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Abstract

We investigate the difficulty of finding economi-
cally efficient solutions to coordination problems
on graphs. Our work focuses on two forms of co-
ordination problem: pure-coordination games and
anti-coordination games. We consider three objec-
tives in the context of simple binary-action polyma-
trix games: (i) maximizing welfare, (ii) maximizing
potential, and (iii) finding a welfare-maximizing
Nash equilibrium. We introduce an intermedi-
ate, new graph-partition problem, termed MWDP,
which is of independent interest, and we provide
a complexity dichotomy for it. This dichotomy,
among other results, provides as a corollary a di-
chotomy for Objective (i) for general binary-action
polymatrix games. In addition, it reveals that the
complexity of achieving these objectives varies de-
pending on the form of the coordination problem.
Specifically, Objectives (i) and (ii) can be effi-
ciently solved in pure-coordination games, but are
NP-hard in anti-coordination games. Finally, we
show that objective (iii) is NP-hard even for simple
non-trivial pure-coordination games.

1 Introduction
A coordination problem is one wherein all parties can realize
mutual gains, but only by making mutually consistent deci-
sions. Such problems can range from small-scale issues, such
as arranging where to meet with a friend [Schelling, 1978], to
larger institutional-level issues, such as ensuring the efficient
functioning of organizations [Young, 2001].

Broadly speaking there are two kinds of coordination prob-
lems: “pure-coordination games”, in which it is beneficial to
act the same as others, and “anti-coordination games”, where
it pays to differentiate your behavior from that of others. Ex-
amples of the former include using euros as currency because
others use euros and driving on the same side of the road as
everyone else. Examples of the latter include not supplying a
public good if a neighbor is already doing so, and choosing a
product that is different from the mainstream.

We zoom in on the payoff-structure of coordination prob-
lems and focus on the following question.

i

j
one two

one 2, 1 0, 0
two 0, 0 1, 2

i

j
one two

one 9, 9 2, 10
two 10, 2 0, 0

Figure 1: Examples of coordination games. Left: Pure-coordination
game; Right: anti-coordination game.

Are there characteristics inherent to certain coordi-
nation problems that render them easier to resolve?

In this paper, we adopt the most fundamental frame-
work of multi-player coordination, and model the two
above-mentioned environments as binary-action polymatrix
games [Janovskaya, 1968]. The expressive power of poly-
matrix games has made them the “go-to” method to model
problems ranging from coordination games on graphs [Apt
et al., 2017; Apt et al., 2022; Rahn and Schäfer, 2015] and
additively separable hedonic games [Bogomolnaia and Jack-
son, 2002], to building-blocks for hardness reductions [Chen
et al., 2009; Daskalakis et al., 2009; Deligkas et al., 2022;
Rubinstein, 2018] and applications in protein-function pre-
diction and semi-supervised learning [Elezi et al., 2018;
Vascon et al., 2020].

Formally, a polymatrix game is represented by a graph,
where every vertex corresponds to a player, and every edge
corresponds to a two-player game that is played between
the adjacent vertices. A player’s payoff is the sum of pay-
offs earned from interacting with every player in their neigh-
borhood, where the same action must be used with each.
The graph structure captures the dependencies of the players,
while the payoff structure of the two-player games models the
nature of each pairwise interaction that can, in theory, vary
arbitrarily: from settings of pure competition to those with
perfectly aligned interests. In pure-coordination polymatrix
games, every two-player game has as pure Nash equilibria
the two strategy profiles where the players choose the same
action. On the other hand, in anti-coordination polymatrix
games, every two-player game has as pure Nash equilibria
the two strategy profiles where the players choose different
actions. See Fig. 1 for 2× 2 example of each.

1.1 Our Contribution
We provide a comprehensive study for the complexity-
landscape of economically-efficient outcomes for binary-
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action pure-coordination and anti-coordination polymatrix
games. We focus on the computational complexity of the fol-
lowing objectives for these classes of games.

Objective (i): maximize social welfare.

Objective (ii): maximize a potential function; when the
game is pairwise-potential.

Objective (iii): find a welfare-optimal Nash equilibrium.

We will show that Objectives (i) and (ii) are special cases
of a novel graph-partition problem, that we call MAXI-
MUMWEIGHTEDDIGRAPHPARTITION (MWDP for short).
This problem is of independent interest, since it includes
many well-known graph-theoretic problems like maximum
and minimum cut [Korte and Vygen, 2011] as special cases.
Our first technical result is a complexity dichotomy for
MWDP (Theorem 2). This result yields as an immediate
corollary a dichotomy for social-welfare outcomes for gen-
eral binary-action polymatrix games, a result which, to the
best of our knowledge, was not known before.

The dichotomy for MWDP reveals, again as immedi-
ate corollary, that anti-coordination games are significantly
harder than pure-coordination games. More specifically, it
shows that Objective (i) can be solved in polynomial time
for pure-coordination games, while it is NP-hard in the
worst case for anti-coordination games. Although the NP-
hardness for anti-coordination games was implied by Cai and
Daskalakis [2011], our result provides a more fine grained
resolution for this problem, since it identifies a much larger
class of games for which the problem is intractable.

Another corollary of our dichotomy is the tractability
of Objective (ii) for pairwise-potential pure-coordination
games, i.e., pure-coordination polymatrix games where ev-
ery two-player game admits a potential. This result is in
stark contrast to pairwise-potential anti-coordination games
where it is known that not only is it NP-hard to find a
potential-maximizing outcome, but it is PLS-complete, i.e.,
intractable, to find any local maximum of the potential func-
tion [Cai and Daskalakis, 2011].

Given the positive results for Objectives (i) and (ii) for
pure-coordination games, one might wonder if Objective (iii)
is tractable as well for this type of game. Observe that for
these games it is easy to find an arbitrary Nash equilibrium:
every such game possesses at least two “trivial” Nash equi-
libria wherein all players choose the same action. In addition,
every potential-maximizing outcome corresponds to a Nash
equilibrium too. Unfortunately, as our second technical result
shows, Objective (iii) becomes immediately intractable for
almost every potential pure-coordination game where one of
the two trivial Nash equilibria is not an obviously-optimal so-
lution. In fact, we provide a dichotomy for Objective (iii) for
the arguably most fundamental subclass of pure-coordination
games, known as threshold games [Neary and Newton, 2017].

1.2 Further Related Work
Our work relates to several areas of study, including the sig-
nificance of coordination problems and the role of maximiz-
ing potential in economic contexts, and issues of computa-
tional complexity in algorithmic game theory.

Coordination Problems in Economics. Since they were
introduced in philosopher David Lewis’ study on convention
and language [Lewis, 1969], coordination games have been
one of the modeling tool of choice for economists, being ap-
plied to the adoption of technological standards [Katz and
Shapiro, 1985; Farrell and Saloner, 1985; Arthur, 1989], the
setting of macroeconomic policy [Cooper and John, 1988],
the study of bank runs [Diamond and Dybvig, 1983], etc.

Pure coordination polymatrix games in particular have re-
ceived lots of attention from game theorists. A vast litera-
ture considers equilibrium selection in the case where every
two-player game is a “stag-hunt” and finds that, for almost
all network structures, uniform adoption of the “safe” risk-
dominant action is the long run prediction [Kandori et al.,
1993; Foster and Young, 1990; Young, 1993; Ellison, 1993;
Morris, 2000; Peski, 2010]. The conclusion of this litera-
ture is that even if there is a universally agreed upon optimal
equilibrium, successfully achieving that outcome is far from
assured.

In the above papers, all players are in a sense “the same”,
since a common 2 × 2 game occurs along every edge of the
graph. Pure coordination polymatrix games with heteroge-
neous preferences, in particular the language game [Neary,
2012] and the threshold model [Neary and Newton, 2017],
will play an important role in our analysis. We defer a de-
tailed description of these games to Section 5.

Though of similar importance, anti-coordination polyma-
trix games, see Bramoullé [2007], have certainly received
less attention. Other network games wherein action choice is
a strategic substitute include those of public good provision
[Bramoullé and Kranton, 2007; Galeotti et al., 2010].

Coordination problems are of such economic importance
that countless experiments have been performed to try and
ascertain how people attempt to coordinate on optimal out-
comes and when they will be successful. Van Huyck et
al. [1990] find that smaller groups successfully coordinate
far more frequently than larger groups. Kearns et al. [2006]
and McCubbins et al. [2009] consider coloring problems (i.e.,
anti-coordination games) on a variety of different network
structures. Both conclude that certain network structures, in
particular “small worlds” networks, are easier for subjects to
color successfully.

Potential-maximizing Equilibria. Potential games were
first introduced by Shapley and Monderer [1996] and have
received significant attention. Potential-maximizing Nash
equilibria are desirable since they are stochastically-stable
[Blume, 1993], can be uniquely absorbing [Hofbauer and
Sorger, 1999], select risk-dominant outcomes in games
played on random networks [Peski, 2021], and are robust
in games with incomplete information [Ui, 2001]. Poten-
tial games appear frequently in applied work, for exam-
ple to study the effects of price discrimination policies in
oligopolies [Armstrong and Vickers, 2001], the impact of un-
certainty on technology adoption [Ostrovsky and Schwarz,
2005], and issues of collective action [Myatt and Wallace,
2009]. Many of the classic models in applied game theory
are potential games including the Cournot model and conges-
tion games [Rosenthal, 1973].
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Nash Equilibria in Polymatrix Games. Computational
aspects of (approximate) Nash equilibria in polymatrix games
received a lot of attention over the years, starting from
classical results from fifty years ago [Eaves, 1973; How-
son Jr, 1972; Howson Jr and Rosenthal, 1974; Miller and
Zucker, 1991], to more recent results [Chen et al., 2009;
Daskalakis et al., 2009; Rubinstein, 2018], and the very re-
cent dichotomy for the complexity of finding any approx-
imate well-supported Nash equilibrium in general binary-
action polymatrix games [Deligkas et al., 2022]. Boodaghi-
ans et al. [2020] studied the smoothed complexity on coordi-
nation polymatrix games, while Aloisio et al. [2021] studied
an extension of polymatrix games. The complexity of con-
strained Nash equilibria for general polymatrix games were
studied in [Deligkas et al., 2017], while [Barman et al., 2015;
Deligkas et al., 2020; Elkind et al., 2006; Ortiz and Ir-
fan, 2017] study games with tree-underlying structure. Fi-
nally, [Deligkas et al., 2016] provides an experimental com-
parison of various algorithms for polymatrix games.

The full version of the paper, containing all proofs can be
found in [Deligkas et al., 2023].

2 Preliminaries
Given a 2 × 2 matrix M , we denote by m11, m12, m21 and

m22 the entries of M , such that M =

[
m11 m12

m21 m22

]
. For

any graph G, we denote V (G) and E(G) the sets of vertices
and edges respectively; if the graph is directed, we use A(G)
instead to denote the set of arcs of the graph. We assume
knowledge of standard notions of directed graphs [Bang-
Jensen and Gutin, 2009].

An n-player binary-action polymatrix game is defined by a
graph G, where each vertex represents a player. Each player
i ∈ V (G) has two actions called one and two. For each
edge ij ∈ E(G), there is a 2×2 two-player game (Πij ,Πji),
where matrix Πij gives the payoffs that player i obtains from
their interaction with player j, and likewise matrix Πji gives
the payoffs player j gets with the interaction with player i.

A pure strategy profile s = (s1, s2, . . . , sn) specifies an
action for each of the players; we will use S to denote the
set of all strategy profiles. It is convenient to think of si =
(1, 0)T when player i chooses action one and si = (0, 1)T

when they choose action two. For each strategy profile s ∈ S,
the payoff of player i is pi(s) := sTi ·

∑
j : ij∈E(G) Π

ij ·sj . In
other words, the payoff obtained by a player is the sum of the
payoffs obtained from the interaction with every neighboring
player, where the same action must be used with each.

We are interested in computing welfare-optimal strategy
profiles and in finding pure strategy Nash equilibrium profiles
(and in the combination of both concepts).

Definition 1. The social welfare of strategy profile s is
W(s) :=

∑
i∈V pi(s).

We denote by s−i the partial strategy profile consisting of
the strategies of the n − 1 players other than i. That is, from
the perspective of player i using strategy si, the strategy pro-
file s can be viewed as (si, s−i).

A strategy profile s∗ is a pure Nash equilibrium if no
player can strictly increase their payoff by unilaterally chang-
ing their strategy choice. Formally, s∗ is a Nash equilib-
rium, if for every player i and every si ̸= s∗i it holds that
pi(s

∗
i , s

∗
−i) ≥ pi(si, s

∗
−i).

2.1 Classes of Polymatrix Games
We are focused on two classes of binary-action polymatrix
games that capture coordination problems.

Pure-coordination Games. In a pure-coordination poly-
matrix game, the payoff of a player increases with the num-
ber of neighbors who choose the same action as them. For-
mally, a binary-action polymatrix game is pure-coordination
if for every edge ij ∈ E(G) the strategy profiles (one, one)
and (two, two) are Nash equilibria for the two-player game
(Πij ,Πji). Observe that every game in this class possesses at
least two “trivial” Nash equilibria wherein all players choose
the same action.

Anti-coordination Games. In an anti-coordination poly-
matrix game, each player’s payoff increases with the num-
ber of neighbors who choose a different action. Formally,
a binary-action polymatrix game is anti-coordination if for
every edge ij ∈ E the strategy profiles (one, two) and
(two, one) are Nash equilibria for the two-player game
(Πij ,Πji).

Potential Games. A strategic game is a potential game
[Shapley and Monderer, 1996] if the incentive of all players to
change their strategy can be expressed using a single function
called the potential function. Potential games possess many
desirable properties: pure strategy equilibria correspond to lo-
cal optima of the potential function so the existence of a pure
strategy equilibrium is assured. Formally, a game is a poten-
tial game if there exists a function Φ : S → R such that for
every player i, for all s−i, and all pairs of actions s′i, s

′′
i ∈ S

Φ(s′i, s−i)− Φ(s′′i , s−i) = pi(s
′
i, s−i)− pi(s

′′
i , s−i).

We emphasize that the same function Φ captures the change
in payoff associated with a deviation for every player.

Pairwise-potential Polymatrix Games. When every pair-
wise interaction, i.e., two-player game, of a polymatrix game
is a potential game, then the polymatrix game inherits this
property. In fact, the potential at any strategy profile is equal
to the sum of the potentials along every edge of the graph G.
In other words, if Φuv denotes the pairwise-potential func-
tion for the two-player game played between u and v, then
the function Φ(s) :=

∑
uv Φ

uv(s) is a potential function for
the polymatrix game.

3 The MWDP Problem
In this section we introduce the MAXIMUMWEIGHTEDDI-
GRAPHPARTITION problem (MWDP), and we provide a di-
chotomy for its complexity. We then show how Objectives (i)
and (ii) in binary-action polymatrix games are special cases
of MWDP, and as such complexity dichotomies can be given
for each of these issues in relation to polymatrix games.
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MWDP(F). Given a family F of 2 × 2 matrices, an in-
stance of MWDP(F) is given by a tuple (D, c, f), where:

• D is an oriented graph on n vertices (that is, a directed
graph without any 2-cycle);

• c : A(D) → R+ assigns positive weights to arcs;
• f : A(D) → F , is an assignment of a matrix from the

family of matrices F to each arc in D.
Given a partition, P = (X1, X2) of V (D), the weight of an
arc uv ∈ A(D) is defined as follows, where M = f(uv) is
the matrix in F assigned to the arc uv.

wP (uv) =


c(uv) ·m11 if u, v ∈ X1

c(uv) ·m22 if u, v ∈ X2

c(uv) ·m12 if u ∈ X1 and v ∈ X2

c(uv) ·m21 if u ∈ X2 and v ∈ X1

Given a partition P , the weight of D, denoted by wP (D), is
defined as the sum of the weights on every arc uv. That is,
wP (D) =

∑
a∈A(D) w

P (a). The goal is to find a partition P

that maximizes wP (D).
We would like to highlight that the orientation of an arc

in an instance of MWDP(F) is required to determine which
vertex defines the row and which vertex defines the column
of the assigned matrix.

3.1 A Dichotomy for the Complexity of
MWDP(F)

Our main result shows that the tractability of solving MAX-
IMUMWEIGHTEDDIGRAPHPARTITION depends on proper-
ties of the matrices in the family of matrices F . We now
introduce three properties that a matrix M ∈ F may satisfy.

• Property (a): m11 +m22 ≥ m12 +m21.
• Property (b): m11 = max{m11,m22,m12,m21}.
• Property (c): m22 = max{m11,m22,m12,m21}.
Using the three properties above, we present a dichotomy

for the complexity of MWDP(F) with respect to F .
Theorem 2. An instance (D, c, f) of MWDP(F) can be
solved in polynomial time if one of the following holds.

1. All matrices in F satisfy Property (a).
2. All matrices in F satisfy Property (b).
3. All matrices in F satisfy Property (c).

In every other case, MWDP(F) is NP-hard.
Theorem 2 decomposes the space into four cases, each of

varying difficulty. Cases 2 and 3 are immediate, since they ad-
mit trivially-optimal solutions: in Case 2 all vertices belong
to X1 and in Case 3 all vertices belong to X2. On the other
hand, Case 1 is far from trivial and it requires a more sophis-
ticated argument that creates an equivalent min-cut instance
on an undirected graph (see Lemma 3), which is known to be
solvable polynomial-time [Korte and Vygen, 2011]. Finally,
the last case deals with “every other case” and shows that the
problem becomes intractable. The proof involves a series of
intricate subcases and constructions.1

1Due to space constraints, the formal proof appears in the Sup-
plementary material, alongside other missing proofs.

Lemma 3. If all matrices in F satisfy Property (a), then
MWDP(F) can be solved in polynomial time.

Proof. Let (D, c, f) be an instance of MWDP(F) that sat-
isfies the constraints above. We will construct a new edge-
weighted, undirected, graph H with vertex set V (D)∪ {s, t}
as follows. Let UG(D) denote the undirected graph obtained
from D by removing orientations of all arcs. Initially, let
E(H) = E(UG(D)) ∪ {su, tu | u ∈ V (D)} and let all
edges in H have weight zero. For each arc uv ∈ A(D) we
modify the edge-weight function w of H as follows, where
M = f(uv) is the matrix associated with the arc uv.

• Let w(uv) = c(uv) · (m11 + m22 − m12 − m21)/2.
Note w(uv) is the weight of the undirected edge uv in H
associated with the arc uv ∈ A(D) and that this weight
is non-negative; this is guaranteed by Property (a) and it
is crucial for the correctness of the lemma.

• Add c(uv) · (−m22)/2 to w(su).

• Add c(uv) · (−m22)/2 to w(sv).

• Add c(uv) · (m21 −m11 −m12)/2 to w(tu).

• Add c(uv) · (m12 −m11 −m21)/2 to w(tv).

Let θ be the smallest possible weight of all edges in H
after we completed the above process (θ may be negative).
Now consider the weight function w∗ obtained from w by
subtracting θ from all edges incident with s or t. That is,
w∗(uv) = w(uv) if {u, v} ∩ {s, t} = ∅ and w∗(uv) =
w(uv)− θ otherwise. Note that all w∗-weights in H are non-
negative. We will show that for any (s, t)-cut, (X1, X2) in
H , i.e., (X1, X2) partitions V (H) and s ∈ X1 and t ∈ X2,
the w∗-weight of the cut is equal to −wP (D) − |V (D)| · θ,
where P is the partition (X1\{s}, X2\{t}) in D. Therefore,
a minimum-weight cut in H maximizes wP (D) in D.

Let (X1, X2) be any (s, t)-cut in H . For every u ∈ V (D)
we note that exactly one of the edges su and ut will belong
to the cut. Therefore, we note that the w∗-weight of the cut is
|V (D)| · θ less than the w-weight of the cut. It therefore suf-
fices to show that the w-weight of the cut is −wP (D) (where
P is the partition (X1 \ {s}, X2 \ {t}) of V (D)).

Let (X1, X2) be some (s, t)-cut. There are four possibili-
ties for any uv ∈ A(D), which follow from the definition of
the w-weights.

• u, v ∈ X1. In this case, we have added −c(uv) ·m11 to
the w-weight of the (s, t)-cut.

• u, v ∈ X2. In this case, we have added −c(uv) ·m22 to
the w-weight of the (s, t)-cut.

• u ∈ X1 and v ∈ X2. In this case, we have added
−c(uv) ·m12 to the w-weight of the (s, t)-cut.

• v ∈ X1 and u ∈ X2. In this case, we have added
−c(uv) ·m21 to the w-weight of the (s, t)-cut.

Therefore we note that in all cases we have added
−wP (uv) to the w-weight of the (s, t)-cut, (X1, X2). So
the total w-weight of the (s, t)-cut is −wP (D) as desired.

Analogously, if we have a partition P = (X1, X2) of
V (D), then adding s to X1 and t to X2 we obtain a (s, t)-cut
with w-weight −wP (D) of H . As we can find a minimum
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w∗-weight cut in H in polynomial time [Korte and Vygen,
2011] we can find a partition P = (X1, X2) of V (D) with
minimum value of −wP (D), which corresponds to the maxi-
mum value of wP (D). Therefore, MWDP(F) can be solved
in polynomial time in this case.

4 Social Welfare and Potential Maximization
In this section we show how we can utilize Theorem 2 and
derive as corollaries several results, both positive and nega-
tive, for various classes of binary-action polymatrix games.
First, we present a simple reduction from general binary-
action polymatrix games to MWDP that is used to solve Ob-
jective (i), i.e., maximize the social welfare.

Social Welfare via MWDP. Given a polymatrix game
with underlying graph G, we create an instance of MWDP
as follows.

• D has the same vertex-set as G. In addition, for every
edge of G we add a directed edge in D with arbitrary
orientation. An edge from u to v specifies that player
u chooses a row and player v chooses a column in the
two-player game played between the two corresponding
players.

• c(uv) = 1 for every oriented edge uv ∈ A(D).

• For each two-player game (Πuv,Πvu), with uv ∈
E(G), we create the welfare-matrix Wuv := Πuv+Πvu,
and we associate it with the oriented edge between u and
v as follows:

– f(uv) = Wuv , if we have added the arc uv;
– f(uv) = (Wuv)T , if we have added the arc vu.

The reduction above induces an immediate translation be-
tween strategy profiles and partitions. Player v chooses action
one if and only if the corresponding vertex v in D belongs to
X1. Conversely, player v chooses action two if and only if
the corresponding vertex v in D belongs to X2.

For any strategy profile s, we use P (s) to denote the cor-
responding partition. The following lemma trivially follows
from the reduction above.

Lemma 4. For every possible strategy profile s, it holds that
W(s) = wP (s)(D).

So, the combination of Lemma 4 and Theorem 2, yields
a series of results. The first one, is a clean complexity di-
chotomy for maximizing social welfare in general binary-
action polymatrix games. To the best of our knowledge, this
is the first dichotomy of this kind.

Theorem 5. Consider a binary-action polymatrix game on
input graph G. Let Wuv = Πuv+Πvu for every uv ∈ E(G).
Finding a strategy profile that maximizes the social welfare
can be solved in polynomial time if one of the following holds.

• wuv
11 + wuv

22 ≥ wuv
12 + wuv

21 for every uv ∈ E(G).

• wuv
11 ≥ max{wuv

12 , w
uv
21 , w

uv
22 } for every uv ∈ E(G).

• wuv
22 ≥ max{wuv

11 , w
uv
12 , w

uv
21 } for every uv ∈ E(G).

In every other case, the problem is NP-hard.

The reduction from welfare maximization to MWDP is
immediate. The reduction in the opposite direction can be
seen as follows. Consider an arc uv of weight c with ma-
trix M . For entry mij in M , let c·mij

2 be the payoff to each
player when player u chooses strategy i and player v chooses
j. Clearly the total welfare is given by c ·mij . The proof now
follows by appealing to Theorem 2.

Theorem 5 implies two immediate corollaries for coordi-
nation polymatrix games. Firstly, for every welfare-matrix
Wuv of a pure-coordination game it holds that wuv

11 +wuv
22 ≥

wuv
12 + wuv

21 . Second, it is not difficult to construct anti-
coordination games where wuv

11 + wuv
22 < wuv

12 + wuv
21 .2

Corollary 6. Maximizing social welfare in binary-action
pure-coordination polymatrix games can be done in polyno-
mial time.
Corollary 7. It is NP-hard to maximize social welfare in
binary-action anti-coordination polymatrix games.
Pairwise-Potential Games via MWDP. Next we show
how to reduce the problem of maximizing the potential
in pairwise-potential binary-action polymatrix games to the
MWDP problem. Observe that for this class of games, every
pairwise-potential Φuv can be written as a 2 × 2 potential-

matrix, so Φuv :=

[
ϕuv
11 ϕuv

12
ϕuv
21 ϕuv

22

]
. To create an instance of

MWDP we will follow a similar approach as before. This
time though, we use potential-matrices: Φuv will be associ-
ated with the oriented edge between u and v as follows.

• f(uv) = Φuv , if we have added the arc uv;
• f(uv) = (Φuv)T , if we have added the arc vu.

To reduce from MWDP to potential maximization, let the
matrix M on arc uv with weight c be given by the poten-
tial matrix above. Such a matrix is the potential of a 2 × 2

game given by
[

ϕ11

2 , ϕ11

2 0, ϕ12 − ϕ11

2

ϕ21 − ϕ11

2 , 0 ϕ22 − ϕ21, ϕ22 − ϕ12

]
. As

before, we have reduced in both directions and so we have
a one-to-one translation between partitions and strategy pro-
files. So, if we denote P (s) the partition associated with strat-
egy profile s we get the following lemma, where Φ(s) is the
sum of the pairwise potentials.
Lemma 8. For every possible strategy profile s of a pairwise-
potential polymatrix game, it holds that Φ(s) = wP (s)(D).

Lemma 8 combined with Theorem 2, yield the following
theorem. Again, to the best of our knowledge, this is the first
dichotomy of this kind.
Theorem 9. Consider a binary-action potential polymatrix
game on input graph G with pairwise-potential matrices Φuv ,
for every uv ∈ E(G). Finding a strategy profile that maxi-
mizes the potential function Φ can be solved in polynomial
time if one of the following holds.

• ϕuv
11 + ϕuv

22 ≥ ϕuv
12 + ϕuv

21 for every uv ∈ E(G).
• ϕuv

11 ≥ max{ϕuv
12 , ϕ

uv
21 , ϕ

uv
22 } for every uv ∈ E(G).

• ϕuv
22 ≥ max{ϕuv

11 , ϕ
uv
12 , ϕ

uv
21 } for every uv ∈ E(G).

2The construction of Appendix C.2 from Cai and
Daskalakis [2011] creates these types of welfare matrices.
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In every other case, the problem is NP-hard.

Theorem 9 reveals another difference between pure-
coordination and anti-coordination polymatrix games, when
both are pairwise-potential games. While for the latter class
of games it is NP-hard to maximize the potential function
(this was implied in Cai and Daskalakis [2011]), for the for-
mer class of games the problem can be solved in polynomial
time.

Corollary 10. Maximizing the potential of a pairwise-
potential binary-action pure-coordination polymatrix game
can be solved in polynomial time.

Proof. We will show that when the game is pure-
coordination, for every uv ∈ E(G) the potential-matrix Φuv

satisfies that ϕuv
11 +ϕuv

22 ≥ ϕuv
12 +ϕuv

21 . Recall, since the game
is pure-coordination the following hold.

• Outcome (one, one), that corresponds to ϕuv
11 of the

potential-matrix, is a Nash equilibrium for the two-
player game played on uv. So, since this is a Nash equi-
librium and the two-player game is potential, any de-
viation from (one, one) will lower the payoffs of both
players, and thus it will lower the value of the pairwise-
potential. Therefore, ϕuv

11 ≥ max{ϕuv
12 , ϕ

uv
21 }.

• Outcome (two, two), that corresponds to ϕuv
22 of the

potential-matrix, is a Nash equilibrium for the two-
player game played on uv. Using verbatim the argu-
ments as before, it follows that ϕuv

22 ≥ max{ϕuv
12 , ϕ

uv
21 }.

Our claim follows by combining the two bullets above.

5 Welfare-optimal Nash Equilibria
In this section we focus on the computation of welfare-
optimal Nash equilibria in binary-action polymatrix games.
We focus only on pure-coordination games since the result
of [Cai and Daskalakis, 2011] already implies that in anti-
coordination games, welfare-optimal Nash equilibria are NP-
hard to compute. On the other hand, our results indicate
that pure-coordination games are considerably more well-
behaved, since they admit polynomial-time algorithms for
welfare and potential maximization. Unfortunately, as we
prove, when it comes to computing a “best” Nash equilib-
rium, things become almost immediately intractable even
for the arguably simplest class of pure-coordination games,
which we term 2-type threshold-games, which is a special
case of anonymous games.

Anonymous Pure-coordination Games. In an anonymous
game [Blonski, 1999], the payoff of a player does not depend
on the identity of their opponents, but only from the num-
ber of players that choose a specific action. In an anonymous
polymatrix game on graph G every player u ∈ V (G) is as-
sociated with a single payoff matrix Πu that is used in every
two-player game they participate, i.e., player u participates in
the games (Πu,Πv), for every v ∈ E(G). We say that an
anonymous polymatrix game has k types of players if there
exists a set of payoff matrices A of size k and Πu ∈ A for
every u ∈ V (G). Finally, a pure-coordination game is k-type
anonymous, if it satisfies the conditions above.

Next we focus on a special class of binary-action pure-
coordination anonymous games, termed threshold games
[Neary and Newton, 2017]; their name follows from the
fact that they model game-theoretically the classic threshold
model of Granovetter [1978], wherein it is optimal for each
player to choose each action once the fraction of their neigh-
bors choosing that action exceeds a specific threshold.

Threshold Games. A threshold-game is a binary-action
anonymous pure-coordination polymatrix game, where every
player u is associated with a parameter γu ∈ [0, 1] and their

payoff-matrix is Πu :=

[
γu 0
0 1− γu

]
.

Clearly, finding optimal outcomes in a 1-type threshold-
game (i.e., one wherein γu is the same for all players u) is
trivial. However, as we now show, the problem becomes in-
teresting when a second type is introduced. Specifically, we
use the Language Game [Neary, 2012], in which the popu-
lation is partitioned into two types, A and B, such that all
players of type A have threshold γA and all players in Group
B have threshold γB , with 0 ≤ γB ≤ γA ≤ 1. When
γB ≤ 1

2 ≤ γA a tension emerges: type-A players prefer
that everyone coordinates on action one while type-B players
prefer the opposite. Even for this simple two-type threshold
model, the following shows that most cases are intractable.

Theorem 11. The complexity of finding a welfare-maximi-
zing Nash equilibrium in a threshold-game with two thresh-
olds, γA, γB , such that 0 ≤ γB ≤ γA ≤ 1, is as follows.

1. If γA ≤ 1/2 the problem is polynomial time.

2. If γB ≥ 1/2 the problem is polynomial time.

3. If γB = 0 and γA = 1 the problem is polynomial time.

4. In all other cases the problem is NP-hard.

Proof sketch. Cases 1-2. If γA ≤ 1/2, or γB ≥ 1/2, then
all players prefer the same action and selecting that action for
each player gives a maximum-welfare Nash equilibrium.

Case 3. Now, let γA = 1 and let γB = 0 and G be a
graph and let (A,B) be a partition of V (G), so that if u ∈
Y ⇔ γu = γY , where Y ∈ {A,B}. We want to find a Nash
equilibrium, (Xone, Xtwo), of maximum welfare, where Xi

denotes the set of players that choose action i ∈ {one, two}.
Let (Xone, Xtwo) be a Nash equilibrium of G. This implies

that all vertices in Xtwo ∩ A only have edges to vertices in
Xtwo (as otherwise it is not a Nash equilibrium). Note that
this means that any connected component C in G[A] is either
subset of Xone or a subset of Xtwo, else one can find an edge
from a vertex in Xtwo ∩ A to a vertex in Xone. Analogously,
every connected component of G[B] is either a subset of Xone
or a subset of Xtwo. Finally, given a connected component CA

of G[A] and a connected component CB of G[B], if there is
an edge in G between a vertex u ∈ CA and a vertex v ∈ CB ,
then it is not possible that CB ⊆ Xone and CA ⊆ Xtwo.

We can view the value of social welfare in a Nash equilib-
rium in term of the loss w.r.t. the sum of maximum achievable
utility of each player which is in this case the sum of degrees
of vertices in G or 2|E(G)|. The equilibrium that maximizes
the social welfare then minimizes this loss. We now build
an auxiliary digraph D whose vertices are the components of
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G[A], the components of G[B] and two new vertices s and
t. There is an arc from s to every component in G[A], an arc
from every component in G[B] to t, and two opposite arcs
between every connected component CA of G[A] and every
connected component CB of G[B] such there is an edge in
G between a vertex u ∈ CA and a vertex v ∈ CB . The goal
is to set up the weights of the arcs such that there is a one-
to-one correspondence between minimal s-t cuts in D and
Nash equilibria in G given by: (i) every player in the “s side”
of the cut chooses action one and (ii) every player in the “t
side” chooses action two. Moreover, the weight of the cut
should be exactly the loss w.r.t. 2|E(G)|. It is rather straight-
forward to verify that setting the weights as follows achieves
this: every arc from s to a component CA of G[A] has weight
sum of degrees of vertices in CA; every arc from a component
CB of G[B] to t has weight sum of degrees of vertices in CB ;
every arc from a component CA of G[A] to a component CB

of G[B] has weight two times the number of edges between
CA and CB ; every arc from a component CB of G[B] to a
component CA of G[A] has weight infinity (as players in CB

cannot use strategy one if players in CA use strategy two).
To find a welfare-maximizing Nash equilibrium, it now suf-
fices to find a minimum weight s-t cut in D that can be done
in polynomial time [Korte and Vygen, 2011].

Case 4. First note that if γB = 0, then 1/2 < γA < 1,
and we can exchange the role of A and B and that of the
strategy one and strategy two. Hence, it suffices to prove the
statement for 0 < γB < 1/2 < γA ≤ 1.

We will show the NP-hardness result via a reduction from
MINIMUM TRAVERSAL problem in 3-uniform hypergraphs3,
which is known to be NP-hard [Garey and Johnson, 1979]. A
3-uniform hypergraph H has a set of vertices V (H) and a set
of hyperedges E(H), where every hyperedge e ∈ E(H) is a
subset of vertices of size exactly 3. A traversal of H is a set
of vertices X such that X ∩ e ̸= ∅ for every edge e ∈ E(H).
MINIMUM TRAVERSAL problem asks to find a traversal of
the minimum size.

Let H be a 3-uniform hypergraph. We will create a graph,
G, and a partition (A,B) of V (G) such that a solution to our
problem for G will give us a minimum traversal in H . We
also refer the reader to Figure 2 for an illustration.

For the reduction, we will need to fix some sizes that de-
pend of γA, γB , |V (H)|, and |E(H)|. We postpone the selec-
tion of the sizes to the appendix, where we give exact proofs
of the statements below. The graph G consists of:

• Cliques CA, CB that are “sufficiently large”; the sizes
are selected in a way such that in any welfare-optimal
Nash equilibrium, players in CA choose action one and
in CB choose action two. A contains precisely the play-
ers in CA, all the remaining players are in B.

• Vertex sets R =
⋃

e∈E(H){re}, V ′ =
⋃

u∈V (H){u′}.
There is an edge between re and u′ iff u ∈ e. Moreover,
there are cA edges from every re to CA and cB edges
from every re to CB . cA and cB are selected so that if
every player in CA uses one and in CB two, then re
(recall that re ∈ B) prefers one if at least one of its

3The problem is also called 3-HITTING SET.

CA CB

re1 re2 re3 · · · rem

u′
1 u′

2 u′
3 u′

4 · · · u′
n

Zu′
1

Zu′
2

Zu′
3

Zu′
4

Zu′
n

Figure 2: The construction of Case 4 in Theorem 11. The graph
G when H is a 3-uniform hypergraph with m edges, including the
edges e1 = {u1, u2, u3} and e2 = {u1, u3, u4}. The square ver-
tices in CA denotes A-vertices and round vertices (everywhere else)
denote B-vertices.

exactly three neighbors in V ′ chooses one.
• For every u ∈ V (H), vertex set Zu of size z that is to

be fixed. There is an edge from every vertex z ∈ Zu to
the vertex u′ ∈ V ′. Hence, in any Nash equilibrium z
chooses the same strategy as u′. This also allows u′ the
freedom of choosing one even though u′ ∈ B.

By a clever selection of the sizes, we can achieve that if
s is a welfare-maximizing Nash equilibrium that partitions
players into (Xone, Xtwo) by the strategy they are using, then:

1. V (CA)∪R ⊆ Xone, V (CB) ⊆ Xtwo. Intuitively, this is
because the choice of cA and cB guarantees that the loss
of utility for the players in CA when a player re ∈ R
selects two, is larger than the gain players in V (G) \
V (CA) can get from this selection.

2. For every e ∈ E(H), re has a neighbor in V ′ ∩Xone;
Note that the second condition states that V ′∩Xone is a traver-
sal of H . We now observe that because V ′ ∪

⋃
u∈V (H) Zu ⊆

B, there is a significant gain in overall welfare if we decrease
the number of players in V ′ that choose action one, as long as
we preserve the above two conditions. Therefore, a welfare-
maximizing Nash equilibrium not only gives a traversal, but
a minimum traversal in H .

6 Discussion
Our paper provides several novel dichotomy results for the
complexity of economically-efficient outcomes in general
binary-action polymatrix games, coordination games, poten-
tial games, and threshold games.

Our main tool for deriving the majority of these results
is the dichotomy for MWDP, a novel graph-theoretic prob-
lem, which we strongly believe will find applications in other
domains too. To this end, we have already identified sev-
eral problems arising from graph theory whose complexity
can easily be determined by our dichotomy for MWDP. Our
list includes both well-known problems ((Directed) Max Cut,
(Directed) Min (s, t)-cut, Max Density Subgraph) and new
ones that we describe in the supplementary material.
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[Bramoullé and Kranton, 2007] Yann Bramoullé and Rachel
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