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Abstract

We study discrete two player all-pay auction with
complete information. We provide full characteri-
zation of mixed strategy Nash equilibria and show
that they constitute a subset of Nash equilibria of
discrete General Lotto game. We show that equi-
libria are not unique in general but they are inter-
changeable and sets of equilibrium strategies are
convex. We also show that equilibrium payoffs are
unique, unless valuation of at least one of the play-
ers is an even integer number. If equilibrium pay-
offs are not unique, continuum of equilibrium pay-
offs are possible.

1 Introduction
All-pay auction constitutes a fundamental game theoretic
model of contests where players exert effort in order to win
a prize and only the player exerting the most effort wins
the prize while other players effort is lost without a reward.
This form of strategic interaction underlies economic activ-
ities such as bitcoin mining [Dimitri, 2017], crowdsourc-
ing [DiPalantino and Vojnovic, 2009; Chawla et al., 2019],
political campaigns [Snyder, 1989], R&D races [Dasgupta,
1986], rent seeking and lobbying activities [Moulin, 1986;
Hillman and Samet, 1987; Hillman and Riley, 1989; Baye et
al., 1993], competition for a monopoly position [Ellingsen,
1991], as well as sport competition [Szymanski, 2003].

Full characterisation of equilibria in a variant of all-pay
auction where effort of players is continuous was obtained
by [Baye et al., 1996; Hillman and Riley, 1989]. In many sit-
uations, however, it is natural to assume that effort is discrete:
amount of computational resources, monetary expenditure,
activists in political campaining, the time spend on projects,
or man-power are usually measured in discrete units. This
raises a number of questions: How does the discrete character
of effort affect equilibrium behaviour of auction participants?
Does it benefit the stronger or the weaker side of an auction?
How well does equilibrium characterisation based on the con-
tinuous model approximates equilibria in the discrete model?

Although resources like money or man-power could be
(and often are) modelled as continuous, they are intrinsically
discrete. The assumption of continuity is often made to make

the problem tractable. But this may be at the expense of ac-
curacy of the results obtained. To know whether the assump-
tion is indeed without any unexpected side effects we need
to understand the consequences of the constraint of discrete-
ness. Suppose for example that we apply the result based on
the assumption of continuous resources to the model where
resources are, in fact, discrete. Consider the weaker player
with a valuation that is not an even number. The result ob-
tained for the continuous model calls for investing zero with
some probability and, with the remaining probability, mixing
uniformly on an interval [0, v2], where v2 is the value of win-
ning for the weaker player. Choosing effort levels according
to this result would lead to non-equilibrium investment under
the discrete model, because the weaker player should choose
with probability greater than 0 only even valued investment
levels. Complete characterization or equilibria in the discrete
model allows us to see, in particular, when and to what extent
the assumption of continuity is harmless and leads to ade-
quate results.

Our contribution. In this paper we address these and sim-
ilar questions by providing a complete characterisation of
mixed strategy Nash equilibria of discrete all-pay auctions.
We show that certain qualitative features of these equilibria
are similar to features of equilibria in continuous all-pay auc-
tions. Let v1 and v2 be valuations of the prize by the two auc-
tion participants. Suppose that v1 ≥ v2, so that the second
participant is the weaker one. In equilibrium of the continu-
ous model the weaker player chooses zero effort with proba-
bility 1−v2/v1 and, with probability v2/v1 chooses her effort
level by mixing uniformly on the interval [0, v2]. The stronger
player mixes uniformly on the interval [0, v2]. We show that
in the discrete model the weaker player chooses zero effort
with probability close to 1 − v2/v1 and chooses her effort
level by mixing on the interval [0, v2] with distributions which
are convex combinations of distributions which are uniform
on even and odd number in an interval close to [0, v2] or are
distorted variants of such distributions. Equilibrium payoffs
are generically unique. Discreteness of effort levels bene-
fits the weaker player allowing her to obtain a positive payoff
when her prize valuation is close to the prize valuation of the
stronger player. In the case of the stronger player, discrete-
ness of effort levels may be beneficial or not, depending on
the prize valuation of the weaker player.
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1.1 Related Literature
All-pay auctions with discrete effort levels were studied
by [Cohen and Sela, 2007]. The focus of their paper is
the effect of different tie-breaking policies. In the case of
the tie breaking policy where each of the two players wins
the prize with probability half in case of a tie, as consid-
ered in our paper, they provide partial characterisation of
equilibria in the cases where players valuations are integer
numbers. All-pay auctions are closely related to General
Lotto games [Hart, 2008]. Continuous variant of these games
was considered by [Bell and Cover, 1980; Myerson, 1993;
Sahuguet and Persico, 2006]. In particular, [Sahuguet and
Persico, 2006] show that equilibria in these games are related
to equilibria in continuous all pay auctions and exploit this
connection to obtain equilibrium characterisation. In this pa-
per we take a reverse approach. We show that equilibria in
discrete all-pay auctions are a subset of equilibria in the corre-
sponding discrete General Lotto games. We then use the full
characterisation of equilibria in discrete General Lotto games
obtained by [Hart, 2008] and [Dziubiński, 2012] to obtain full
characterisation of equilibria in discrete all-pay auctions.

Due to applications in computer based systems, more re-
cently all-pay auctions attracted attention from researchers
in computer science and AI. [Dimitri, 2017] models proof
of work based bitcoin mining as an all-pay auction. [Lev et
al., 2013] study an extension of the basic model allowing for
collusion, [Lewenberg et al., 2017] consider an extension of
the model with agent failures. [DiPalantino and Vojnovic,
2009] apply all-pay auction models to study crowdsourcing
while [Chawla et al., 2019] use all-pay auctions models to
study optimal mechanisms in the context of crowdsourcing.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the model of discrete all-pay auctions. Sec-
tion 3 contains the characterisation results as well as dis-
cussion of relation to the continuous variant of all-pay auc-
tions. We conclude in Section 4. Omitted proofs are available
at https://arxiv.org/abs/2305.04696.

2 The Model
There are two players, 1 and 2, competing for a prize that is
worth v2 > 0 for player 2 and v1 ≥ v2 for player 1. Player
2, who values the prize not more than player 1 is called the
weaker player and player 1 is called the stronger player. Each
player i ∈ {1, 2}, not observing the choice of other player,
chooses an effort level xi ∈ Z≥0 in competition for the prize.
The player choosing the higher effort level wins the prize and,
in the cases of a tie in effort levels, one of the players re-
ceives the prize with probability 1/2. Both player pay the
price equal to their chosen effort levels. Payoff to player i
from effort the pair of effort choices (x1, x2) ∈ Z2

≥0 is equal
to

pi(x1, x2) =


vi − xi, if xi > x−i,
vi
2 − xi, if xi = x−i,
−xi, if xi < x−i,

(1)

where x−i denotes the effort level chosen by the other player.
We allow the players to make randomize choices, so that each
player i chooses a probability distribution on non-negative

integer numbers ξi ∈ ∆(Z≥0).1 For simplicity and notational
convenience, with a probability distribution on Z≥0, ξ, we
will identify a non-negative integer valued random variable
Xi distributed according to ξi, so that for each k ∈ Z≥0,
P(Xi = k) = ξik. We will also use the random variables
to refer to the associated probability distributions. Expected
payoff to player i from randomized effort choices (X1, X2) ∈
∆(Z≥0)2 is equal to

P i(X1, X2) = viP(Xi > X−i) +
vi
2
P(X1 = X2)−E(Xi)

(2)
We assume that the players are risk neutral and each of them
aims to maximise her expected payoff. A pair of mixed strate-
gies (X1, X2) is a mixed strategy Nash equilibrium if and
only if for any mixed strategies X ′1 and X ′2 on non-negative
integers, P 1(X1, X2) ≥ P 1(X ′1, X2) and P 2(X1, X2) ≥
P 2(X1, X

′
2). We are interested in mixed strategy Nash equi-

libria of this game, called Nash equilibria or equilibria, for
short, throughout the paper.

3 The Analysis
Payoff to player i from strategy profile (X1, X2) can be writ-
ten as

P i(X1, X2) = viP(Xi > X−i) +
vi
2
P(Xi = X−i)−E(Xi)

=
vi
2
P(Xi ≥ X−i) +

vi
2
P(Xi > X−i)−E(Xi)

=
vi
2

(P(Xi > X−i) + 1−P(Xi < X−i))−E(Xi)

=
vi
2

(P(Xi > X−i)−P(Xi < X−i)) +
vi
2
−E(Xi)

=
vi
2

(
H(Xi, X−i)−

(
2E(Xi)

vi
− 1

))
,

(3)
where

H(Xi, X−i) = P(Xi > X−i)−P(Xi < X−i).

Given probability distributions (X1, X2), the quantity
H(Xi, X−i) is payoff to the player choosing Xi against
the choice X−i of the other player is the discrete General
Lotto game defined in [Hart, 2008]. The game is played
by two players, 1 and 2, who simultaneously and indepen-
dently chooses probability distributions on non-negative in-
tegers. Each player i is characterized by a number bi where
b1 ≥ b2 > 0. Choices of player i are constrained so that the
player chooses probability distributions Xi with E(Xi) = bi.
We use Γ (b1, b2) to denote the discrete General Lotto game
with parameters b1 and b2.

The connection between continuous all-pay auctions and
continuous General Lotto games is well known in the litera-
ture and complete characterisation of equilibria in continuous
all-pay auctions, obtained by [Baye et al., 1996] was used
by [Myerson, 1993] and [Sahuguet and Persico, 2006] to ob-
tain characterisation of equilibria in continuous General Lotto
games. In the case of discrete all-pay auctions we proceed in

1Given a set S, ∆(S) denotes the set of all probability distribu-
tions on S.
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the reverse direction and use the complete characterisation of
equilibria obtained by [Hart, 2008] and [Dziubiński, 2012]
to obtain complete characterisation of equilibria in discrete
all-pay auctions.

First, we establish that the set of equilibria in discrete all-
pay auctions is a subset of equilibria in discrete General Lotto
games with properly chosen constraints (b1, b2).

Proposition 1. If a strategy profile (X,Y ) is a Nash equilib-
rium of all pay auction then it is also a Nash equilibrium of
the General Lotto game Γ (E(X),E(Y )).

Proof. Suppose that (X,Y ) is a Nash equilibrium of all pay
auction and let v1 be the valuation of player 1 and v2 be the
valuation of player 2. Since (X,Y ) is a Nash equilibrium so,
for any strategy X ′ of player 1 with E(X ′) = E(X),

P 1(X,Y ) ≥ P 1(X ′, Y ).

By (3) and E(X ′) = E(X) this is equivalent to

H(X,Y ) ≥ H(X ′, Y ).

Similarly, for any strategy Y ′ of player 2 with E(Y ′) =
E(Y ),

H(Y,X) ≥ H(Y ′, X).

Since H is the payoff function in the General Lotto game and
strategies in Γ (E(X),E(Y )) of each player are restricted to
distributions with the same expected value, (X,Y ) is a Nash
equilibrium of Γ (E(X),E(Y )).

The set of equilibria in a discrete all-pay auction is (usu-
ally, i.e. for most values of v1 and v2) a proper subset of
equilibria in the corresponding General Lotto games. Before
we provide the characterisation of this set, we introduce the
probability distributions that are the building blocks of equi-
libria in General Lotto games.

[Hart, 2008] defines the following probability distributions.
Given m ≥ 1, let

UmO := U({1, 3, . . . , 2m− 1}) =
m∑
i=1

(
1

m

)
12i−1,

and, given m ≥ 0, let

UmE := U({0, 2, . . . , 2m}) =
m+1∑
i=1

(
1

m+ 1

)
12i,

where, given an integer j, 1j is the Dirac’s measure putting
probability 1 on j. Distributions UmO and UmE are “uniform on
odd numbers” and “uniform on even numbers”, respectively.
We will use

Um = {UmE , UmO }
to denote the set of these distributions. [Dziubiński, 2012]
defines the following distributions. First, given m ≥ 1, let

UmO↑1 := U({2, 4, . . . , 2m− 2}) =
m−1∑
i=1

(
1

m− 1

)
12i,

which is a uniform distribution on even numbers from 2 to
2m− 2. Given m ≥ 2 and 1 ≤ j ≤ m− 1, let

Wm
j :=

(
1

2m

)
10 +

j−1∑
i=1

(
1

m

)
12i

+

(
1

2m

)
12j +

m∑
i=j+1

(
1

m

)
12i−1.

Each distribution Wm
j is the distribution UmO distorted at

the first 2j + 1 positions with a 2-moving average, so that
P(Wm

j = i) = (P(U jO = i − 1) + P(U jO = i + 1))/2, for
0 ≤ i ≤ 2j (where P(U jO = −1) = 0). We will use

Wm = {Wm
1 , . . . ,W

m
m−1}

to denote the set of distributions Wm
j . Given m ≥ 1 and

1 ≤ j ≤ m, let

V mj :=

j−1∑
i=1

(
2

2m+ 1

)
12i−1 +

(
1

2m+ 1

)
12j−1

+
m∑
i=j

(
2

2m+ 1

)
12i.

Each distribution V mj is the distribution UmE distorted at the
first 2j positions with a 2-moving average, so that P(V mj =

i) = (P(U j−1E = i− 1) +P(U j−1E = i+ 1))/2, for 0 ≤ i ≤
2j − 1 (where P(U j−1E = −1) = 0). We will use

Vm = {V m1 , . . . , V mm }

to denote the set of distributions V mj .
With these distributions in hand, we are ready to state our

main results. We divide the characterisation of equilibria in
discrete all-pay auctions into two cases, covered by Theo-
rems 1 and 2 below. The first is the case where half of the
valuation of the prize by the second (weaker) player is an in-
teger number and the second is the case where it is not an
integer number and it is greater than 1.2

Theorem 1. Strategy profile (X,Y ) is a Nash equilibrium of
all-pay auction with players valuations v1 ≥ v2 and v2/2 ∈
Z≥1 if and only if

(i) if v1 = v2 then

X = αUm+1
O +(1−α)UmE , Y = βUm+1

O +(1−β)UmE ,

with m = v2/2− 1, α ∈ [0, 1], and β ∈ [0, 1]. Equilib-
rium payoffs are

P 1(X,Y ) = 1− β and P 2(Y,X) = 1− α.

(ii) if v1 > v2 = 2 then

X = U1
O, Y = (1− b)10 + b

(
λU1

O + (1− λ)U1
E

)
,

2For completeness, in the supplementary material we provide an
additional Theorem 4 which covers the case of v2/2 ∈ (0, 1).
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where b ∈ (0, 1] and

max

(
0,

4

bv1
− 2

b
+ 1

)
≤ λ ≤ min

(
1,

4

bv1
− 1

)
.

Equilibrium payoffs are

P 1(X,Y ) = v1 −
bv1
2
− 1 and P 2(Y,X) = 0.

(iii) if v1 > v2 ≥ 3 then

X = UmO , Y =

(
1− b

m

)
10 +

(
b

m

)
Z,

where m = v2/2, b ∈ [v2(v2 −
2)/(2v1),min(m, v2(v2 + 2)/(2v1))], and

Z = λOU
m
O + λEU

m
E + λO↑1U

m
O↑1 +

m−1∑
j=1

λjW
m
j

with
λO, λE, λO↑1, λ1, . . . , λm−1 ≥ 0,

λO + λE + λO↑1 +
m−1∑
j=1

λj = 1,

λO↑1
m− 1

− λE
m+ 1

=
v22

2v1b
− 1,

and

λO ≥
(v2

2b

)(v2(v2 + 2)

2v1
+ b− v2

)
Equilibrium payoffs are

P 1(X,Y ) = v1 −
bv1
v2
− v2

2
and P 2(Y,X) = 0.

The first point of the theorem covers the symmetric case
where both players value the prize equally. In this case each
of the players uses a convex combination of the uniform prob-
ability distribution on even numbers from 0 to 2m and the
uniform probability distribution on odd numbers from 0 to
2m+ 1, where m = v2/2− 1. There are continuum of possi-
ble equilibrium payoffs and payoff of each player is equal to
1 minus the probability with which the opponent uses the uni-
form on odd numbers probability distribution. In particular,
payoff of 0 as well as payoff of 1 is possible for each player,
depending on the strategy used by the opponent.

The second and the third points of the theorem cover the
asymmetric case where the valuation of player 2 is strictly
smaller than the valuation of player 1. The second point
covers the subcase where m = v2/2 takes value 1 and the
third point covers the remaining subcases. In each case the
stronger player mixes uniformly on odd numbers between 1
and 2m − 1 while the weaker player chooses effort 0 with
probability 1 − b/m and, with probability b/m, uses a strat-
egy which picks positive effort levels with probability greater
than 0. Like in the case of the first point of the theorem, there
is continuum of equilibria and continuum of equilibrium pay-
offs. The equilibrium expected payoff to the stronger player

depends on the expected value, b, of the strategy chosen by
the weaker player. The expected equilibrium payoff of the
weaker player is equal to 0 in all the cases.

Although there is continuum of equilibria and continuum
of equilibrium payoffs when valuation of the prize by the
weaker player is an even number, the equilibria exhibit the
interchangeability property: if (X,Y ) and (X ′, Y ′) are both
equilibria of all-pay auction, (X,Y ′) and (X ′, Y ) are equi-
libria as well. Thus so long as each player chooses an equi-
librium strategy, none of them has an incentive to deviate to a
different strategy. In addition, the sets of equilibrium strate-
gies of the players are convex.

Proof of Theorem 1 is lengthy and we give most of it in the
supplementary material. The general structure of the proof
is to first establish the necessary and sufficient properties of
equilibria in discrete all-pay auction under different combina-
tions of expected values of equilibrium strategies X and Y .
These characterizations are then used to obtain the final re-
sult. To give the reader some idea of how these necessary and
sufficient properties are established we provide a proof for the
symmetric case of E(X) = E(Y ) = m with m ∈ Z≥0. In
the proof we use the following simple but useful properties of
function H .

For any strategies X and Y ,

H(X,Y ) = −H(Y,X) (4)

and for any strategies X1, X2, Y and any λ ∈ [0, 1],

H(λX1 + (1− λ)X2, Y ) =

λH(X1, Y ) + (1− λ)H(X2, Y ).
(5)

Proposition 2. A strategy profile (X,Y ) such that E(X) =
E(Y ) = m, m ∈ Z≥1, is a Nash equilibrium of all pay
auction with both players valuations v1 ≥ v2 > 0 if and only
if,

• Either m = bv2/2c = bv1/2c or m = dv1/2e − 1 =
dv1/2e − 1 or m = bv2/2c = dv1/2e − 1,

•

X = λUmO +(1−λ)UmE , Y = κUmO +(1−κ)UmE .

•

κ =
2m

v1

(
m+ 1− v1

2

)
and λ =

2m

v2

(
m+ 1− v2

2

)
.

Equilibrium payoffs of the players are

P 1(X,Y ) =
v1
2
−
⌊v2

2

⌋
and P 2(Y,X) =

v2
2
−
⌊v2

2

⌋
.

Proof. For the left to right implication, suppose that (X,Y )
satisfying the condition stated in the theorem is a Nash
equilibrium of all pay auction with both players valuations
v1, v2 > 0. Then, by Proposition 1, it is a Nash equilibrium
of general Lotto game Γ(m,m). Hence, by [Hart, 2008, The-
orem 2],

X = λUmO +(1−λ)UmE , Y = κUmO +(1−κ)UmE , (6)

with λ, κ ∈ [0, 1], and

H(X,Y ) = 0. (7)
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Given c ∈ (−m,m) let

X ′ = γ1bm+cc + (1− γ)1dm+ce,

where

γ =

{
1, if m+ c ∈ Z
dm+ce−(m+c)
dm+ce−bm+cc , otherwise

so that E(X ′) = m+c. Since c ∈ (−m,m) andm ∈ Z≥1, so
bm+ cc ≥ 0 and dm+ ce ≤ 2m. Hence P(X ′ ≥ 2m+ 1) =
0. Thus, by (6), (4), and (5),

H(X ′, Y ) = −κH(UmO , X
′)− (1− κ)H(UmE , X

′)

= κ

(
E(X ′)

m
− 1

)
+ (1− κ)

(
E(X ′) + 1

m+ 1
− 1

)
= E(X ′)

m+ κ

m(m+ 1)
+

1− κ
m+ 1

− 1

= (m+ c)
m+ κ

m(m+ 1)
+

1− κ
m+ 1

− 1.

(8)

By (3), (7), and (8)

P 1(X ′, Y ) =
v1
2

(
(m+ c)

m+ κ

m(m+ 1)
+

1− κ
m+ 1

− 2(m+ c)

v1

)
,

and

P 1(X,Y ) =
v1
2

(
1− 2m

v1

)
.

Since (X,Y ) is a Nash equilibrium soP (X,Y ) ≥ P (X ′, Y ).
Hence

v1
2

(
1− 2m

v1

)
≥

v1
2

(
(m+ c)

m+ κ

m(m+ 1)
+

1− κ
m+ 1

− 2(m+ c)

v1

)
and, since v1 > 0, so

2c

v1
≥ c(m+ κ)

m(m+ 1)
. (9)

Since v1 > 0, m ≥ 0, κ ∈ (0, 1), and (9) holds for any
c ∈ (−m,m) so v1/2 = m(m+ 1)/(m+ κ). By analogous
derivation we also get v2/2 = m(m+1)/(m+λ). From this
we also get

κ =
2m

v1

(
m+ 1− v1

2

)
and λ =

2m

v2

(
m+ 1− v2

2

)
.

Since κ ∈ [0, 1] so m(m + 1)/(m + κ) ∈ [m,m + 1].
Hence either m = bv1/2c or m = dv1/2e − 1. Similarly,
either m = bv2/2c or m = dv2/2e − 1.

For the left to right implication, consider a strategyX ′ with
E(X ′) ≥ 0 of player 1. By (8) and (3),

P 1(X ′, Y ) =
v1
2

(
E(X ′)

m+ κ

m(m+ 1)
+

1− κ
m+ 1

− 1−
(

2E(X ′)

v1
− 1

))

=
v1
2

(
1− κ
m+ 1

+ E(X ′)

(
m+ κ

m(m+ 1)
− 2

v1

))
.

Similarly, by (7) and (3),

P 1(X,Y ) =
v1
2

(
1− 2m

v1

)
=
v1
2

(
1− κ
m+ 1

+m

(
m+ κ

m(m+ 1)
− 2

v1

))
.

Since v1/2 = m(m + 1)/(m + κ) so P 1(X ′, Y ) = 0 =
P 1(X,Y ) and there is no profitable deviation for player 1
from (X,Y ). By analogous derivation, using v2/2 = m(m+
1)/(m+ λ), we conclude that there is no profitable deviation
for player 2 from (X,Y ) either. Hence (X,Y ) is a Nash
equilibrium.

The next theorem provides complete characterisation of
equilibria in the case where the valuation of the prize by the
weaker player is not an even (integer) number.
Theorem 2. Strategy profile (X,Y ) is a Nash equilibrium
of all-pay auction with players valuations v1 ≥ v2 > 2 and
v2/2 /∈ Z if and only if

(i) if bv1/2c = bv2/2c then X = λUmO + (1 − λ)UmE and
Y = κUmO + (1− κ)UmE , with m = bv2/2c,

κ =
bv1/2c
v1/2

(⌈v1
2

⌉
− v1

2

)
and

λ =
bv2/2c
v2/2

(⌈v2
2

⌉
− v2

2

)
.

Equilibrium payoffs of the players are

P 1(X,Y ) =
v1
2
−
⌊v2

2

⌋
and P 2(Y,X) =

v2
2
−
⌊v2

2

⌋
.

(ii) if v1/2 = bv2/2c+ 1 then Y = UmE , with m = bv2/2c,
and

X = λO((1− α)UmO + αUm+1
O ) +

λE((1− α)UmE + αUm+1
O ) +

m∑
j=1

λj
(
αδV mj + (1− αδ)UmO

)
+

m∑
j=1

κj
(
αδV mj + (1− αδ)UmE

)
,

with

δ =
2
⌊
v2
2

⌋
+ 1⌊

v2
2

⌋
+ 1

,
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α ∈ [0, 1/δ], λO, λE, λ1, . . . , λm, κ1, . . . , κm ≥ 0,
λO + λE +

∑m
j=1 λj +

∑m
j=1 κj = 1, and

λE +
m∑
i=1

κi
1− αδ
1− α

=

⌈
v2
2

⌉ (
v2
2 −

⌊
v2
2

⌋)
v2
2 (1− α)

− α

1− α

or

X = λO((1− α)UmO + αUm+1
O ) +

λE((1− α)UmE + αUm+1
O ) +

m∑
j=1

λj
(
(1− α)σV mj + (1− (1− α)σ)Um+1

O

)
,

with

σ =
2
⌊
v2
2

⌋
+ 1⌊

v2
2

⌋ ,

α ∈ (1/δ,
d v2

2 e
v2
2

(
v2
2 −

⌊
v2
2

⌋)
], λO, λE, λ1, . . . , λm ≥

0, λO + λE +
∑m
j=1 λj = 1, and

λE =

⌈
v2
2

⌉ (
v2
2 −

⌊
v2
2

⌋)
v2
2 (1− α)

− α

1− α

Equilibrium payoffs of the players are

P 1(X,Y ) = 1 and P 2(Y,X) = 1− v2
v1
α− v1 − v2

2
.

(iii) if v1/2 > bv2/2c+ 1 then

X ∈ conv({Um,α} ∪ Xm,α),

Y =

(
1− b

m

)
10 +

(
b

m

)
UmE ,

where

m =
⌊v2

2

⌋
, b =

⌊
v2
2

⌋ ⌈
v2
2

⌉
v1
2

, α =

⌈
v2
2

⌉
v2
2

(v2
2
−
⌊v2

2

⌋)
,

• Um,α = (1− α)UmO + αUm+1
O ,

and

• Xm,α = αδVm + (1− αδ)UmO , if v2/2 ≤
dv2/2e − 1/2,

• Xm,α = (1− α)σVm + (1− (1− α)σ)Um+1
O , if

v2/2 > dv2/2e − 1/2,

where

δ =
2
⌊
v2
2

⌋
+ 1⌊

v2
2

⌋
+ 1

, σ =
2
⌊
v2
2

⌋
+ 1⌊

v2
2

⌋ .

Equilibrium payoffs of the players are

P 1(X,Y ) = v1 + 1− 2
⌈v2

2

⌉
and P 2(Y,X) = 0.

The first point of the theorem covers the case where valua-
tions of the prize for the two players are close to each other:
the difference between them is less than 1 and the closest in-
teger value not greater than half of each valuation is the same
for both of them. Similarly to the first point of Theorem 1,
each of the players uses a convex combination of the uniform
probability distribution on even numbers from 0 to 2m and
the uniform probability distribution on odd numbers from 0
to 2m + 1, where m = bv2/2c. This time, however, equilib-
rium is unique.

The second and the third point of the theorem cover the
case where floors of the valuations of the prize for the two
players are not equal. The second point covers the case where
half of the valuation of the stronger player is the smallest in-
teger number greater than half of the valuation of the weaker
player. The weaker player has a unique equilibrium strategy:
mixing uniformly on even numbers between 0 and 2bv2/2c.
The stronger player has continuum of equilibrium strategies
depending on the fraction α by which the expected value of
the strategy of the stronger player exceeds the expected value
of the equilibrium strategy of the weaker player, bv2/2c. Pay-
off of the stronger player is equal to 1 for all equilibria. Pay-
off of the weaker player is positive unless α attains its highest
value. The third point covers the case where half of the valu-
ation of the stronger player exceeds the ceiling of the half the
valuation of the weaker player. In this case there is a unique
equilibrium strategy of the weaker player: the player chooses
effort 0 with probability 1− b/m and, with probability b/m,
mixes uniformly on even numbers from 0 to 2bv2/2c. The
stronger player has a continuum of equilibrium strategies. All
the equilibria are payoff equivalent and so equilibrium pay-
offs are unique. Equilibrium payoff of the weaker player is 0
and the stronger player obtains a positive equilibrium payoff.
Like in the case of Theorem i, equilibria are interchangebla
end set of equilibrium strategies of the players are convex.

Notice that if the space of possible prize valuations, v1 and
v2, is a subset of real numbers then equilibrium payoffs are
generically unique: the cases where equilibrium payoffs are
not unique require one of the players to have a prize valuation
which is an even number.

3.1 Comparison with Continuous All-Pay Auction
In this section we compare equilibrium characterisation in
discrete case with equilibrium characterisation in the contin-
uous case. The following result, stated in [Hillman, 1988]
and [Hillman and Riley, 1989] and rigorously proven in [Baye
et al., 1996], provides full characterisation of equilibria for
continuous all-pay auction.

Theorem 3 (Hillman and Riley). A strategy profile (X,Y ) is
a Nash equilibrium of all-pay auction with continuous strate-
gies and players valuations v1 ≥ v2 > 0 if and only if X is
distributed uniformly on the interval [0, v2] while Y is dis-
tributed on [0, v2] with a distribution with CDF F2(x) =
(x − v2)/v1 + 1. Equilibrium payoffs of the players are
P 1
cont.(X,Y ) = v1 − v2 and P 2

cont.(X,Y ) = 0.

One feature of equilibrium strategies that is present in both
the discrete and the continuous case is that the weaker player
exerts zero effort with probability close to (v1 − v2)/2 and
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then mixes with the remaining probability on the interval
close to [0, v2]. In the case of the discrete model the inter-
val is [0, v2] when v2 is even and [0, 2bv2/2c + 1] when v2
is not an even number. The probability distribution on the in-
terval, in the discrete case, is not uniform on discrete values,
in general. However it is a convex combination of probability
distributions which are uniform on odd number, uniform on
even number, or distorted such uniform distributions. In par-
ticular in the case of the valuation of the weaker player, v2,
that is not even and is less than the valuation of the stronger
player by more than 2 (point (iii) of Theorem 2) the set of
equilibrium strategies of the stronger player contains prob-
ability distribution that is uniform on integer values in the
interval [0, 2bv2/2c+ 1].

Figure 1: Change in payoff of player 2 when v2 increases: the case
of v1 not an even number and v1/2 − bv1/2c < 1/2. Thick line
represents equilibrium payoffs in the discrete case and thin line rep-
resents equilibrium payoffs in continuous case.

Comparative Statics
Fixing the valuation of player 1, we analyse the effect of in-
creasing the valuation of player 2. Consider first the case
when the valuation of player 1, v1, is not an even number, il-
lustrated in Figures 1 and 2. In this case equilibrium payoffs
of player 2 are unique for all values of v2. Notice that the
difference in payoffs under the discrete and continuous case
is equal to 0 when v2 ≤ 2bv1/2c, equal to v2/2 − bv2/2c
when 2bv1/2c < v2 ≤ v1, equal to v1−bv1/2c− v2/2 when
v1 < v2 ≤ 2dv1/2e, and equal to 2(v1/2 − bv1/2c − 1/2)
when v2 > 2dv1/2e. In particular, discreteness of strategy
space benefits player 2 when she is weaker but her valuation
is close to the valuation of player 1: v2 ∈ (2bv1/2c, v1]. De-
pending on whether the valuation of player 1 is smaller or
greater than the closest odd integer number, the discreteness
of strategy space disbenefits or benefits player 2, respectively,
when she is stronger than player 1, v2 > v1.

Second consider the case when valuation of player 1, v1,
is an even number, illustrated in Figure 3. In this case pay-
offs to player 2 under the discrete and the continuous case
are equal when v2 ≤ 2bv1/2c. When v2 > 2bv1/2c there is
a continuum of possible equilibrium payoffs and, depending

Figure 2: Change in payoff of player 2 when v2 increases: the case
of v1 not an even number and v1/2− bv1/2c < 1/2.

on the strategy chosen by player 1, player 2 obtains lower or
higher payoff under discrete strategy space as compared to
the payoff under the continuous case.

Figure 3: Change in payoff of player 2 when v2 increases: the case
of v1 an even number.

4 Conclusions
In this paper we studied two player all-pay auctions with dis-
crete strategies of the players. We provided full character-
isation of equilibria as well as of equilibrium payoffs. We
discussed how they are related to equilibria and equilibrium
payoffs in the continuous variant of all-pay auctions. We
show that equilibria in the discrete variant are not unique, in
general, but the are interchangeable. Equilibrium payoffs are
unique, as long as none of the players has valuation of the
prize that is an even number. In case it is for at least one of
the players, there is continuum of possible equilibrium pay-
offs. Equilibrium strategies involve convex combinations of
uniform distributions on even or odd numbers as well as dis-
torted versions of such distributions.
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