behaviors. Experiments on
both synthetic and real bargaining data show that
our inference approach outperforms baselines.

1 Introduction
With the growing popularity of e-commerce, the bilateral se-
quential bargaining mechanisms that allow for haggling be-
tween sellers and potential buyers have emerged on online
platforms [Gujral, 2016; Huang et al., 2013]. One prereq-
uisite for designing and optimizing these bargaining mecha-
nisms is analyzing bargainers’ strategic behaviors. To achieve
this target, it is important to infer bargainers’ private valua-
tions on the negotiated items. For example, if a seller’s val-
uation on an item is known, it is easy to analyze whether the
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Figure 1: An Example of Our Inference Problem.

seller deceptively asks a high price during bargaining. More-
over, knowing the seller’s valuation helps quantify the effi-
ciency and equality of the bargaining outcome.

Many prior works applied an equilibrium-based approach
to infer agents’ private information (e.g., their valuations on
items) [Athey and Haile, 2002; Jiang and Leyton-Brown,
2007; Athey and Nekipelov, 2010; Bajari et al., 2013]. The
approach assumes that all agents are fully rational, each
agent’s action is the best response to others’ actions, and their
interactions always converge to a Nash equilibrium. It infers
each agent’s private information by computing the inverse
of his best response function given his observed behavior.
However, this equilibrium-based approach cannot solve the
valuation inference problem for real-world bargaining plat-
forms. This is because the strong assumption that agents are
fully rational and play equilibrium strategies may not hold
in practice [Goeree and Holt, 2001; Kagel and Roth, 2020;
Noti, 2021]. Bargaining platforms usually involve millions of
bargainers, who have different capabilities to analyze incom-
plete information extensive-form games and distinct beliefs
about their opponents’ information.

We focus on inferring bargainers’ private valuations based
on their strategic behaviors on bilateral bargaining platforms,
without relying on equilibrium assumptions. An example of
these platforms is eBay’s Best Offer [Backus et al., 2020],
where millions of sellers negotiate with buyers over their
listed items. We use a thread to denote the price sequence
generated from a seller-buyer pair’s negotiation over an item,
and a thread may consist of multiple rounds. In each round,
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given the opponent’s last offer, the seller and buyer can accept
it, decline it, or make a counteroffer.

A seller may negotiate with multiple buyers over the price
of an item (or different copies of the same item, e.g., coupon
cards, commemorative stamps, artworks, and sports trading
cards). The seller’s valuation on the item across these nego-
tiations can usually be approximated as a constant, and we
attempt to infer it by jointly analyzing the threads of these
negotiations. Figure 1 shows an example, where a seller has
three different threads after negotiating a book’s price with
three buyers. Given the three thread records, we intend to
infer the seller’s valuation on this book.

The main challenge of solving our problem is that sell-
ers’ private valuations cannot be directly observed in the
bargaining data. This implies that we do not have labels
to guide the valuation inference process. We address the
challenge and propose a Bayesian Learning-based Valuation
Inference (BLUE) scheme. Our key idea is to define and de-
rive feasible intervals of sellers’ private valuations according
to their observed behaviors and leverage these feasible inter-
vals to guide the inference of private valuations. Specifically,
we make a mild rationality assumption that sellers do not
choose strictly dominated strategies [Luce and Raiffa, 1989;
Gopalakrishnan et al., 2018], e.g., sellers never propose or
agree on prices lower than their valuations. This assumption
enables us to utilize sellers’ behavior data to derive posterior
feasible intervals of their private valuations, which will be
used to guide the inference of these valuations.

Next, we briefly introduce our inference framework. First,
we model each seller’s behavior function (which maps his
bargaining history and private valuation to his decision) via a
recurrent neural network. An accurate behavior function en-
ables us to infer the seller’s valuation from his observed deci-
sion. Second, we learn these behavior functions (i.e., the pa-
rameters of the neural networks) using sellers’ behavior data.
We derive feasible intervals of valuations according to the ra-
tionality assumption, and design a novel loss function based
on the feasible intervals to train the neural networks. Our loss
function ensures that the behaviors characterized by trained
neural networks satisfy the rationality assumption and well fit
the bargaining data. Third, we apply Bayes’ rule to derive the
posterior distributions of sellers’ private valuations based on
sellers’ behavior data and trained neural networks. In addition
to above three steps, we consider the heterogeneity among
sellers’ behaviors, and propose a clustering algorithm to en-
hance the learning of heterogeneous behavior functions.

We evaluate our method on two synthetic datasets and one
large real-world dataset [Backus et al., 2020]. Compared with
baselines, our method achieves more accurate and effective
inference. Our contributions are two-fold:

• On the application side, we develop an effective valua-
tion inference scheme for bilateral bargaining platforms.
With inferred valuations of bargainers, these platforms
can analyze their behaviors more accurately, and further
optimize bargaining mechanisms to induce more bar-
gainers to reach agreements.

• On the methodology side, we propose a novel frame-
work for private information inference, through combin-
ing techniques from both economics and machine learn-

ing. Our framework is especially applicable to practi-
cal environments where agents cannot play equilibrium
strategies due to their limited reasoning capabilities.

2 Related Work
2.1 Unknown Parameter Estimation in Games
Our work is related to the research that utilizes players’ ob-
served actions to estimate unknown parameters of games
(e.g., the payoff matrices in normal-form games). Some
works tackled the estimation problem by assuming that play-
ers play according to Nash equilibria [Varian, 2007; Vorob-
eychik et al., 2007; Waugh et al., 2011; Blum et al., 2014;
Honorio and Ortiz, 2015]. Some recent studies considered
other equilibrium assumptions. For example, [Ling et al.,
2018; Ling et al., 2019; Noti, 2021; Wu et al., 2022] utilized
the quantal-response equilibria (QRE) or Nested Logit QRE
to estimate the parameters in games (such as normal-form
games and Stackelberg games). These equilibrium-based es-
timation methods require strong cognitive and informational
assumptions, e.g., players have full information of others’ pri-
vate preferences. Such requirements are usually unsatisfied
in practical bilateral bargaining, where bargainers have lim-
ited knowledge about others’ private information. In contrast,
our inference scheme only requires bargainers not to choose
strictly dominated strategies, and hence can handle more gen-
eral human behavior in reality.

2.2 Private Information Inference in Auctions
Our work is also closely related to the literature that utilizes
agents’ bidding data to infer their private information in auc-
tions. [Athey and Haile, 2002; Jiang and Leyton-Brown,
2007; Athey and Nekipelov, 2010; Bajari et al., 2013] in-
ferred bidders’ valuations on items according to their bids,
by assuming that they are fully rational and play equilibrium
strategies. An emerging line of research relaxes the full ratio-
nality assumption, and assumes that agents’ strategies can be
captured by specific bounded rational behavior models. For
example, [Noti and Syrgkanis, 2021; Nekipelov et al., 2015;
Nisan and Noti, 2017] inferred the information (e.g., the
value-per-click) of each bidder in sponsored search auctions,
by assuming that each bidder is a no-regret learner and bids
to minimize the regret. These inference schemes require a
careful manual design of agents’ behavior models, and do not
consider the heterogeneity of behaviors across agents. More-
over, they are mainly applicable to repeated auctions, which
are distinct from online bargainings. By contrast, our scheme
does not impose assumptions on the forms of agents’ behav-
ior models. It can automatically characterize bargainers’ het-
erogeneous behaviors using neural networks, instead of man-
ually designing specific unified models for them.

Other related studies include opponent modeling in auto-
mated negotiation [Hindriks and Tykhonov, 2008; Williams
et al., 2011; Chen and Weiss, 2012; Baarslag et al., 2016;
de Jonge, 2022] and preference elicitation [Boutilier et al.,
2006; Guo and Sanner, 2010; Viappiani and Boutilier, 2010;
Vendrov et al., 2020]. Different from these studies, our work
focuses on price negotiation instead of multi-issue negotia-
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Figure 2: A bargaining thread with at most four rounds: s0 is the
seller’s initial price, and the bargaining ends if (i) the seller accepts
the buyer’s offer, or (ii) the buyer accepts the seller’s offer, or (iii)
the buyer declines the seller’s offer.

tion, and learns private information without querying individ-
uals.

3 Problem Formulation
In this section, we introduce the bilateral sequential bargain-
ing, and describe the valuation inference problem.

3.1 Bilateral Sequential Bargaining
We use a bargaining thread to refer to the sequence of price
offers made by a seller-buyer pair bargaining over an item.
The thread consists of at most L bargaining rounds. Let s0
denote the seller’s initial price offer. Given s0, the buyer gives
a counteroffer b1 in the first round. Then, the seller and the
buyer would make decisions in the following way:

• In round i = 1, 2, . . . , L − 1, given the buyer’s price
bi, the seller may (1) accept the offer, (2) make a coun-
teroffer, or (3) decline the offer (i.e., insisting on his last
offer si−1). If the seller accepts bi, the bargaining ends
in round i; otherwise, bargaining goes to the next round.

• In round i = 2, 3, . . . , L − 1, the buyer can also accept,
decline, or counter in response to the seller’s price si−1.
If the buyer accepts or declines si−1, the bargaining ter-
minates in round i; otherwise, it comes to the next round.

• In the final round L, the buyer accepts or declines the
seller’s offer sL−1, and the bargaining ends.

This is known as the alternating offers protocol [Raiffa,
1982], and we show an example of L = 4 in Figure 2.

3.2 Private Valuation Inference Problem
We use v(q)m to denote the private valuation of seller q for item
m. It is defined as the lowest price that seller q can accept for
selling item m. We consider a discrete v

(q)
m , since this lowest

price is normally measured in dollars. This private value v
(q)
m

directly affects seller q’s bargaining behavior, as he seeks to
sell item m with a price higher than v

(q)
m .

Let {(x(qm)
ih , y

(qm)
ih )}Ihi=1 denote the set of labeled data

points about thread h of seller q for item m, where Ih is the
total number of rounds in thread h. Here, y(qm)

ih denotes seller
q’s decision in round i of thread h for item m, and x

(qm)
ih rep-

resents the sequence of all prior offers made before y
(qm)
ih in

thread h. For example, considering the thread in Figure 2,
when i = 1, there are two offers before the seller’s decision
of s1, which indicates that x(qm)

ih = (s0, b1) and y
(qm)
ih = s1.

When i = 2, x(qm)
ih = (s0, b1, s1, b2) and y

(qm)
ih = s2.

We denote all threads that seller q has participated in to
sell item m by H(q)

m = {{(x(qm)
ih , y

(qm)
ih )}Ihi=1}

Hm

h=1, where
Hm is the number of threads related to item m. Then, we
characterize all sellers’ behaviors by thread dataset DH =

{{H(q)
m }Mq

m=1}
Q
q=1, where Q is the number of sellers and Mq

is the number of items that seller q bargains over. We describe
our inference problem as follows:
Problem 1. Given thread datasetDH, we attempt to infer all
sellers’ private valuations on items, i.e., {{v(q)m }Mq

m=1}
Q
q=1.

4 Private Valuation Inference Solution
We first explain our idea of solving Problem 1. Since a
seller’s valuation is usually correlated with his bargaining be-
havior, we propose to model his behavior via a function f

(q)
θ :

(v
(q)
m ,x

(qm)
ih ) → y

(qm)
ih . The function (characterized by pa-

rameters θ) maps seller q’s valuation v
(q)
m and prior offers

x
(qm)
ih to his decision y

(qm)
ih . In particular, y

(qm)
ih belongs

to the set {accept, decline, counter1, . . . , counterN}, where
set {counter1, . . . , counterN} includes all possible counter
prices (e.g., measured in dollars). Once we learn this func-
tion, we can utilize Bayes’ rule to derive the posterior distri-
bution Pr(v

(q)
m |Y(q)

m ;X (q)
m ,θ) for v(q)m :

Pr
(
v(q)m

∣∣∣Y(q)
m ;X (q)

m ,θ
)
=

Pr
(
Y(q)
m

∣∣∣v(q)m ;X (q)
m ,θ

)
Pr
(
v
(q)
m

)
∑
ṽ
(q)
m

Pr
(
Y(q)
m

∣∣∣ṽ(q)m ;X (q)
m ,θ

)
Pr
(
ṽ(q)m

)

=

Hm∏
h=1

Ih∏
i=1

Pr
(
y
(qm)
ih

∣∣∣v(q)m ;x
(qm)
ih ,θ

)
Pr
(
v(q)m

)
∑
ṽ
(q)
m

(
Hm∏
h=1

Ih∏
i=1

Pr
(
y
(qm)
ih

∣∣∣ṽ(q)m ;x
(qm)
ih ,θ

)
Pr
(
ṽ(q)m

)) ,

(1)
where Pr(v

(q)
m ) is the prior probability distribution of v

(q)
m ,

and X (q)
m and Y(q)

m include the prior offers and seller behav-
iors of all threads related to item m and seller q, respectively.
Here, we assume independence among threads to derive the
second equality of (1), which can reduce the computational
complexity of our scheme. With Pr(v

(q)
m |Y(q)

m ;X (q)
m ,θ), we

can infer each v
(q)
m by:

v(q)m = argmax
ṽ
(q)
m

Pr
(
ṽ(q)m

∣∣∣Y(q)
m ;X (q)

m ,θ
)
. (2)

Derivation of (1) requires an accurate behavior model f (q)
θ

to compute Pr(y
(qm)
ih |v(q)m ;x

(qm)
ih ,θ). To achieve this, we de-

sign a novel loss function to optimize θ given thread dataset
DH. Our loss function is defined based on a posterior feasible
interval of v(q)m . Next, we introduce this feasible interval in
Section 4.1, and study the optimization of θ in Section 4.2. To
simplify the explanation, we first assume all sellers have the
same behavior pattern, i.e., f (q)

θ = fθ for all q ∈ {1, . . . , Q}.
In Section 4.3, we extend our solution to the case where sell-
ers have distinct behavior patterns.
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4.1 Feasible Interval of Valuation
In the economics and game theory literature, strictly dom-
inated strategies refer to the strategies that always result in
lower payoffs than alternative strategies regardless of other
players’ strategies [Luce and Raiffa, 1989; Gopalakrishnan et
al., 2018; Qin et al., 2019; Maschler et al., 2020]. We make a
rationality assumption that sellers never choose strictly dom-
inated strategies. Specifically, if the bargaining ends with an
agreement, the seller’s payoff equals the agreed price minus
his valuation; otherwise, his payoff is zero. Under our ra-
tionality assumption, accepting the buyer’s offer implies that
the seller’s valuation is no greater than the agreed price. This
is because once the seller’s valuation is greater than the price,
accepting becomes a strictly dominated strategy and the seller
will not choose this decision. Formally, our rationality as-
sumption is as follows.

Assumption 1. In the bargaining process:(i) if a seller ac-
cepts a buyer’s offer, the seller’s valuation is no greater than
the price; (ii) if a seller declines the buyer’s offer in the last
round, the seller’s valuation is no less than the price; (iii) a
seller never proposes a price less than his valuation.

We define the feasible interval of a seller’s valuation as the
set of all possible valuation values satisfying Assumption 1.
Given thread datasetDH, we could derive the bounds c(q)m and
d
(q)
m of the feasible interval of valuation v

(q)
m as follows:c

(q)
m = max

{
c
(q)
m1, c

(q)
m2, . . . , c

(q)
mh, . . . , c

(q)
mHm

}
,

d
(q)
m = min

{
d
(q)
m1, d

(q)
m2, . . . , d

(q)
mh, . . . , d

(q)
mHm

}
.

Here, we calculate [c(q)m , d
(q)
m ] as the intersections of the feasi-

ble intervals of all Hm threads. For thread h, we calculate its
bounds c(q)mh and d

(q)
mh according to seller q’s decision y

(qm)
Ihh

in

last round Ih: (i) When y
(qm)
Ihh
̸=accept, we have c(q)mh=b

(qm)
Ihh

and d
(q)
mh=min{s(qm)

1h , s
(qm)
2h , . . . , s

(qm)
Ihh
}; (ii) Otherwise, we

have c
(q)
mh=0 and d

(q)
mh=min{b(qm)

Ihh
, s

(qm)
1h , . . . , s

(qm)
(Ih−1)h}.

4.2 Learning of Homogeneous Behavior
Given thread dataset DH and the set of our derived bounds
{{c(q)m , d

(q)
m }Mq

m=1}
Q
q=1, we design a novel loss function to

learn θ. Our loss function consists of the following two parts:
• The first part is related to the rationality assumption.

Given θ, we can infer the seller’s valuation v
(q)
m . With

accurate θ, the inferred v
(q)
m will fall into its feasible in-

terval [c(q)m , d
(q)
m ]. Thus, our loss function’s first part is

the following negative log-likelihood function:

−
Q∑

q=1

Mq∑
m=1

Hm∑
h=1

Ih∑
i=1

logPr
(
c(q)m ≤v(q)m ≤d(q)m

∣∣∣y(qm)
ih ;x

(qm)
ih ,θ

)
.

Here, Pr(c(q)m ≤ v
(q)
m ≤ d

(q)
m |y(qm)

ih ;x
(qm)
ih ,θ) is the prob-

ability that the inferred valuation v
(q)
m belongs to the fea-

sible interval [c(q)m , d
(q)
m ], given the prior offers x(qm)

ih , the
seller decision y

(qm)
ih , and the parameters θ.

Algorithm 1 Homogeneous Behavior Learning Algorithm

Input: Thread dataset DH, prior distribution p(v
(q)
m ), learn-

ing rate η, maximum epoch times T , weight factor α.
Output: Model fθt

.

1: Compute the interval bounds {{c(q)m , d
(q)
m }Mq

m=1}
Q
q=1.

2: Initialize θ with a random θ0, and set t = 0.
3: while t ≤ T and θ does not converge do
4: Compute the gradient ∇(1)

θt
of the first part of the loss

function according to Equation (4).
5: Estimate v

(q)
m given θt based on Equations (1)-(2).

6: Compute the gradient ∇(2)
θt

of the second part of the
loss function (shown in Equation (3)).

7: Update θ: θt+1 ← θt − ηα∇(1)
θt
− η(1− α)∇(2)

θt
.

8: t← t+ 1.
9: end while

10: return θt

• The second part is associated with the accuracy of the
behavior model. With accurate θ, we can predict the
seller decision under its valuation v

(q)
m and prior offers

x
(qm)
ih as fθ(v

(q)
m ,x

(qm)
ih ), and it will be close to the

seller’s actual decision y
(qm)
ih . Hence, the second part

of our loss function is the following function:

Q∑
q=1

Mq∑
m=1

Hm∑
h=1

Ih∑
i=1

L
(
fθ

(
v(q)m ,x

(qm)
ih

)
, y

(qm)
ih

)
, (3)

where L is the cross-entropy loss function. In the im-
plementation, we do not know the actual value of v(q)m ,
which is our inference target. Instead, we use its esti-
mated value, where the estimation is based on (1)-(2).

Our loss function is the weighted sum of the above two parts.
Let α ∈ (0, 1) and 1−α be the weights of the first and second
parts, respectively. By minimizing the loss function over θ,
we can learn a function fθ that both satisfies the rationality
assumption and well fits the seller bargaining behavior.

We design a homogeneous behavior learning algorithm
(Algorithm 1) to learn seller behavior via minimizing the loss
function. In lines 4 to 6 of Algorithm 1, we compute the gra-
dient of our loss function. Specifically, in line 4, we compute
the gradient of the first part of the loss, which is shown in (4).
After getting θ via Algorithm 1, we utilize the Bayes’ rule to
infer each valuation v

(q)
m with Equations (1) and (2).

4.3 Extension for Heterogeneous Behavior
In the presence of heterogeneous behavior, a natural approach
is to learn a behavior model for each seller utilizing only his
thread data. However, each seller may only have a small num-
ber of bargaining threads, which may be insufficient for be-
havior learning. Considering that many sellers have similar
behavior patterns, we propose an algorithm to cluster sellers,
as shown in Algorithm 2.

Specifically, we partition sellers into K clusters (denoted
by {Ck}Kk=1), and the sellers in Ck are assumed to have the
same behavior pattern. Our algorithm iterates between two
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∇(1)
θt

= −
Q∑

q=1

Mq∑
m=1

Hm∑
h=1

Ih∑
i=1

∂log Pr
(
c
(q)
m ≤ v

(q)
m ≤ d

(q)
m

∣∣∣y(qm)
ih ;x

(qm)
ih ,θt

)
∂θt

=

Q∑
q=1

Mq∑
m=1

Hm∑
h=1

Ih∑
i=1



∑
v(q)
m

∂Pr

(
y
(qm)
ih

∣∣∣v(q)
m ;x

(qm)
ih ,θt

)
∂θt

Pr
(
v
(q)
m

)
∑
v(q)
m

Pr
(
y
(qm)
ih

∣∣∣v(q)m ;x
(qm)
ih ,θt

)
Pr
(
v
(q)
m

) −
∑

c(q)m ≤v(q)
m ≤d(q)

m

∂Pr

(
y
(qm)
ih

∣∣∣v(q)
m ;x

(qm)
ih ,θt

)
∂θt

Pr
(
v
(q)
m

)
∑

c(q)m ≤v(q)
m ≤d(q)

m

Pr
(
y
(qm)
ih

∣∣∣v(q)m ;x
(qm)
ih ,θt

)
Pr
(
v
(q)
m

)


.

(4)

Algorithm 2 K-Loss Clustering Algorithm
Input: Thread dataset DH, cluster number K, maximum
epoch times E.
Output: {C1, . . . , CK}.

1: Randomly assign sellers into K clusters {Ck}Kk=1.
2: Let e = 0.
3: while e ≤ E and the clustering does not converge do
4: for k = 1, . . . ,K do
5: Learn behavior function g

(Ck)
θ , only based on the

thread data related to the sellers in cluster Ck.
6: end for
7: Re-assign all sellers according to the prediction losses

of K learned models on the seller thread data, i.e., as-
sign seller q to cluster Ck if g(Ck)

θ has the smallest pre-
diction loss on his bargaining behavior data.

8: e← e+ 1.
9: end while

10: return {C1, . . . , CK}

steps: (i) learning the behavior model of sellers in each clus-
ter, and (ii) updating the assignment of sellers to K clusters
based on the fitness between the sellers’ behavior data and the
learned behavior models. Particularly, we use g(Ck)

θ to denote
the behavior pattern of sellers in cluster Ck. This g

(Ck)
θ is

similar to fθ and can be learned via Algorithm 1. Since we
are mainly concerned with the clustering performance in Al-
gorithm 2, one approach to accelerating the learning of g(Ck)

θ
in line 5 is that we assume uniform valuations across sell-
ers and simplify g

(Ck)
θ as a mapping from seller’s bargaining

thread histories to seller’s decision.
After clustering sellers into K clusters, we further learn

their behavior functions (captured by fθk
: (v

(q)
m ,x

(qm)
ih ) →

y
(qm)
ih , ∀q ∈ Ck) via Algorithm 1. Then, we infer their private

valuations utilizing learned functions based on (1) and (2).

5 Experiments
5.1 Dataset Description
We generate synthetic data by simulating the process of bilat-
eral bargaining (depicted in Figure 2). To model the diversity
of sellers’ and buyers’ behaviors, we consider three kinds of

patterns, i.e., simple, random and payoff-maximization.
• For the simple pattern, an agent accepts the opponent’s

offer as long as he can obtain a non-negative payoff.
• For the random pattern, an agent first estimates its oppo-

nent’s private valuation, and then randomly takes actions
from those that give it a non-negative expected payoff.

• For the payoff-maximization pattern, an agent chooses
the action that maximizes his payoff, given his belief
about the opponent. Specifically, the agent first updates
his belief about the opponent’s valuation based on the
opponent’s prior actions. Then, the agent reasons about
the opponent’s potential response in the new round, and
chooses his action to maximize his expected payoff.

We synthesize two thread datasets (i.e., synthetic data I and
synthetic data II), based on different distributions of agents’
valuations. In synthetic data I and synthetic data II, all
agents’ valuations follow uniform and categorical distribu-
tions, respectively. We let the support of the valuation dis-
tribution be {10, 14, · · · , 98}. In each of synthetic data I and
synthetic data II, we simulate 900 sellers (with bargaining be-
haviors uniformly chosen among the three patterns) and there
are about 120, 000 bargaining threads.

We also conduct experiments on a large dataset collected
from eBay’s Best Offer platform [Backus et al., 2020]. It
contains concrete bargaining information, e.g., seller ID, item
ID, thread ID, and each thread’s complete history. If a seller
only has a limited number of decisions recorded, it is nearly
impossible to infer his valuations on different items. Thus,
we filter out these sellers, and our real dataset includes 32,099
sellers with 358,641 threads.

5.2 Experiment Settings
We compare six learning-based valuation inference methods
(in Appendix A, we show the results of two sampling-based
inference methods):

• BLUE (Bayesian Learning-based Valuation Inference):
We assume all sellers have homogeneous behaviors, and
implement Algorithm 1 for valuation inference.

• BLUE-C (BLUE with Clustering): We first cluster sell-
ers via Algorithm 2, and then make inference for the sell-
ers in each cluster via Algorithm 1.

• DL (Dual Learning): Dual learning [Qin, 2020; He
et al., 2016] is a learning framework that utilizes the
primal-dual structure of AI tasks to advance the learning
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Methods/Datasets G1 G2 G3
Precision Recall Precision Recall Precision Recall

K-Means/D-I 0.647± 0.088 0.629± 0.156 0.480± 0.109 0.479± 0.067 0.543± 0.072 0.809± 0.209
AE-Image/D-I 0.698± 0.084 0.755± 0.118 0.736± 0.088 0.666± 0.136 0.993± 0.008 0.979± 0.027
K-Loss/D-I 0.992± 0.006 0.998± 0.002 0.998± 0.002 0.989± 0.011 1.000± 0.000 1.000± 0.000

K-Means/D-II 0.904± 0.085 0.300± 0.191 0.467± 0.077 0.657± 0.080 0.730± 0.086 0.952± 0.028
AE-Image/D-II 0.701± 0.042 0.776± 0.079 0.763± 0.044 0.661± 0.084 0.976± 0.015 0.993± 0.007
K-Loss/D-II 0.995± 0.003 0.993± 0.002 0.998± 0.002 0.992± 0.003 1.000± 0.000 1.000± 0.000

Table 1: Clustering on Two Synthetic Datasets: D-I and D-II represent synthetic data I and synthetic data II, respectively.

(a) Synthetic Data I. (b) Synthetic Data II.

Figure 3: Convergence of MSEs on Synthetic Validation Data.

process. DL applies the dual learning framework to infer
valuations, by treating valuation inference as the primal
task and behavior prediction as the dual task. In DL, all
sellers are assumed to have homogeneous behaviors.

• DL-C (Dual Learning with Clustering): It extends DL
by considering sellers’ heterogeneous behaviors. When
solving the dual task (i.e., behavior prediction), it uti-
lizes our clustering Algorithm 2 to cluster sellers and
learns behavior models for different clusters separately.

• SL (Single Learning): Unlike DL, single learning only
considers the task of valuation inference. SL learns a
function that uses the thread history and seller decision
as inputs and the inferred valuation as its output.

• SL-C (Single Learning with Clustering): It extends SL
by considering sellers’ heterogeneous behaviors. It clus-
ters sellers via Algorithm 2 and learns valuation infer-
ence models for different clusters separately.

In addition, we also compare different clustering schemes:
• K-Loss: It refers to Algorithm 2 in the last section.
• K-Means: It first learns the latent embedding of each

seller’s behavior via an auto-encoder [Vincent et al.,
2010], and then uses K-means algorithm [Hartigan and
Wong, 1979] to cluster these embeddings.

• AE-Image: Each seller’s behavior is first embedded us-
ing an auto-encoder and then converted into an image.
This scheme then extracts 4, 096-dimensional features
from these behavior images with VGG16 [Simonyan and
Zisserman, 2014], and further partitions sellers into K
clusters based on these features.

Implementation Details
For both synthetic data and real data, we randomly select 80%
of all threads for training, 10% for validation, and 10% for
testing. We model each behavior function fθ via a gated re-
current unit (GRU). The Adam optimizer with a learning rate
of 0.001 is applied for our network training. The epoch num-

(a) Synthetic Data I. (b) Synthetic Data II.

Figure 4: MSEs of Six Methods on Synthetic Testing Data.

ber T is set to 500 with a batch size of 64, and the weight
factor α is set to 0.6. The source code and data are available
at: https://github.com/cuilvye/Bargaining-project.

5.3 Experiment Results
Heterogeneous Behavior Clustering
We evaluate the clustering performance of different methods
on two synthetic datasets, where we know the ground truth of
different sellers’ behavior patterns. Recall that in both syn-
thetic data I and synthetic data II, we simulate 900 sellers
whose behaviors are randomly chosen among three pattern
groups. We denote the three pattern groups by G1, G2, and
G3. Table 1 summarizes the clustering precisions and recalls
of three clustering approaches after five runs of experiments
on G1, G2, and G3. Our K-Loss achieves the best perfor-
mance in all cases, and can accurately assign the sellers with
the same bargaining pattern into the same cluster.

Valuation Inference on Synthetic Data
On the synthetic datasets, we characterize the valuation infer-
ence performance by the mean squared error (MSE), where
the error of an inferred valuation is its squared distance to
the actual valuation. Figure 3 shows the convergence per-
formance of different inference schemes. It plots the MSEs
achieved on synthetic validation data after running these
schemes for different numbers of iterations. We test six ran-
dom seeds, and the shadows in Figure 3 indicate the standard
deviations of MSEs. Our BLUE-C and BLUE converge to
much lower MSEs than other schemes on both datasets.

Figure 4 presents different methods’ average MSEs after
six runs of experiments on the testing data of two synthetic
datasets. BLUE-C achieves the lowest MSE (less than 15.0)
on both datasets, and other methods have relatively large
MSEs (with the smallest MSE being 72.5). BLUE also out-
performs all comparison methods on both datasets. We also
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(a) Synthetic Data I. (b) Synthetic Data II.

Figure 5: RCIRs of Six Methods on Synthetic Testing Data.

(a) Different Neural Networks. (b) Different Inference Methods.

Figure 6: Convergence of RCIRs on Real Validation Data.

notice that clustering-based inference methods perform better
than those without clustering, e.g., DL-C is better than DL.

In addition to MSEs, we compare different inference meth-
ods in terms of the fractions of inferred valuations satis-
fying the rationality assumption. Specifically, we define
Rationality-Compatible Inference Rate (RCIR) as the per-
centage of inferred valuations that belong to the feasible in-
tervals derived based on rationality assumption. Intuitively,
a method achieving a higher RCIR can infer valuations more
accurately. Figure 5 shows the average RCIRs of different
methods after six runs of experiments on the testing data of
synthetic datasets. The RCIRs of our schemes (BLUE-C and
BLUE) are above 90%, and those of other methods are below
67%. This result is consistent with Figure 4, and implies that
RCIR is a good indicator of the inference performance.

Valuation Inference on Real Data
Our real data from eBay does not record sellers’ actual valua-
tions. Hence, we cannot directly compare the MSEs of differ-
ent methods on the real data. Instead, we compare different
methods using two criteria: the RCIR and the ratio of satisfy-
ing the secret bounds (as defined later).

In order to justify our choice of the recurrent neural net-
work (GRU), we investigate the performance of Transformer
under our BLUE-C scheme. Figure 6a presents the RCIRs of
the two neural networks at different iterations on the real val-
idation data. They converge to similar RCIRs. Since Trans-
former has more learning parameters, its training is much
slower than GRU. Hence, we employ GRU to implement all
inference schemes when performing other experiments.

Figure 6b shows the RCIRs of different inference schemes
at different iterations on the real validation data. We can ob-
serve that our BLUE-C and BLUE converge to much higher
RCIRs than other schemes.

We show the performance of different methods on real test-

(a) RCIR. (b) Secret Bounds.

Figure 7: Comparison Between Methods on Real Testing Data.

Random Mean BLUE-C
D-I 66.64± 2.81 41.22± 2.17 12.97± 1.98
D-II 69.89± 4.43 42.89± 1.73 14.71± 3.24

D-R 63.54%± 0.33% 65.49%± 0.60% 77.03%± 0.97%

Table 2: Comparison with Sampling-Based Methods.

ing data. Figure 7a presents different methods’ RCIRs. Our
BLUE-C achieves the highest RCIR (i.e., 89.0%). In Fig-
ure 7b, we compare different methods using a new criterion.
To enable auto-declining and auto-accepting of offers, each
seller can inform eBay of an upper bound and a lower bound
of its private valuation. For example, if a buyer’s offer ex-
ceeds the upper bound, eBay will accept the offer on behalf of
the seller. We call these secret bounds. They are also recored
in eBay’s dataset, and are closely related to the sellers’ ac-
tual private valuations. Figure 7b shows the ratio of inferred
valuations satisfying these secret bounds. Our BLUE-C still
achieves the highest ratio (i.e., 77.0%), while the ratios under
all baselines are no greater than 66.5%.

6 Conclusion
In this paper, we proposed a novel framework for inferring
bargainers’ private valuations on items in bilateral sequential
bargaining. Our inference framework works in general sce-
narios where bargainers may not play equilibrium strategies
due to their limited reasoning capabilities and knowledge. It
can automatically characterize bargainers’ behaviors through
neural networks rather than manually designed models. Our
future research will explore the theoretical foundations of our
methods and extend them to account for time-discounted val-
uations. Another extension is generalizing our framework to
multilateral bargaining, where an agent negotiates the price
of a homogeneous product with different opponents simulta-
neously to elicit a more favorable offer [Thomas and Wilson,
2002; Thomas and Wilson, 2014].

A Comparison with Sampling-Based Methods
We consider two sampling-based methods: Random: select-
ing random values from the feasible intervals; Mean: us-
ing the means of the bounds of feasible intervals. We eval-
uate them based on the mean squared errors on two synthetic
datasets (D-I, D-II) and the ratios of satisfying the secret
bounds on real data (D-R). Table 2 shows that our scheme
outperforms these two methods.
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