
Differentiable Economics for Randomized Affine Maximizer Auctions

Michael Curry1 , Tuomas Sandholm2 and John Dickerson3

1 University of Zurich, ETH AI Center
2 Carnegie Mellon University, Optimized Markets, Inc., Strategic Machine, Inc., Strategy Robot, Inc.

3 University of Maryland
curry@ifi.uzh.ch, sandholm@cs.cmu.edu, johnd@umd.edu

Abstract
A recent approach to automated mechanism de-
sign, differentiable economics, represents auctions
by rich function approximators and optimizes their
performance by gradient descent. The ideal auction
architecture for differentiable economics would be
perfectly strategyproof, support multiple bidders
and items, and be rich enough to represent the op-
timal (i.e. revenue-maximizing) mechanism. So
far, such an architecture does not exist. There
are single-bidder approaches (MenuNet, Rochet-
Net) which are always strategyproof and can rep-
resent optimal mechanisms. RegretNet is multi-
bidder and can approximate any mechanism, but is
only approximately strategyproof. We present an
architecture that supports multiple bidders and is
perfectly strategyproof, but cannot necessarily rep-
resent the optimal mechanism. This architecture is
the classic affine maximizer auction (AMA), mod-
ified to offer lotteries. By using the gradient-based
optimization tools of differentiable economics, we
can now train lottery AMAs, competing with or
outperforming prior approaches in revenue.

1 Introduction
Auctions are a widely-used mechanism for allocating scarce
items that are for sale, in which a centralized auctioneer
solicits bids from auction participants, and based on those
bids, allocates the items (possibly keeping some of them) and
charges some payments. The auctioneer may wish to design
the auction to achieve some goal. The usual assumption is
that the auctioneer has access to a prior distribution over bid-
ders’ valuations. Typically, it is also desired that the auction
be strategyproof, that is, there should be no incentive for bid-
ders to be untruthful in their bids about their valuations.

When the auctioneer wants to maximize the total welfare
of the bidders, the Vickrey-Clarke-Groves (VCG) mechanism,
which is always strategyproof, is also optimal [Vickrey, 1961;
Clarke, 1971; Groves, 1973]. When the auctioneer instead
wants to maximize her revenue (or profit), the problem is sig-
nificantly more challenging.

Myerson [1981] settled the revenue-maximizing strate-
gyproof auction problem when there is one item for sale.

Maskin and Riley [1989] generalized that mechanism to the
case of multiple copies of a single item. However, four
decades later, the multi-item revenue-maximizing auction is
still unknown. Special cases of the two-item setting have been
solved [Armstrong, 2000; Avery and Hendershott, 2000].
There is some theory of strong duality [Daskalakis et al.,
2017; Kash and Frongillo, 2016] for selling multiple items
to a single agent. In some such cases it may be advantageous
to offer lotteries – i.e. award certain items to participants
with some fractional probability. There have also been some
successes for the weaker notion of Bayesian incentive com-
patibility [Cai et al., 2012a; Cai et al., 2012b; Cai et al., 2013;
Kolesnikov et al., 2022]. But for designing dominant-strategy
incentive compatible mechanisms that sell multiple items to
multiple agents there has been little progress despite decades
of research. Yao [2017] presents a result for one special case,
giving an explicit example of a revenue gap between the best
dominant-strategy incentive compatible mechanism and the
best Bayes-Nash incentive compatible mechanism.

Nevertheless, the problem is wide open. Even for the seem-
ingly trivial case of two agents with i.i.d. uniform valuations
over two items, the optimal selling mechanism is not known.

In part motivated by the fact that the theory on this ques-
tion has essentially gotten stuck for decades, Conitzer and
Sandholm [2002; 2003] introduced the idea of automated
mechanism design (AMD): designing the mechanism com-
putationally for the problem instance at hand, as opposed to
trying to analytically derive a general form for the revenue-
maximizing multi-item auction. AMD has since become a
popular research topic. Three different high-level approaches
to AMD have been introduced: 1) designing the mechanism
from scratch in tabular form [Conitzer and Sandholm, 2002],
2) conducting search over the parameters of a mechanism
class where all the mechanisms in the class have some desir-
able properties such as strategyproofness and individual ratio-
nality (the latter incentivizes buyers to participate) [Likhode-
dov and Sandholm, 2004; Likhodedov and Sandholm, 2005;
Sandholm and Likhodedov, 2015], and 3) incremental mech-
anism design where the design starts from some (typically
well-known but not strategyproof) mechanism and then keeps
making changes to the mechanism to improve it [Conitzer and
Sandholm, 2007].

A recent form of incremental mechanism design that capi-
talizes on the modern power of deep learning is called differ-
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Figure 1: Our architecture in relation to other techniques from dif-
ferentiable economics for multi-item revenue-maximizing auction
design. The “holy grail” in the middle of the Venn diagram—that is,
techniques that can represent (i) any auction for (ii) general numbers
of bidders and items while (iii) guaranteeing strategyproofness—has
not been achieved; however, we show that our method achieves (iii)
strategyproofness-by-design for (ii) general numbers of items and
bidders while still improving revenue over baselines.

entiable economics. Dütting et al. [2019] introduced the use
of deep neural networks as function approximators to learn
auctions. Their RegretNet architecture directly learns approx-
imately strategyproof allocation and payment rules for multi-
bidder multi-item auctions. MenuNet [Shen et al., 2019]
and RochetNet [Duetting et al., 2019] are restricted to a sin-
gle bidder, but enforce strategyproofness at the architectural
level.

2 Our Contributions
Ideally, we would like an auction architecture that 1) sup-
ports multiple agents and items, 2) is perfectly strategyproof
by construction, and 3) is always rich enough to represent the
true optimal auction, given enough parameters. Such an ar-
chitecture does not yet exist (Figure 1). RegretNet achieves
1 and 3 only; RochetNet and MenuNet achieve 2 and 3. In
our work, we present an approach that achieves 1 and 2,
though not 3 – a multi-bidder, multi-item auction archi-
tecture which is always perfectly strategyproof.

Consider a classic tool for automated mechanism design
– the family of affine maximizer auctions (AMAs) [Roberts,
1979]. AMAs are essentially versions of the VCG mech-
anism, modified by associating a positive “weight” to each
bidder’s welfare and adding potentially different “boosts”
to all the possible allocations. AMAs are always strate-
gyproof and individually rational like VCG, but revenue can
be significantly increased over VCG by tuning these param-
eters (weights and boosts). Importantly, this can be done
by just using samples of the valuation distribution [Likhode-
dov and Sandholm, 2004; Likhodedov and Sandholm, 2005;
Sandholm and Likhodedov, 2015] rather than the traditional
mechanism design approach of taking the full valuation dis-
tribution as input, which would be prohibitively complex

in these combinatorial settings. Later work considers the
number of samples needed for this in a learning-theoretic
sense [Balcan et al., 2016; Balcan et al., 2018; Balcan et al.,
2021].

Our contribution is to revisit the problem of learning
AMAs, now with differentiable economics. One can view
the paper from at least the following perspectives:

1. It can be seen as an extension of previous work on learn-
ing AMAs, now allowing for lottery allocations. This
means not only learning the weights and boosts, but also
learning over the (continuous) set of lotteries to offer.
Randomization can increase revenue.

2. It can be seen as a multi-bidder generalization of Ro-
chetNet and MenuNet. Restricting our lottery AMAs
to a single bidder essentially recovers these architec-
tures, and for multiple bidders, strategyproofness is
still guaranteed by construction. (However, for general
multi-bidder combinatorial auction settings, AMAs can-
not represent every strategyproof mechanism; there is no
guarantee they can represent an optimal one.)

3. It provides a more interpretable family of mechanisms
to learn using differentiable economics. RegretNet-style
auctions are opaque: they map bid profiles to outcomes
in an arbitrary way. In contrast, the rules for determining
outcomes of an AMA are easy to explain. Moreover, by
the end of training, our learned mechanisms typically
have a small number of possible outcomes which are
easily summarized.

3 Related Work
Differentiable economics Dütting et al. [2019] use the
tools of modern deep learning to learn revenue-maximizing
mechanisms. In particular, they present the RegretNet neu-
ral architecture. The idea is to treat an auction mechanism
as a function mapping bid profiles to allocations and pay-
ments, and directly approximate this function using a neu-
ral network. The loss function consists of a term for revenue
maximization, and another term for minimizing regret – vi-
olations of strategyproofness. RegretNet works quite well,
approximately recovering some known optimal auctions and
outperforming other approaches.

However, its approach has several limitations. In particular,
the learned auctions are only approximately strategyproof –
there is still some small presence of regret, and moreover the
presence of regret can only be measured empirically. Curry
et al. [2020] provides a way to exactly compute regret, which
mitigates this latter limitation. But the former problem re-
mains – a mechanism learned using the RegretNet approach
is not guaranteed to be perfectly strategyproof.

Characterizing strategyproof mechanisms Ro-
chet [1987] shows that for any mechanism with a single
agent, strategyproof mechanisms can be identified with
convex utility functions (as a function of the agent’s true
type). Any strategyproof pair of allocation and payment rules
will induce a convex utility function. An allocation rule can
be derived from any convex utility function by simply taking
its gradient (which also fixes the payment rule).
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Characterizing strategyproof mechanisms for multiple
agents is not so straightforward. Rochet’s characterization
still holds in this case: fixing other bids, agent i’s utility must
be convex as a function of their type, and this must hold for all
agents and for any choice of opponent bids. However, com-
ing up with some universal approximator for the entire class
of functions that has this property is difficult.

Strategyproof architectures Alongside RegretNet,
Dütting et al. [2019] also presents the RochetNet architec-
ture, which is restricted to a single bidder but is perfectly
strategyproof.1 Shen et al. [2019] concurrently present Me-
nuNet, another single-bidder architecture which is perfectly
strategyproof.

Both MenuNet and RochetNet offer possibly-randomized
sets of menu items at different prices. The bidder maximizes
over all offered menu items, inducing a convex utility as a
function of the bidder’s type. As such, MenuNet and Ro-
chetNet will always represent a strategyproof mechanism for
any setting of their parameters. And given enough parame-
ters, they are universal approximators for strategyproof mech-
anisms.

For single-bidder auction design, there is a strong duality
result which can be used to prove optimality of a proposed
mechanism [Daskalakis et al., 2017; Kash and Frongillo,
2016]. The authors of Dütting et al. [2019] and [Shen et
al., 2019] apply these results to their learned auctions, and
discover some previously-unknown optimal auctions.

Further work in differentiable economics Many papers
have built on RegretNet. ALGNet [Rahme et al., 2021b]
gives an improved loss function, which has fewer hyperpa-
rameters, and an improved training algorithm. We use it as a
point of comparison below. Other papers apply the same gen-
eral approach to auctions with fairness or budget constraints
[Kuo et al., 2020; Peri et al., 2021; Feng et al., 2018], add
new inductive biases to the architecture [Curry et al., 2021;
Rahme et al., 2021a; Ivanov et al., 2022; Duan et al., 2022],
or apply similar techniques to other mechanism design prob-
lems [Ravindranath et al., 2021; Golowich et al., 2018; Brero
et al., 2021]. Another line of work uses neural networks
to model agent preferences over possible outcomes [Tac-
chetti et al., 2019; Weissteiner and Seuken, 2020; Weis-
steiner et al., 2020; Brero et al., 2019b; Brero et al., 2019a;
Bachrach et al., 2021; Soumalias et al., 2022].

Automated mechanism design and learning theory for
auctions Affine maximizer auctions (AMAs) are clas-
sic tools for automated mechanism design [Sandholm
and Likhodedov, 2015; Likhodedov and Sandholm, 2004;
Likhodedov and Sandholm, 2005]. In essence, AMAs are
weighted versions of the celebrated Vickrey-Clarke-Groves
(VCG) mechanism [Vickrey, 1961; Clarke, 1971; Groves,
1973]. VCG chooses the welfare-maximizing allocation; an
AMA maximizes a rescaled and shifted version of the wel-
fare. By choosing the parameters of the AMA carefully, per-
formance on metrics other than welfare maximization can be
improved without sacrificing strategyproofness.

1In the appendix, they also present MyersonNet, which is re-
stricted to one item.

Previous work considers the problem of learning high-
performing AMAs from samples using gradient based meth-
ods [Sandholm and Likhodedov, 2015; Likhodedov and
Sandholm, 2004], albeit using different techniques and with-
out considering lotteries. Guo et al. [2017] computes AMA
parameters via linear programming for a particular prob-
lem setting. Other works consider the sample complex-
ity of learning AMAs, treating them as a parameterized
function class [Balcan et al., 2016; Balcan et al., 2018;
Balcan et al., 2021]. Tang and Sandholm [2012] considers
a subset of AMAs for which the optimal revenue can be com-
puted in closed form. Deng et al. [2021] tunes the parameters
of a class of AMAs to improve performance in an online ad-
vertising application.

Lotteries and menu size complexity There are a number
of theoretical results showing that offering lotteries can im-
prove revenue [Briest et al., 2010; Pavlov, 2011; Daskalakis
et al., 2017]. Hart and Nisan [2019] analyze this phenomenon
and give an interesting perspective – in the most general
sense, it is not offering lotteries per se that improves revenue.

Rather, it is that offering more menu items can improve
revenue by allowing finer price discrimination, and there are
always fewer deterministic allocations than possible lotteries.

These results, however, give worst-case revenue gaps
across whole classes of valuations, not a guarantee for any
specific instance. As discussed below, we find that even when
our mechanisms can improve their revenue by offering lot-
teries, they offer relatively few menu items, so performance
improvements are not due to increased menu size.

Approximation guarantees for simple mechanisms
There has been an immense amount of work in the area of
“simple vs. optimal” mechanisms [Hartline and Roughgar-
den, 2009]. A characteristic result is that of Yao [2014],
which shows that when selling multiple items, choosing the
better of selling items separately via a Myerson auction, and
running a VCG mechanism with optimal per-bidder entry
fees, gives a 69-approximation of the optimal BIC revenue.
This result was later improved by Cai et al. [2016] to an
8-approximation for additive buyers. (This is a vast area
of research with many results, e.g [Chawla et al., 2010;
Cai and Zhao, 2017], and we cannot do it justice here, but
Cai et al. [2016] also gives a thorough survey of known
results.)

This line of work is somewhat distinct from automated
mechanism design. While the approximation ratios do apply
to the settings we consider, they are too loose to be meaning-
ful for our purposes. Overall, the focus of automated mecha-
nism design is on computing concrete mechanisms for spe-
cific valuation distributions, rather than finding worst-case
approximation ratios.

Expressiveness of AMAs and Roberts’s Theorem To
what extent can the class of affine maximizer auctions ac-
tually express the optimal strategyproof auction? As men-
tioned, Rochet [1987] shows that all single-agent strate-
gyproof mechanisms can be identified with convex functions.
For multi-agent multi-item settings with unrestricted valua-
tions (meaning every agent may get any positive or negative
utility from any outcome, and may even care about which
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particular items other agents receive), Roberts [1979] shows
that every strategyproof mechanism must take the form of an
AMA.

The settings we consider here do not have unrestricted val-
uations, so Robert’s theorem does not apply. In particular,
Roberts’s theorem does not hold for deterministic combina-
torial auctions where valuations are monotonically increasing
in receiving more items, and the empty set has zero value. All
the valuations we consider have these properties. On the other
hand, for many settings, Lavi et al. [2003] shows that any
implementable allocation rule which satisfies certain natural
conditions must be “almost” an AMA in a certain technical
sense.

This naturally raises the question of to what extent an AMA
(including our learned AMAs) can be guaranteed to approx-
imate the optimal revenue. To the best of our knowledge,
there has been little work on this interesting question despite
decades of study of affine maximizer mechanisms. We see
it as complementary to, but outside the scope of, our work,
which focuses on providing concrete techniques to compute
good auctions for specific problem instances.

4 Affine Maximizer Auctions
4.1 Combinatorial Auction Setting
Consider a setting in which m auction participants are bid-
ding on n items. Each bidder has a private type vi ∈ Rn

denoting how much they value each item. We assume valu-
ations are additive over items – meaning that the value of a
bundle containing multiple items is the sum of each individ-
ual item’s value. We also allow for unit-demand – bidders
only want at most 1 item – which we model as additive val-
uations, with an additional constraint that no allocation will
give a bidder more than 1 item.

Allocations consist of matrices a ∈ Rmn
+ , where aij de-

notes the amount of item j given to bidder i. We require that∑
i aij ≤ 1, so that no item is overallocated. For determin-

istic auctions, we require that aij ∈ {0, 1}. For unit-demand
auctions, we also require that every bidder receives at most 1
item:

∑
j aij ≤ 1. Denote the set of feasible allocations for a

given setting by A ⊂ Rmn. We will often treat A as a set with
elements ak. Payments pi are simply positive scalars. Given
an allocation, bidder i receives utility ui =

∑
j aijvij − pi.

The regret for player i under a given bid profile is defined
as the difference in utility between bidding truthfully and
the best strategic misreport: rgti(v) = maxbi ui(bi, v−i) −
ui(vi). When regret is 0 for every player, and for every bid
profile, the auction is dominant-strategy incentive compatible
(DSIC). In this work, all our auctions have guaranteed zero
regret, but some of the baselines for comparison may have
positive regret.

In addition to requiring our auctions to be DSIC, we also
require individual rationality (IR) – that is, ui ≥ 0 for every
bidder, or equivalently, no truthful bidder will ever pay more
than the value of the items they receive.

4.2 Affine Maximizer Auction Mechanism
Affine maximizer auctions have parameters consisting of
weights wi for each bidder and boosts bk associated with each

allocation ak. Given some bids v for each bidder, the affine
maximizer auction chooses the allocation (and boost) ak, bk
that will maximize the weighted, boosted welfare:

k∗ = argmax
k

∑
i

wi

∑
j

(ak)ijvij + bk (1)

Let a(v) = ak∗ , b(v) = bk∗ .
Then, to compute a payment pi for bidder i, it considers the

counterfactual auction result where bidder i did not partici-
pate. The total decrease in all other bidder’ welfare (weighted
and boosted) between this counterfactual auction and the new
auction is pi:

pi =
1

wi

∑
ℓ̸=i

∑
j

wℓa(v−i)ℓjvℓj + b(v−i)

−

1

wi

∑
ℓ̸=i

∑
j

wℓa(v)ℓjvℓj + b(v)

 (2)

As mentioned above, AMAs (like the VCG mechanism) are
always DSIC. To see why this is the case, observe that
for any fixed set of bids v−i, agent i’s utility ui(vi) =∑

j a(vi, v−i)ijvij − pi(vi, v−i) will be a pointwise maxi-
mum over a set of affine functions (one per possible alloca-
tion), and thus convex. For a more detailed derivation, see
the supplemental material. The choice of the above payment
rule also ensures IR. We additionally require that allocating
nothing and charging nothing always be among the possible
outcomes ak, although this is not strictly required to ensure
IR.

Our Approach Generalizes RochetNet and MenuNet
When there is only one bidder, without loss of generality we
can fix the weights to one and assume welfare when the sin-
gle bidder is removed is zero, recovering the max-over-affine
representation of a strategyproof single-bidder mechanism.
Having done this, we have a set of menu items/allocations,
and the boosts for each allocation correspond to the payment
charged for that menu item. Thus our approach of learning
allocations and boosts by gradient descent directly general-
izes RochetNet [Duetting et al., 2019] and MenuNet [Shen et
al., 2019] (with additive utilities). For more details, see the
supplemental material.

5 Learning Affine Maximizers Via
Differentiable Economics

AMAs have three types of parameters: the bidder weights wi,
the boosts bk, and the allocations ak. (Treating the alloca-
tions of AMAs as learned parameters along with the weights
and boosts is a contribution of our work.) As is typical in
automated mechanism design, we assume access to sampled
truthful valuations, and learn these parameters jointly via gra-
dient descent on the objective −

∑
i pi.

During training, we use the softmax function as a differen-
tiable surrogate for the max and argmax operations: that is,
argmaxk f(ak) ≈ ⟨softmaxτ (f(a1), · · · , f(aK)),a⟩ and
maxk f(ak) ≈ ⟨softmaxτ (f(a1), · · · , f(aK)),f(a)⟩. As
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the softmax temperature parameter τ approaches 0, this ap-
proach recovers the true argmax. Using this soft version
of the AMA definition, we directly compute the total pay-
ment and differentiate it with respect to the parameters via
the Jax autograd system [Bradbury et al., 2018] along with
Haiku [Hennigan et al., 2020] and optax [Hessel et al., 2020].
At test time, we use the learned parameters in the exact AMA
definition, using the regular max operator.

For deterministic auctions, we fix the set ak to be the set
of all feasible allocations. For lottery auctions, we randomly
initialize a large (typically |A| = 4096) set of allocations –
although by the end of training, very few of these are actually
used (discussed below).

We parameterize these allocations ak to ensure that they
are always feasible. Following the approach from Dütting et
al. [2019] , for additive allocations, each allocation is repre-
sented by an m by n+ 1 matrix of unrestricted parameters –
the extra column is for a dummy item representing “no alloca-
tion”. We take an item-wise softmax and truncate the dummy
column to generate a feasible allocation. For unit-demand al-
locations, we follow the approach used in [Ravindranath et
al., 2021], applying the softplus operation to two matrices
of m by n parameters, normalizing row- and column-wise
respectively, and taking the minimum of the result. (For di-
agrams and pseudocode for training, please see the supple-
mental material.)

6 Results
6.1 Hyperparameters and Training
For lottery AMAs, we allow 2048 or 4096 allocations. The
inverse of the softmax temperature parameter is 100; we use
an Adam optimizer with learning rate of 0.01. We train all
auctions for 9000 steps, with 215 fresh valuation samples per
gradient update, on cluster nodes with 2080Ti GPUs. All re-
ported test revenues are on 100000 sampled valuations. Be-
cause the valuation distributions are symmetric, in the cases
tested below we fix bidder weights to 1. To determine which
allocations are actually used, we sample 100000 test valu-
ations, and include any allocation that was chosen for even
one bid profile.

For baselines, we compare against previously reported
results from RegretNet [Duetting et al., 2019], ALGNet
[Rahme et al., 2021b], and AMAs trained using other meth-
ods [Sandholm and Likhodedov, 2015]. Following other au-
tomated mechanism design work, we compare to theoretical
revenues from Myerson auctions of separate items and of the
grand bundle. We also include the lowest-regret version of the
RegretFormer approach of Ivanov et al. [2022]. (Other ver-
sions trade off slightly relaxed enforcement of regret for even
higher revenue than ALGNet and RegretNet.) Since we only
use previously reported results, please refer to the previous
papers for training details of the baselines.

6.2 Revenue Performance
Spherical distribution In order to demonstrate a revenue
improvement by offering lotteries, we consider a particular
valuation distribution which we refer to as the “spherical dis-
tribution” for lack of a better name – this is a distribution on

Figure 2: The ten lottery allocations (and their boosts) actually used
after training an auction. (The auction has many more parameters,
but the 2038 other allocations are never chosen for any of the sam-
pled bids.) One can see that the mechanism does typically offer
lotteries.

a number of discrete, random points, scaled and normalized
according to the proof construction in [Briest et al., 2010].

We construct such a distribution for 4 items with 5 val-
uation points and consider a setting with two unit-demand
bidders, each of whose valuations are sampled i.i.d from this
distribution. We would expect a large gap between revenue
extracted by lotteries and by a deterministic mechanism.

Indeed, we find that this is the case – when we train our
lottery AMA with 2048 allocations on this distribution, it gets
more than twice the revenue of a deterministic AMA (see 1).
Figure 2 shows the final offered allocations and boosts from
a representative mechanism – the auction is actually taking
advantage of randomization.

2-bidder, 2-item uniform setting We also consider a 2-
bidder, 2-item additive auction where item values are inde-
pendently distributed on U [0, 1]. This seems like the most
trivial possible multi-bidder multi-item auction setting, yet it
is so far completely beyond current theory – this makes it an
interesting test case for automated mechanism design. We
train a lottery AMA on this setting and find revenue com-
petitive with both previous AMA approaches [Sandholm and
Likhodedov, 2015; Tang and Sandholm, 2012] as well as the
RegretNet neural network approach (which performs better
but is not perfectly strategyproof) [Duetting et al., 2019].

We outperform the lowest-regret variant of the Regret-
Former [Ivanov et al., 2022], while also having 0 regret. An
interesting observation, though, is that even though our lot-
tery AMA is free to offer lotteries, it does not do so – all
allocations actually offered by the end of training are deter-
ministic, as seen in Figure 3.

Another interesting observation has to do with similarities
to the MBARP auction of [Tang and Sandholm, 2012]. When
selling both items, boosts are higher if they go to the same
agent. They are higher still for withholding one item and
highest for withholding both. This is the same basic pattern
as with the MBARP. It is plausible but not certain that this
mechanism approaches the optimal MBARP.
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AMA Type Max Revenue Min Revenue Mean Revenue Std Revenue

Lottery 2.158 1.87 2.06 0.098
Deterministic 1.462 0.627 0.842 0.279

Table 1: Results from 8 random parameter initializations, with 2048 allocations, on the spherical valuation distribution. The worst lottery
mechanism outperforms the best deterministic mechanism. Moreover, the lottery mechanisms do actually learn to randomize.

Figure 3: All allocations actually used after training for a 2x2 U[0,1]
additive auction (the same setting as compared to in [Likhodedov
and Sandholm, 2004] and Dütting et al. [2019] ). Here, although the
mechanism space is that of randomized mechanisms, the algorithm
learns to offer deterministic allocations. The revenue is comparable
to results in [Likhodedov and Sandholm, 2004].

3-bidder, 10-item uniform setting Finally, we consider
one of the much larger auction settings from Dütting et al.
[2019] – 3 additive bidders with 10 U [0, 1] items. This is a
setting for which previous AMA approaches cannot be ap-
plied as-is. We give our network parameters for 4096 allo-
cations, many fewer than the number of possible determin-
istic allocations in this setting. Results are shown in Table
3, along with baselines. While we do not match the perfor-
mance of RegretNet and related approaches, we do at least
exceed the performance of the separate Myerson and grand
bundling approaches. Some, though probably not most, of
the extra revenue gained by RegretNet and others may be due
to non-zero regret. We also attempted to train a lottery AMA
for the 5 bidder, 10-item uniform case, but found that after
several attempts it failed to outperform the separate Myerson
baseline.

Number of allocations used We observe that although our
auctions are initialized with many parameters, the number of
possible deterministic outcomes may be quite large, the num-
ber of allocations used on any actual valuation profile is typ-
ically quite small. Results are summarized in Table 4 for all
experiments mentioned above.

Effects of parameter initialization Motivated by the lot-
tery ticket hypothesis in neural network training [Frankle and
Carbin, 2019], we consider the effects of overparameteriza-
tion and parameter initialization on performance.

First, we consider training from the same parameter initial-
ization, under a different source of randomness for the data.

Auction Best Revenue Regret

Lottery AMA (ours) 0.868 0
Combinatorial AMA 0.862 0
Separate Myerson 0.833 0
Grand Bundle 0.839 0
MBARP 0.871 0
RegretNet 0.878 < 0.001
ALGNet 0.879 0.00058
RegretFormer (low regret budget) 0.861 0.00006

Table 2: Revenue comparison for 2-bidder, 2-item U[0,1] addi-
tive auction. Our approach is competitive with other approaches.
Combinatorial AMA refers to results from Sandholm and Likhode-
dov [2015]. MBARP is a subset of AMA from Tang and Sand-
holm [2012] where the optimal parameters have been computed
(only for 2 items). RegretNet achieves higher revenue, but possi-
bly due to a small strategyproofness violation. We manage to out-
perform the lowest-regret RegretFormer from Ivanov et al. [2022].
Note that Sandholm and Likhodedov [2015] present many variants,
some of which beat our revenue, although all are comparable.

Auction Best Revenue Regret

Lottery AMA (ours) 5.345 0
Separate Myerson 5.31 0
Grand bundle 5.009 0
RegretNet 5.541 0.002
ALGNet 5.562 0.002
RegretFormer (low regret budget) 5.745 0.00022

Table 3: Revenue comparison for 3-bidder, 10-item U[0,1] additive
auction. We train a lottery AMA with 4096 allocations. It underper-
forms RegretNet and others (although these approaches have a small
strategyproofness violation), but outperforms the separate Myerson
and grand bundling baselines.

We find that starting from the same initialization typically re-
sults in nearly the same allocation indices being chosen, with
Jaccard similarities of .64, .67, and .82 across the indices cho-
sen under the new random data. Starting from a different
parameter initialization, there was no overlap in the indices
chosen. We find that the results are quite similar, which sug-
gests that parameter initialization is important in determining
the end results.

We also consider the opposite approach: take the final
actually-used allocations, look at what values those param-
eters took at initialization before training, and retrain using
only those parameters. In other words, we train a model with
very few parameters “from scratch”, but with an initialization
we hope will perform well – the “winning lottery ticket”. Re-
sults are summarized in Table 5. We indeed find a large gap
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Auction Min Max # Init. # Deterministic

Lottery spherical 8 15 2048 20
Deterministic spherical 6 9 20 20
2x2 U[0,1] 7 10 4096 9
3x10 U[0,1] 58 64 4096 220

Table 4: The number of allocations actually used after 9000 steps of
training, for the experiments given above. For all but the smallest
setting, these quantities are smaller than the number of initial out-
comes as well as the number of possible deterministic outcomes.

Mean Rev. Best Rev.

Winning Ticket (2x2) 0.870 0.872
Small Random (2x2) 0.772 0.777
Winning Ticket (Spherical) 1.836 1.842
Small Random (Spherical) 1.197 1.572

Table 5: We take the actually-used allocations from the best-
performing 2x2 uniform and spherical models – the values of these
parameters before training are the “winning ticket”. We initialize a
lottery AMA using the winning ticket initializations, and train on 4
random data seeds. We also test 4 different random initializations of
the same small number of allocations, and find lower performance.

in performance between the good initialization and randomly-
initialized models with the same number of parameters.

7 Discussion
We see our approach as a first step towards strategyproof ar-
chitectures for multi-agent differentiable economics. On the
one hand, it is a natural generalization of RochetNet and Me-
nuNet. On the other hand, it is also a natural generalization
of classic work on AMAs.

Beyond the obvious advantage of perfect strategyproof-
ness, there are other reasons one might prefer this approach
over RegretNet. In particular, AMAs are interpretable – it’s
easy to simply inspect which allocations are being offered as
possibilities. However, it’s unclear when and whether our ap-
proach can actually represent the true optimal mechanism –
that remains an open theory question. Regardless, we see it
as a useful tool for automated mechanism design in multi-
bidder/item settings.

Lottery ticket hypothesis Our networks are quite sensitive
to initialization – there’s a relatively wide range of perfor-
mance between reinitialized instances of the same architec-
ture shown the same sequence of training data. Moreover, we
found that starting out with a large number of parameters im-
proves performance, even though by the end of training only
a tiny number of these parameters were actually used.

A dependence on initialization, a benefit from overparam-
eterization, and a final model which is effectively sparse
all bring to mind the lottery ticket hypothesis [Frankle and
Carbin, 2019] in deep learning. Indeed, our experimental re-
sults in section 6.2 suggest that some version of the lottery
ticket hypothesis is in play here. We also observe that [Curry
et al., 2020] was able to significantly distill learned auction
networks without harming performance.

8 Future Research
We focused on auctions because there is a large body of
techniques in automated mechanism design and differentiable
economics which provide useful baselines for performance.
We expect that the approach described here could be extended
to other mechanism design problems as long as 1) VCG-style
mechanisms can be used, 2) feasible mechanism outcomes
can be parameterized in a way amenable to gradient-based
learning, and 3) the welfare of an outcome as a function of
agent types can be computed in a way that preserves differen-
tiability. Exploring the use of learned AMAs in new mecha-
nism design settings is a fruitful direction for future work.
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