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Abstract
Consider a market where a seller owns an item for
sale and a buyer wants to purchase it. Each player
has private information, known as their type. It can
be costly and difficult for the players to reach an
agreement through direct communication. How-
ever, with a mediator as a trusted third party, both
players can communicate privately with the medi-
ator without worrying about leaking too much or
too little information. The mediator can design and
commit to a multi-round communication protocol
for both players, in which they update their beliefs
about the other player’s type. The mediator can-
not force the players to trade but can influence their
behaviors by sending messages to them.
We study the problem of designing revenue-
maximizing mechanisms for the mediator. We
show that the mediator can, without loss of gen-
erality, focus on a set of direct and incentive-
compatible mechanisms. We then formulate this
problem as a mathematical program and provide
an optimal solution in closed form under a regu-
larity condition. Our mechanism is simple and has
a threshold structure. We also discuss some inter-
esting properties of the optimal mechanism, such
as situations where the mediator may lose money.

1 Introduction
Consider a market where a seller wishes to sell an item to a
buyer. The item’s quality is only known to the seller, while
the buyer’s valuation of the item depends on both the item’s
quality and the buyer’s type. Both parties are interested in
knowing the other player’s private information but may be
unwilling to disclose too much about their own. On one hand,
revealing too much information gives the other player an in-
formational advantage. If the seller knows the buyer’s type,
they can set a price accordingly to extract the full surplus as
their revenue. Similarly, if the buyer knows the quality of the
item, they can certainly utilize the information to make a bet-
ter purchase decision. On the other hand, revealing no infor-
mation may hinder the occurrence of a trade. For example, a
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buyer may deem the price unworthy if they have information
about the item’s quality. Therefore, this lack of information
makes it difficult for both players to come to a trade agree-
ment on their own. Even after the purchase decision is made,
the players also need to deal with extensive paperwork, which
imposes high costs on both of them.

This problem is ubiquitous in real-world applications and
has led to the emergence of mediators between the two sides.
For instance, in real estate markets, a broker or a realtor of-
ten acts as a mediator between a seller and a buyer. In fact,
according to the National Association of Realtors [2022], in
2021, 87% of buyers purchased their homes, and 90% of sell-
ers sold their homes through an agent or a broker in the US.
Such a mediator typically benefits both sides and facilitates
trades that may not happen on their own.

Apart from real estate markets, mediators also play a cru-
cial role in numerous other applications: online ad exchanges
match publishers with advertisers based on the features of
both sides; ride-sharing platforms connect passengers with
drivers based on their geographical information; lodging ser-
vices match tourists with rooms based on their needs.

The aforementioned observations prompt us to investigate
how a mediator can maximize their revenue by charging fees
for providing such a service. We consider a model where the
seller and the buyer can interact with a mediator via commu-
nication. Both players have private types that are drawn from
publicly known distributions. The mediator has no access to
the players’ private types, but can privately communicate with
them based on a specific communication protocol that may in-
volve multiple rounds. Players update their beliefs about the
other player’s type after each round. In the end, the mediator
decides whether to recommend a trade or not, and both play-
ers must decide whether to follow the recommendation. We
assume there is no outside option for both players since there
may be a significantly high cost involved (from negotiation,
paperwork, etc.) if they choose to trade on their own.

However, unlike most standard mechanism design prob-
lems, the mediator cannot force the players to follow the trade
recommendation. As a result, the mediator needs to carefully
design the communication protocol and the pricing strategy
to incentivize both players to follow their recommendations
while maximizing revenue.

In this work, we take the perspective of the mediator and
explore the design of a communication protocol that enables
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the mediator to elicit and reveal information. We also aim to
determine how the mediator can price their service to maxi-
mize the expected revenue.

1.1 Our Contributions
We formally define the mechanism space for this prob-
lem. Any mechanism in our mechanism space induces an
extensive-form game with incomplete information once the
mediator commits to a specific protocol, where each player
has a prior belief about the other player’s private information.
Thus, we use the Perfect Bayesian equilibrium as our solu-
tion concept and prove a variant of the celebrated revelation
principle, tailored for our setting. We show that the mediator
can, without loss of generality, focus on the set of direct and
incentive-compatible mechanisms.

Based on the above results, we formulate this problem as
a mathematical program and provide an optimal solution in
closed form, subject to a regularity condition. Our optimal
mechanism falls into the category of threshold mechanisms.
Lastly, we discuss some interesting properties of the optimal
mechanism. For example, a somewhat counterintuitive find-
ing is that sellers with higher-quality items are less likely to
make a sale. Additionally, in some cases, the mediator may
incur a loss.

1.2 Additional Related Works
Information selling. Closest to our paper in the literature
of information selling is the work by Liu et al. [2021].
They consider sequential interactions between an information
seller and an information buyer and study the optimal pric-
ing problem. However, our paper differs from theirs in that
we consider a setting where a mediator, who has no informa-
tion advantage, interacts with two privately informed players.
Babaioff et al. [2012] consider a similar setting and provide
conditions under which the information seller can achieve op-
timal revenue by using a one-round mechanism. Chen et al.
[2020] consider the same setting as [Babaioff et al., 2012],
but with additional budget constraints.

Bilateral trade. Another relevant but significantly differ-
ent direction is bilateral trade. The seminal work [Myerson
and Satterthwaite, 1983] characterizes the set of mechanisms
for a profit-maximizing monopolistic broker in bilateral trade.
However, in their setting, both players cannot opt out of the
mechanism after participation, and thus it can be modeled as
a single-round mechanism. In contrast, in our setting, players
need to decide whether to stay in the mechanism or follow
the mediator’s recommendations. Therefore, the revelation
principle based on Bayesian Nash equilibrium does not ap-
ply to our setting. There is also a line of work focusing on
improving efficiency through interaction [Alon et al., 2015;
Dobzinski et al., 2014]. More recently, Mao et al. [2022]
consider a setting where a buyer and a seller can establish a
communication protocol beforehand, and both of them have
commitment power. Following this protocol, the players send
verifiable signals to each other in turn. However, in our set-
ting, only the mediator has commitment power, and each
player privately communicates with the mediator to update
their beliefs.

Information design. Our work is also related to the lit-
erature on information design, commonly referred to as
“Bayesian persuasion” [Kamenica and Gentzkow, 2011]. In
a standard Bayesian persuasion model, an informed sender
who has no ability to take actions aims to persuade an un-
informed receiver to take actions in their favor by way of
signaling. Recently, there have also been studies on its
variants, e.g., an informed sender persuades an informed
receiver [Kolotilin et al., 2017]; an informed sender per-
suades a set of uninformed receivers [Castiglioni et al., 2021;
Xu, 2020]. In contrast, our problem lies in the area where
an information sender with no informational advantage pri-
vately sends signals to two informed receivers. There is also
a body of work that studies Bayesian persuasion with me-
diators [Shen et al., 2018; Hennigs, 2019; Mahzoon, 2022;
Arieli et al., 2022]. However, the role of the mediators in
these settings is significantly different from ours.

Communication equilibrium. Another relevant concept is
communication equilibrium [Forges, 1993], where the unin-
formed mediator can recommend actions to the players based
on the information obtained from them. We apply this notion
to a real-world application. For a more detailed discussion
on the connection between Bayesian persuasion and incom-
plete information correlated equilibrium, we refer interested
readers to [Bergemann and Morris, 2016].

2 Preliminaries
Consider a market with two agents: a seller s and a buyer b.
The seller has an item for sale, while the buyer seeks to pur-
chase it. Let t ∈ T be the private type of the buyer. Denote
by q ∈ Q the quality of the item, which can be viewed as the
private type of the seller. We assume that t and q are random
variables independently drawn from publicly known distribu-
tions F (t) and G(q), respectively. Additionally, we assume
that both F (t) and G(q) are differentiable, with probability
density functions f(t) and g(q) that are supported on [t1, t2]
and [q1, q2], respectively.

Let v(t, q) denote the valuation of a buyer of type t ob-
taining an item of quality q. We assume that the function
v(t, q) is monotone non-decreasing in the buyer’s type t for
any q ∈ Q. In particular, we assume that v(t, q) is linear in t
and takes the form v(t, q) = α1(q)t+α2(q), with α1(q) > 0
for all q ∈ Q. The seller has a reserve price r(q) for the item,
which is assumed to be proportional to the quality of the item,
i.e., r(q) = kq for some constant k ≥ 0. Alternatively, r(q)
can be interpreted as the seller’s own valuation of the item.

Now suppose that there exists a third party (i.e., the media-
tor) who has a private communication channel through which
they can communicate with either the buyer or the seller pri-
vately, collecting information from the players or revealing
information to them. In the end, the mediator will either rec-
ommend “trade” with a suggested price or “not trade” at all.
The mediator can also charge them for providing the service.

Note that the revenue received by the mediator comes
solely from charging fees to the agents and is not related to
the actual trade price. However, we can simplify our analysis
by assuming that the buyer pays the trade price to the me-
diator, who then pays the seller. With this modification, the
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utilities of all three parties remain the same, and all monetary
transfers occur only between the mediator and the two agents.
Throughout the paper, we make the assumption that the seller
and the buyer cannot trade with each other without the media-
tor, as the cost of reaching a trade agreement and handling all
the paperwork is formidably high. Therefore, whenever the
mediator recommends “not trade”, the agents cannot trade on
their own, even if the trade would benefit both of them.

3 Mechanism Space
We investigate the problem of designing revenue-maximizing
mechanisms for the mediator. In this section, we will describe
the set of mechanisms considered in this paper. Therefore, the
optimal mechanism is the one that yields the highest expected
revenue among the set of mechanisms.

Definition 1 (General communication protocol). A general
communication protocol is a mechanism that induces a finite
extensive-form game between the agents. The game can be
described by a game tree, where each non-leaf node h is one
of the following types:

• buyer node, where the buyer chooses an action;

• seller node, where the seller chooses an action;

• signaling-buyer node, where the mediator privately
sends a message to the buyer. Any such node h has a
prescription of the mediator’s behavior, which is a prob-
ability distribution ψh over the set of its children C(h);

• signaling-seller node, which is analogous to the
signaling-buyer node but has prescribed behavior ψh;

• charging-buyer node, which has only one child node
and is associated with a monetary transfer (possibly
negative) th from the buyer to the mediator;

• paying-seller node, which is similar to the above node
except that the transfer is from the mediator to the seller;

• recommendation node, where the mediator decides
whether to recommend the agents to trade. We allow for
randomized recommendations. Therefore, each recom-
mendation node has two children (one for “trade” and
the other for “not trade”), and is associated with the
mediator’s behavior, which is a probability distribution
over the two children;

• buyer decision node, where the buyer decides whether
to trade when receiving “trade” recommendation. Once
the buyer refuses to trade, the game ends and goes to a
leaf (terminal) node;

• seller decision node, which is analogous to the above
node except that the decision is made by the seller.

We require that the path from the root to any terminal node
include one and only one recommendation node. Also, we
require at least one buyer decision node and one seller deci-
sion node after the child node “trade” of any recommenda-
tion node to guarantee the players’ right to reject. Except at
the recommendation node, any interaction between the buyer
and the mediator cannot be observed by the seller, and vice
versa.

Our mechanism space generalizes a similar defini-
tion called the “generic interactive protocol” proposed
by Babaioff et al. [2012]. Similar to other mechanism de-
sign problems, our mechanism proceeds as follows:

1. The mediator announces the mechanism to the agents;
2. The agents play the game described by the game tree.
In our definition, each node involving the mediator is asso-

ciated with a specific behavior. Therefore, the induced game
tree is only well-defined once both the seller and the buyer
are aware of the mediator’s intended behaviors. We make
the standard assumption that the mediator has commitment
power and will behave exactly as committed.

Note that the buyer node and the seller node can be re-
garded as nodes where the two agents send messages to the
mediator since their actions rely on their private information.
In fact, in a direct mechanism (which will be defined later),
the action sets for the agents are precisely their type sets.

3.1 Game Re-Formulation and Solution Concept
Since we assume that the mediator has commitment power,
the induced game is actually played between the seller and
the buyer. Thus, given a mechanism, we can re-formulate the
game and view the mediator’s actions as chance moves.

Formally, given a mechanism M , a corresponding two-
player extensive-form game can be defined as a tuple Γ =
⟨N,T,H,Z,H, A, I, u⟩, where

• N = {b, s} is the set of players;
• T is a game tree, obtained by adding a nature node to

the tree described by M , where nature chooses the types
of players at the beginning of the game;

• H is a set of non-terminal nodes;
• Z is a set of terminal nodes;
• H = {H0, Hs, Hb} is a partition of H , where H0 is the

set of chance move nodes, and Hs and Hb are the sets
of nodes where the seller and the buyer moves, respec-
tively;

• A is a function that maps a non-terminal node h ∈ H to
a set of available actions A(h);

• I = {Ii}i∈N is a collection of information partitions,
where each Ii is a partition of Hi. An element I ∈ Ii is
called an information set of player i. Every information
set I satisfies A(h) = A(h′), ∀h, h′ ∈ I . Thus for any
information set I ∈ Ii, we denote by A(I) the set A(h)
for all h ∈ I;

• u = (ui)i∈N is a collection of payoff functions, where
each ui : Z 7→ R is the payoff function of player i.

In the game tree T , any node can be uniquely determined by
the path from the root to the node. This path is also called the
history of the node. So with a slight abuse of notation, we use
h or z to denote both a node and its history.

We assume quasi-linear utility for both the buyer and the
seller. Thus, we have

ub(z) =

{
v(t, q)− τb(z) if z leads to a trade
−τb(z) otherwise

,
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where τb(z) is the total payments made by the buyer along the
path from the root to node z, and t and q can be inferred from
z, as z is a history including chance moves. Note that trade
occurs if and only if the mediator recommends “trade” and
both agents choose to follow the recommendation. Similarly,
for the seller, we have:

us(z) =

{
τs(z) if z leads to a trade
τs(z) + r(q) otherwise

,

where τs(z) is the total payments from the mediator to the
seller.

A strategy βi(I) of player i is a function that assigns a
probability distribution overA(I) to each information set I ∈
Ii. Let Bi denote the set of all possible strategies of player i.
Given a strategy profile β = (βi)i∈N , one can easily calculate
the probability ρ(z|β) of reaching a terminal node z using the
structure of the game tree.

A belief is a function µ : H 7→ [0, 1] that assigns to each
node h ∈ H a probability such that the probabilities of the
node in any information set sum up to 1, i.e.,

∑
h∈I µ(h) =

1, ∀I ∈ Ii, for all players i ∈ N . The belief µ(h) can be
interpreted as the probability that the player believes they are
at node h when I is reached.

An assessment is a combination of a strategy profile and
a belief (β, µ). Given an information set I of player i, let
ZI be the set of all terminal nodes that can be reached from
some nodes in I . Given an assessment (β, µ) and information
set I ∈ Ii, the conditional probability of reaching a terminal
node z ∈ ZI is denoted as ρ(z|β, µ, I). Then, the conditional
expected payoff of player i for (β, µ) at information set I is
defined as Ui,I(β|µ) =

∑
z∈ZI

ρ(z|β, µ, I)ui(z).
Now we are ready to define the solution concept used in

this paper.

Definition 2 (Perfect Bayesian Equilibrium, PBE). An as-
sessment (β∗, µ∗) is a perfect Bayesian equilibrium of Γ if
the following conditions hold for each player i ∈ N .

• Sequential rationality. For every information set I ∈ Ii
and every βi ∈ Bi,

Ui,I(β
∗
i , β

∗
−i|µ∗) ≥ Ui,I(βi, β

∗
−i|µ∗);

• Consistency. For every information set I ∈ Ii and every
h ∈ I ,

µ∗(h) =
ρ(h|β∗)∑

h′∈I ρ(h
′|β∗)

,

where ρ(h′|β∗) is the probability of reaching node h′ ∈
I given β∗.

Remark. Note that the above belief update equation is only
well-defined if

∑
h′∈I ρ(h

′|β∗) > 0. Otherwise, µ∗(h) can
be arbitrary, as the probability of reaching the information
set is 0.

Simply put, the players are sequentially rational if they al-
ways maximize their utilities based on their beliefs, and con-
sistency requires that the players update their beliefs using
the Bayes rule.

3.2 Direct Mechanisms and the Revelation
Principle

In this section, we recast the celebrated revelation principle
in our setting, showing that the mediator can narrow their fo-
cus to the set of direct and incentive-compatible mechanisms
without loss of generality.

Before defining direct mechanisms, we first introduce sig-
naling schemes, which formalize how the mediator reveals
information. Given a signal set Σ, a signaling scheme π :
T × Q 7→ ∆(Σ) is a mapping from the players’ type profile
to a distribution over the signal set Σ. This way of revealing
information is also called “Bayesian persuasion” or an “ex-
periment” in some research [Kamenica and Gentzkow, 2011].

Upon receiving signal σ, the buyer with type t updates their
belief about the seller’s type q using the standard Bayes rule:

g(q|σ, t) = π(σ|t, q)g(q)f(t)∫
q′∈Q

π(σ|t, q′)g(q′)f(t) dq′

=
π(σ|t, q)g(q)∫

q′∈Q
π(σ|t, q′)g(q′) dq′

.

Similarly, the seller can also obtain a posterior belief:

f(t|σ, q) = π(σ|t, q)f(t)∫
t′∈T

π(σ|t′, q)f(t′) dt′
.

In this paper, we use signal schemes to describe how the
mediator sends recommendations. The signal set Σ has only
two signals1, i.e., Σ = {0, 1}, where 0 corresponds to “not
trade” while 1 corresponds to “trade”. This is because we
assume that the two agents cannot trade without the mediator.
Thus the mediator should clearly specify whether or not they
would recommend them to trade.

We define the payment functions for the two players as fol-
lows: Pb : T 7→ R is the payment made by the buyer of type
t to the mediator, and Ps : Q 7→ R is the payment from the
mediator to the seller with quality q.

Now we are ready to define direct mechanisms.

Definition 3 (Direct Mechanism). A direct mechanism is de-
scribed by a tuple (π, Pb, Ps), and proceeds as follows:

1. The mediator announces π, Pb and Ps;

2. The buyer and seller privately report (possibly untruth-
fully) their types t and q to the mediator;

3. The mediator decides whether to recommend the agents
to trade according to π(t, q);

4. Upon receiving the signal, the players update their be-
lief, and decide whether to follow the recommendation;

5. If the trade occurs, the mediator charges the buyer Pb(t)
and pays the seller Ps(q).

1One might think that the reason for this is that we only need to
consider the so-called “responsive experiments” as shown in [Berge-
mann et al., 2018]. However, this is not true, since in our paper, the
receivers’ available actions depend on the actual signal sent by the
sender. Thus their result does not apply here.
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Remark. In the above definition, although the mediator al-
ready knows both t and q when calculating the payments, the
payment functions Pb(t) and Ps(q) still only depend on their
respective types t and q. This is because the dependency on
both t and q would reveal additional information.

Definition 4 (Incentive Compatibility). A direct mechanism
is incentive compatible if, for both players, reporting their
true types and following the mediator’s recommendation form
a PBE of the game induced by the mechanism.

One can easily verify that a direct mechanism can also be
represented as a general communication protocol. We now
show that the mediator can, without loss of generality, focus
solely on direct and incentive compatible mechanisms.

Theorem 1. For any general mechanismM , there exists a di-
rect, incentive compatible mechanism that achieves the same
expected revenue as in any PBE of the game induced by M .

4 Problem Analysis
In this section, we analyze the problem and formulate it as
a mathematical program. For simplicity, we use π(t, q) to
denote the probability of sending signal 1, when the reported
type profile is (t, q).

The mediator’s goal is to design π(t, q), Pb(t) and Ps(q)
to maximize their expected revenue:∫

q∈Q

∫
t∈T

π(t, q)[Pb(t)− Ps(q)]f(t)g(q) dtdq.

We also need to pose some constraints to ensure that the
agents are willing to participate and report truthfully.

Individual rationality (IR). The utility of a buyer who
chooses not to participate is 0. Therefore, the expected utility
of a buyer with type t who reports truthfully and follows the
recommendation is:

Ub(t) = E
q∼G

[π(t, q)(v(t, q)− Pb(t))]

=

∫
q∈Q

π(t, q)[v(t, q)− Pb(t)]g(q) dq. (1)

Note that the seller values the item r(q) even if the trade does
not occur. Thus the expected utility of a seller with type q
reporting truthfully and following the recommendation is:

Us(q) = E
t∼F

[π(t, q)Ps(q)] + E
t∼F

[(1− π(t, q))r(q)]

=

∫
t∈T

π(t, q)[Ps(q)− r(q)]f(t) dt+ r(q). (2)

Therefore, to ensure the buyer’s participation, we require:∫
q∈Q

π(t, q)[v(t, q)− Pb(t)]g(q) dq ≥ 0. (3)

Similarly, for the seller, we have:∫
t∈T

π(t, q)[Ps(q)− r(q)]f(t) dt+ r(q) ≥ r(q). (4)

For convenience, we define the notion of “seller surplus”,
which expresses the seller’s additional utility gain from par-
ticipating in the mechanism, as follows:

SU(q) =

∫
t∈T

π(t, q)[Ps(q)− r(q)]f(t) dt. (5)

Therefore, the IR constraint for the seller is equivalent to non-
negative seller surplus.
Incentive compatibility (IC). To satisfy the IC constraint,
we need two steps. The first step is to ensure that following
the mediator’s recommendation is the best option for both
agents, assuming that they truthfully reported their types in
previous steps. We refer to this property as the obedience
property. The second step is to ensure that both agents obtain
a higher utility from truthfully reporting their types than mis-
reporting any other types, even if they choose not to follow
the recommendation.

The first step requires that for each agent, choosing to trade
maximizes the utilities when signal 1 (the “trade” signal) is
received. For the buyer, we have:∫

q∈Q

g(q|1, t)v(t, q) dq − Pb(t) ≥ 0.

With some simple algebraic manipulations, we obtain:∫
q∈Q

π(t, q)[v(t, q)− Pb(t)]g(q) dq ≥ 0. (6)

Similarly, for the seller, we have:∫
t∈T

π(t, q)[Ps(q)− r(q)]f(t) dt ≥ 0. (7)

Note that when the mediator sends signal 0 (the “not trade”
signal), we do not need to guarantee obedience, as we assume
that the agents cannot trade without the mediator.

It is interesting to observe that the above obedience con-
straints turn out to be exactly the same as the IR constraints.
Thus we can safely ignore the obedience constraints.

For the second step, we first consider the constraints for the
buyer. We still only need to consider the case when signal 1
is received, as the agents cannot trade without the mediator.
Upon receiving signal 1, the expected utility of trade for a
buyer with type t misreporting t′ is given by:

Ub(t
′; t) =

∫
q∈Q

π(t′, q)[v(t, q)− Pb(t
′)]g(q) dq. (8)

Note that for a buyer of type t, π(t′, q) may not be obedi-
ent anymore, i.e., after misreporting their type, the buyer may
choose not to follow the trade recommendation if doing so
leads to a negative utility. So the expected utility for the buyer
is max{Ub(t

′; t), 0}. Thus the incentive compatibility con-
straints for the buyer become the following:

Ub(t) ≥ max{Ub(t
′; t), 0}. (9)

Interestingly, Ub(t) ≥ 0 is already implied by the IR con-
straint (Constraint (3)), so the only useful constraint is

Ub(t) ≥ Ub(t
′; t). (10)
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For the seller, upon receiving signal 1, the expected utility
of trade for a seller with type q misreporting q′ is

Us(q
′; q) =

∫
t∈T

π(t, q′)[Ps(q
′)− r(q)]f(t) dt+ r(q),

(11)

where π(t, q′) may also not be obedient for the seller. With
arguments similar to that for the buyer, we obtain that the IC
constraint for the seller is the following:

Us(q) ≥ Us(q
′; q). (12)

The seller’s IC constraint can also be equivalent to misreport-
ing does not result in a higher seller surplus, that is:

SU(q) ≥ SU(q′; q), (13)

where SU(q′; q) =
∫
t∈T

π(t, q′)[Ps(q
′)− r(q)]f(t) dt.

Combining all the constraints together, we can formulate
the mechanism design problem as the following mathematical
program:

maximize

∫
q∈Q

∫
t∈T

π(t, q)[Pb(t)− Ps(q)]f(t)g(q) dtdq

subject to Ub(t) ≥ 0, ∀t ∈ T

SU(q) ≥ 0, ∀q ∈ Q

Ub(t) ≥ Ub(t
′; t), ∀t, t′ ∈ T

SU(q) ≥ SU(q′; q), ∀q, q′ ∈ Q
(14)

5 The Optimal Mechanism
In this section, we apply a variant of the Myersonian approach
and give an optimal solution in closed form to the optimiza-
tion problem (14).

Before we present our main result, we need the following
definition.
Definition 5 (Virtual Value Function and Virtual Cost Func-
tion). For any random variable w with PDF x(w) and CDF
X(w), the virtual value function ϕ−(w) and the virtual cost
function ϕ+(w) are defined as:

ϕ−(w) = w − 1−X(w)

x(w)
, ϕ+(w) = w +

X(w)

x(w)
.

The definition of the virtual value function is the same as
in [Myerson, 1981], and the virtual cost function is also stan-
dard in the literature (see, e.g., [Manelli and Vincent, 1995;
Myerson and Satterthwaite, 1983]).

Let ϕ−b (t) be the buyer’s virtual value function and ϕ+s (q)
the seller’s virtual cost function. Our main result is built upon
the following regularity condition:
Definition 6 (Regularity). A problem instance is regular if
both functions ϕ−b (t) and kϕ+

s (q)−α2(q)
α1(q)

are monotone non-
decreasing.

This regularity condition is also standard in the litera-
ture [Myerson, 1981; Cai and Daskalakis, 2011; Krishna and
Maenner, 2001] and is satisfied for a wide range of distri-
butions. Our solution belongs to the following category of
threshold mechanisms when the problem instance is regular.

Definition 7. A mechanism (π, Pb, Ps) is called a thresh-
old mechanism if there exist monotone functions λ(t) and
η(q), such that the mediator recommends “trade” as long as
λ(t) ≥ η(q), i.e.,

π(t, q) =

{
1 if λ(t) ≥ η(q)

0 otherwise
.

In this case, π(t, q) is fully described by function λ(t) and
η(q).

Now we are ready to present our optimal mechanism.

Theorem 2. Suppose that a problem instance satisfies the
regularity condition. Then the threshold mechanism with the
following threshold functions and payment functions is an op-
timal mechanism:

λ(t) = ϕ−b (t) and η(q) =
kϕ+s (q)− α2(q)

α1(q)
,

P ∗
b (t) =

1∫
q∈Q

π∗(t, q)g(q) dq

[∫
q∈Q

π∗(t, q)v(t, q)g(q) dq

−
∫ t

t1

∫
q∈Q

α1(q)π
∗(x, q)g(q) dqdx

]
, (15)

P ∗
s (q) =

1∫
t∈T

π∗(t, q)f(t) dt

[∫
t∈T

π∗(t, q)r(q)f(t) dt

+k

∫ q2

q

∫
t∈T

π∗(t, x)f(t) dtdx

]
. (16)

Example 1. Consider an example where both the buyer’s
type and the seller’s quality are uniformly distributed in the
interval [1, 2], i.e., T = Q = [1, 2], and f(t) = g(q) =
1, ∀t, q. We set α1(q) = q and α2(q) = 0. Let r(q) = 1.5q,
i.e., k = 1.5.

In this example, we have ϕ−b (t) = t − 1−F (t)
f(t) = 2t −

2, ϕ+s (q) = q + G(q)
g(q) = 2q − 1. Therefore λ(t) = ϕ−b (t) =

2t− 2 is non-decreasing in t and η(q) = k
ϕ+
s (q)
q = 3− 1.5

q is
also non-decreasing in q, satisfying the regularity condition.
In the optimal mechanism, the mediator will recommend them
to trade if λ(t) ≥ η(q), or equivalently, when t ≥ 2.5 − 1.5

2q .
For the buyer, there are two cases.

• When t < 1.75, we have t < 2.5 − 1.5
2q , ∀q. This

means that the mechanism will never recommend trade,
or equivalently, π∗(t, q) = 0, ∀q. The payment is
P ∗
b (t) = 0. For these buyers, there is no trade the medi-

ator charges nothing.

• When t ≥ 1.75, the mechanism will recommend trade
when q ≤ 1.5

5−2t . In this case, the buyer’s payment func-
tion becomes:

P ∗
b (t) = 0.5 +

0.9375

2.5− t
.

For the seller, there are also two cases.
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• When q > 1.5, then 2.5 − 1.5
2q > 2. This means the

mediator will never recommend trade since t is at most
2. So we have π∗(t, q) = 0 and P ∗

s (q) = 0 for all t in
this case.

• When q ≤ 1.5, we have that π∗(t, q) = 1 when t ≥
2.5− 1.5

2q . If q < 1.5, the payment function for the seller
P ∗
s (q) becomes:

P ∗
s (q) =

9q

6− 4q
ln

(
1.5

q

)
.

And if q = 1.5, we can take the limit and get P ∗
s (q) =

2.25.

The rest of the section is devoted to the proof of Theorem
2. We first introduce the following quantities:

Rπ
b (t) =

∫
q∈Q

α1(q)π(t, q)g(q) dq, (17)

Rπ
s (q) =

∫
t∈T

π(t, q)f(t) dt. (18)

Note that Rπ
b (t) and Rπ

s (q) can be viewed as the expected
probability of being recommended to trade, except thatRπ

b (t)
is weighted by α1(q).

We call a mechanism (π, Pb, Ps) feasible if it satisfies the
constraints in Program (14). The following lemma gives a
characterization of feasible mechanisms.

Lemma 1. A mechanism (π, Pb, Ps) is feasible if and only if
it satisfies the following constraints:

Rπ
b (t) is monotone non-decreasing in t. (19)

Rπ
s (q) is monotone non-increasing in q. (20)

Ub(t) = Ub(t1) +

∫ t

t1

Rπ
b (x) dx (21)

SU(q) = SU(q1)− k

∫ q

q1

Rπ
s (x) dx (22)

Ub(t1) ≥ 0 (23)
SU(q2) ≥ 0 (24)

Before we derive the optimal mechanism, we first need to
rewrite the revenue of the mediator.

Lemma 2. The mediator’s expected revenue of any feasible
mechanism (π, Pb, Ps) can be written as:

Rev(π, Pb, Ps)

=

∫ q2

q1

∫ t2

t1

π(t, q)[α1(q)ϕ
−
b (t) + α2(q)− kϕ+s (q)]

· f(t)g(q) dtdq − Ub(t1)− SU(q2). (25)

The following result shows that the mechanism described
in Theorem 2 is feasible.

Lemma 3. For a regular problem instance, the mechanism
(π∗, P ∗

b , P
∗
s ) defined in Theorem 2 is feasible.

We only provide a proof sketch of Theorem 2 due to space
limit.

Proof sketch of Theorem 2. According to Lemma 3, our
mechanism is feasible. The definition of π∗ implies that our
mechanism maximizes the first term in Equation (25). And
using the definition of P ∗

b (t) and P ∗
s (q), we can show that

Ub(t1) = 0 and SU(q2) = 0. This means that our mecha-
nism optimizes the 3 terms in Equation (25) simultaneously,
and hence optimal.

Our main result reveals some interesting facts about the
optimal mechanism.
Fact 1. For a regular problem instance, the higher the seller’s
type is, the less likely their item will be sold.

For a regular instance, the probability of λ(t) ≥ η(q) be-
comes smaller as η(q) is monotone non-decreasing in q. Sell-
ers with high-quality items also have higher reserve prices,
which means that fewer buyers can afford to buy the item.
Fact 2. In the optimal mechanism, for each buyer of type t,
there is a certain threshold q′, such that the buyer can trade
with the seller only if the seller’s type q satisfies q ≤ q′.

Fact 2 shows that even a buyer with a high type may still
buy a low-quality item, but it is impossible for a low-typed
buyer to buy a high-quality item.
Fact 3. In the optimal mechanism, the mediator may lose
money for some type profiles (t, q).

This happens whenever the mediator’s payment to the
seller is higher than the payment collected from the buyer,
i.e., P ∗

s (q) > P ∗
b (t). Let us re-consider Example 1. As

shown in Figure 1, the mediator will recommend trade in the
area above the blue curve. And the equation P ∗

s (q) = P ∗
b (t)

is the orange curve. Therefore, in the area between the blue
curve and the orange curve, the mediator recommends trade
but loses money.

Recommending trade 

Recommending trade  
but losing money

Figure 1: The threshold mechanism in Example 1.

6 Conclusion
We studied the problem of designing revenue-maximizing
mechanisms for the mediator. We formally defined the set of
mechanisms that can be used by the mediator, and proved that
the mediator can, without loss of generality, consider the set
of direct and incentive compatible mechanisms. We showed
that under the regularity condition, the optimal mechanism
is a threshold mechanism. Our closed-form solution also re-
veals some interesting properties of the optimal mechanism.
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