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Abstract
We study the problem of fairly and efficiently allo-
cating indivisible chores among agents with addi-
tive disutility functions. We consider the widely-
used envy-based fairness properties of EF1 and
EFX, in conjunction with the efficiency property of
fractional Pareto-optimality (fPO). Existence (and
computation) of an allocation that is simultane-
ously EF1/EFX and fPO are challenging open prob-
lems, and we make progress on both of them. We
show existence of an allocation that is

• EF1+fPO, when there are three agents,
• EF1+fPO, when there are at most two disutility

functions,
• EFX+fPO, for three agents with bivalued disutil-

ity functions.

These results are constructive, based on strongly
polynomial-time algorithms. We also investigate
non-existence and show that an allocation that is
EFX+fPO need not exist, even for two agents.

1 Introduction
Discrete fair division has recently received significant at-
tention due to its applications in a wide variety of multi-
agent settings; see recent surveys [Aziz, 2020; Walsh, 2020;
Aziz et al., 2022a]. Given a set of indivisible items and a
set of n agents with diverse preferences, the goal is to find
an allocation that is fair (i.e., acceptable by all agents) and
efficient (i.e., non-wasteful). We assume that agents have ad-
ditive valuations. The standard economic efficiency notions
are Pareto-optimality (PO) and its strengthening fractional
Pareto-optimality (fPO). Fairness notions based on envy [Fo-
ley, 1967] are most popular, where an allocation is said to
be envy-free (EF) if every agent weakly prefers her bundle
of items to any other agent’s bundle of items. Since EF al-
locations need not exist, (e.g., dividing one item among two
agents) its relaxations envy-free up to any item (EFX) [Cara-
giannis et al., 2019] and envy-free up to one item (EF1) [Lip-
ton et al., 2004; Budish, 2011] are most widely used, where
EF⇒ EFX⇒ EF1.

∗Work on this paper is supported by NSF Grant CCF-1942321.

Achieving both fairness and efficiency is utmost desirable
since just an efficient allocation can be highly unfair and sim-
ilarly, just a fair allocation can be highly inefficient1. How-
ever, attaining both may not even be possible because these
are often conflicting requirements, which put hard constraints
on the set of all feasible allocations. Moreover, the landscape
of known existence and tractability results varies depending
on the nature of the items. The items to be divided can be
either goods (which provide utility) or chores (which provide
disutility).

For the case of goods, a series of works provided many
remarkable results showing existence of EF1+(f)PO alloca-
tions. There are two broad approaches. The first uses the con-
cept of Nash welfare, which is the geometric mean of agent
utilities. [Caragiannis et al., 2019] showed that the allocation
with the maximum Nash welfare (MNW) is both EF1 and PO.
However, computing an MNW allocation is APX-hard [Lee,
2015; Garg et al., 2017], thus rendering this approach inef-
fective for the fast computation of an EF1+PO allocation in
general. A notable special case is when agents have binary
valuations; the MNW allocation can be computed in polyno-
mial time for this case [Darmann and Schauer, 2014]. The
efficiency notion of PO does not seem appropriate for fast
computation because even checking if an allocation is PO is
a coNP-hard problem [de Keijzer et al., 2009]. Therefore, for
fast computation, we need to work with the stronger notion
of fPO, which admits polynomial time verification.

The second approach achieves fairness while maintain-
ing efficiency through a competitive equilibrium [Barman
et al., 2018a; Barman and Krishnamurthy, 2019; Garg and
Murhekar, 2021b; Garg and Murhekar, 2021a] of a Fisher
market. In a Fisher market, agents are endowed with some
monetary budget which they use to ‘buy’ goods to maximize
their utility. A competitive equilibrium is an allocation along
with prices for the goods in which each agent only owns
goods that give them maximum ‘bang-for-buck’, i.e., goods
with the highest utility to price ratio. This property ensures
that the resulting allocation is fPO. The idea is then to en-
dow agents with fictitious budgets and maintain an alloca-
tion that is the outcome of a Fisher market, while perform-

1Consider 2 agents and 2 items where agent 1 prefers item 1 to
2 while agent 2 prefers item 2 to 1. Giving all items to one agent is
an efficient but unfair; while giving item 2 to agent 1 and item 1 to
agent 2 is a fair (according to EFX/EF1) but inefficient.
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Instance type EF1+fPO EFX+fPO
Goods Chores Goods Chores

General additive ✓ BKV [2018a], GM [2021b]† ? ✗ GM [2021a] ✗ (Thm. 2)
n = 3 agents ✓GM [2021b] ✓(Thm. 1) ✗ (Thm. 2) ✗ (Thm. 2)

Two-type ✓(Rem. 1) ✓(Thm. 3) ✗ (Thm. 2) ✗ (Thm. 2)
Bivalued ✓GM [2021b; 2021a] ✓GM [2022a], EPS [2022] ✓GM [2021a] ✓n = 3 (Thm. 4)

2-ary ✓GM [2021b] ✓ki ≥ m (Lem. 8) ✗ (Thm. 2) ✗ (Thm. 2)

Table 1: State-of-the-art for EF1/EFX+fPO allocation of indivisible items. ✓denotes existence/polynomial-time algorithm, ✗ denotes non-
existence, ? denotes (non-)existence is unknown, † denotes no polynomial-time algorithm is known. Colored cells highlight our results.

ing changes to the allocation, prices, and budgets to achieve
fairness. [Barman et al., 2018a] used this approach to show
that an EF1+fPO allocation exists, and that an EF1+PO al-
location can be computed in pseudo-polynomial time. Later,
[Garg and Murhekar, 2021b] showed that an EF1+fPO alloca-
tion can be computed in pseudo-polynomial time in general,
and in polynomial time for constantly many agents or when
agents have k-ary valuations with constant k. For bivalued
instances of goods, an EFX+fPO allocation was shown to be
polynomial time computable [Garg and Murhekar, 2021a].
Designing a polynomial-time algorithm for computing an
EF1+fPO allocation of goods remains a challenging open
problem.

In contrast, the case of chores turns out to be much more
difficult to work with, resulting in relatively slow progress
despite significant efforts by many researchers. Neither of
the above mentioned approaches seem to be directly appli-
cable in the setting of chores. Indeed, given the absence of
a global welfare function like Nash welfare, even the exis-
tence of EF1+PO allocations for chores is open. Using com-
petitive equilibria for chores remains a promising approach,
which also guarantees fPO. In a Fisher market for chores,
agents have a monetary expectation, i.e., a salary, which they
aim to obtain by performing chores which have associated
payments instead of prices. The algorithms for computing
an EF1+(f)PO allocation of goods [Barman et al., 2018a;
Garg and Murhekar, 2021b] use the CE framework and show
termination via some potential function. The main difficulty
in translating algorithms for goods to the chores setting seems
to be that the price-rises and item transfers only increase the
potential in the goods case. For chores, however, price (pay-
ment) changes and transfers do not push these potential func-
tions in one direction like they do for goods, making it diffi-
cult to show termination.

Consequently, the existence of an EF1+(f)PO allocation for
chores remains open except for the cases of two agents [Aziz
et al., 2019], bivalued instances [Ebadian et al., 2022; Garg et
al., 2022a], and two types of chores [Aziz et al., 2022b]. The
problem becomes significantly difficult when there are n > 2
agents. Table 1 provides a summary of existing results that
are relevant to our work. In this paper, we focus on the chores
setting and make progress on the above mentioned problems.
Our first set of results show that an allocation that is
• EF1+fPO exists when there are three agents. Our algo-

rithm uses the competitive equilibrium framework (CE) to
maintain an fPO allocation, while using the payments as-
sociated with chores to guide their transfer to reduce the

envy between the agents. Our novel approach starts with
one agent having the highest envy, and then makes care-
ful chore transfers unilaterally away from this agent while
maintaining that the other two agents have bounded envy.

• EF1+fPO exists when there are two types of agents, where
agents of the same type have the same preferences. Note
that this strictly generalizes the well-studied setting of iden-
tical agents [Barman et al., 2018b; Plaut and Roughgar-
den, 2020] and subsumes the result of [Aziz et al., 2019]
computing EF1+fPO for two agents. We develop a novel
approach combining the CE allocation of an appropriately
constructed market with a round-robin procedure. Combin-
ing CE-based frameworks with envy-resolving algorithms
may be an important tool in settling the problem in its full
generality. Our approach also gives a similar result for the
case of goods. Recently [Mahara, 2021] studied the same
class for goods, and showed through an involved case anal-
ysis that an EFX (without fPO) allocation exists.

• EFX+fPO exists when there are three agents with bival-
ued preferences, where each disutility value is one of two
values. This improves the result of [Zhou and Wu, 2022]
which shows that EFX exists in this case. Similar to [Zhou
and Wu, 2022], our algorithm is quite involved and is based
on a case-by-case analysis. We first derive a simple algo-
rithm for computing an EF1+fPO for bivalued preferences,
which was recently shown to exist [Garg et al., 2022a;
Ebadian et al., 2022]. An interesting aspect of the sim-
ple algorithm is that it outputs an allocation that gives each
agent a balanced (i.e. almost equal) number of chores. We
start from such a balanced EF1+fPO outcome and improve
the guarantee from EF1 to EFX while maintaining the fPO
property. Additionally, we show that EF1+PO exists for a
class of 2-ary preferences, where each disutility value of an
agent is one of two values, but these two values can be dif-
ferent for different agents. This class is not subsumed by
bivalued instances.
All our existence results are accompanied by polynomial-

time algorithms. Next, we investigate the non-existence of
fair and efficient allocations and show that
• EFX+fPO need not exist when there are two agents with 2-

ary disutility functions. Naturally, this also implies that an
EFX+fPO allocation need not exist for two-type instances.

1.1 Further Related Work
The problems of computing an EF1/EFX + PO/fPO alloca-
tion have remained challenging open questions in their full
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generality. Most progress has been made for special cases,
providing a better picture of (non-)existence and (in)tractable
classes of discrete fair division.
EF1. Barman, Krishnamurthy, and Vaish showed that an
EF1+PO allocation of goods is computable in pseudo-
polynomial time [Barman et al., 2018a] and in polynomial
time for binary instances [Barman et al., 2018b]. [Garg
and Murhekar, 2021b] showed algorithms for computing an
EF1+fPO allocation in (i) pseudo-polynomial time for gen-
eral additive goods, (ii) poly-time for k-ary instances with
constant k, (iii) poly-time for constantly many agents. For
chores, it is not known if EF1+PO allocations exist. Recently,
existence and poly-time computation of an EF1+(f)PO allo-
cation was shown for two agents by [Aziz et al., 2019], for
bivalued chores by [Garg et al., 2022a] and [Ebadian et al.,
2022], and for two types of chores by [Aziz et al., 2022b].
EFX. [Plaut and Roughgarden, 2020] showed that an
EFX+PO allocation exists for the case of identical goods us-
ing the leximin mechanism. [Garg and Murhekar, 2021a]
showed an EFX+fPO allocation can be computed in poly-
time for bivalued goods, and non-existence for 3-valued in-
stances which was also shown in [Freeman et al., 2019].
For both goods and chores, the existence of EFX alloca-
tions is a challenging open problem. Existence is known
in the goods case for three agents [Chaudhury et al., 2020;
Akrami et al., 2022] and two types of agents [Mahara, 2021],
and for two types of goods [Gorantla et al., 2022]. In the
chores case, EFX allocations are known to exist for three bi-
valued agents [Zhou and Wu, 2022] and when there are two
types of chores [Aziz et al., 2022b].

We refer the reader to excellent recent surveys [Aziz, 2020;
Walsh, 2020; Aziz et al., 2022a] for a discussion of results in
the extensive fair division literature, including other fairness
notions like Prop/MMS.
Organization of the paper. Section 2 introduces relevant
notation and definitions. Sections 3 and 4 discuss our algo-
rithms computing an EF1+fPO allocation for three agents and
two-type instances respectively. Section 5 states our result
proving the efficient computation of an EFX+fPO allocation
for three bivalued agents. We defer missing proofs and illus-
trative examples to the full version of our paper [Garg et al.,
2022b].

2 Notation and Preliminaries
In a chore allocation instance (N,M,D), we are given a set
N = [n] of n agents, a set M = [m] of m indivisible chores,
and a set D = {di}i∈[n], where di : 2M → R≥0 is agent
i’s disutility or cost function over the chores. We assume that
di(∅) = 0. We let di(j) denote the disutility agent i incurs
from chore j and assume disutility functions are additive, so
that for every i ∈ N and S ⊆ M , di(S) =

∑
j∈S di(j).

In this work, we focus on the following classes of the chore
allocation problem. We call a chore allocation instance a:
• Three agent instance if there are n = 3 agents.
• Two-type instance if there exist disutility functions d1 and
d2 so that for all i ∈ N , di ∈ {d1, d2}. That is, every agent
has one of two unique disutility functions.

• Bivalued instance if there exist a, b ∈ R+ so that for all
i ∈ N and j ∈ M we have di(j) ∈ {a, b}. Here, rather
than two disutility functions, we have two chore costs.

• 2-ary instance if for each i ∈ N there exist ai, bi ∈ R+ so
that for all j ∈ M we have di(j) ∈ {ai, bi}. Clearly, 2-ary
instances strictly generalize bivalued instances. However,
neither is comparable with two-type instances.
An allocation x = (x1,x2, . . . ,xn) is an n-partition of

the chores where agent i receives bundle xi ⊆ M and in-
curs disutility di(xi). A fractional allocation x ∈ [0, 1]n×m,
where xij ∈ [0, 1] denotes the fraction of chore j given to
agent i, allows for the chores to be divided. Here di(xi) =∑

j∈M di(j)·xij . We will assume that allocations are integral
unless explicitly stated otherwise.

We define our fairness notions. An allocation x is said to
be:
• Envy-free if for all i, h ∈ N , di(xi) ≤ di(xh), i.e., every

agent weakly prefers her own bundle to others’ bundles.
• Envy-free up to any chore (EFX) if for all i, h ∈ N , di(xi \
j) ≤ di(xh) for any j ∈ xi, i.e., every agent weakly prefers
her own bundle to any other agent’s bundle after removing
her own easiest (least disutility) chore.

• Envy-free up to one chore (EF1) if for all i, h ∈ N , di(xi \
j) ≤ di(xh) for some j ∈ xi, i.e., every agent weakly
prefers her own bundle to any other agent’s bundle after
removing her own hardest (highest disutility) chore. We
use di−1(S) to denote minj∈S di(S \ j) for S ⊆ M . Thus
x is EF1 if ∀i, h ∈ N , di−1(xi) ≤ di(xh).
We next define the efficiency notions of Pareto optimality

(PO) and fractional Pareto optimality (fPO). An allocation y
dominates an allocation x if for all i ∈ N , di(yi) ≤ di(xi),
and there exists h ∈ N such that dh(yh) < dh(xh). An
allocation is then PO if it is not dominated by any other allo-
cation. Similarly, an allocation is fPO if it is not dominated
by any fractional allocation. Note that an fPO allocation is
necessarily PO, but not vice-versa.

Two important concepts we use in our algorithms are com-
petitive equilibrium and Fisher markets. In the Fisher market
setting we attach payments p = (p1, . . . , pm) to the chores.
Agents perform chores in exchange for payment, with each
agent i aiming to earn her minimum payment ei ≥ 0. Given a
(fractional) allocation x and a set of payments p, the earning
of an agent i under (x,p) is given by p(xi) =

∑
j∈M pj ·xij .

For each agent i, we define the pain-per-buck ratio αij of
chore j as αij = di(j)/pj and the minimum-pain-per-buck
(MPB) ratio αi = minj∈M αij . Further, we let MPBi =
{j ∈M | di(j)/pj = αi} denote the set of chores which are
MPB for agent i for payments p.

We say that (x,p) is a competitive equilibrium if (i) for
all j ∈ M ,

∑
i∈N xij = 1, i.e., all chores are completely

allocated, (ii) for all i ∈ N , p(xi) = ei, i.e., each agent
receives her minimum payment, and (iii) for all i ∈ N ,
xi ⊆ MPBi, i.e., agents receive only chores which are MPB
for them. Competitive equilibria are known to guarantee eco-
nomic efficiency via the First Welfare Theorem [Mas-Colell
et al., 1995], i.e., for a competitive equilibrium (x,p), the
allocation x is fPO.
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Given a competitive equilibrium (x,p) with integral al-
location x, we let p−1(xi) denote the payment agent i re-
ceives from xi excluding her highest paying chore. That is,
p−1(xi) = minj∈xi

p(xi \ j). We say that (x,p) is pay-
ment envy-free up to one chore (pEF1) if for all i, h ∈ N we
have p−1(xi) ≤ p(xh). We say that agent i pEF1-envies h
if p−1(xi) > p(xh). The following lemma shows that the
pEF1 condition is in fact a strengthening of EF1.

Lemma 1. Let (x,p) be an integral competitive equilibrium.
If (x,p) is pEF1, then x is EF1+fPO.

Proof. As (x,p) is pEF1, for all agents i, h ∈ N we have
p−1(xi) ≤ p(xh). Since an agent i has only MPB chores,
i.e., xi ⊆ MPBi, di−1

(xi) = αip−1(xi) and di(xh) ≥
αip(xh), where αi is the MPB ratio of agent i. This gives
us di−1(xi) = αip−1(xi) ≤ αip(xh) ≤ di(xh), showing
that x is EF1. Additionally, the First Welfare Theorem [Mas-
Colell et al., 1995] implies that the allocation x is fPO for a
competitive equilibrium (x,p).

Lemma 1 suggests that in order to compute an EF1+fPO
allocation, one can search instead for a pEF1+fPO allocation,
if possible. To do this, a natural approach is to start with an
integral competitive equilibrium (x,p), and perform changes
to both the allocation x and associated payments p until the
allocation is EF1 (or pEF1), while maintaining that (x,p) re-
mains an integral competitive equilibrium. The latter ensures
that x is always fPO. We therefore perform a transfer of a
chore j ∈ xh from an agent h to an agent i only if j ∈ MPBi.
If we wish to take a chore away from an agent h to reduce her
envy and yet for all agents i we have xh∩MPBi = ∅, then no
agent i can receive a chore of h. In such a case we must ad-
just the payments to ensure some chore of h enters the MPB
set of another agent i. This can be done in one of two ways.
The first way is to reduce the payments of chores owned by a
subset of agents other than h, done in a manner that does not
violate the MPB condition of any agent, until the agents un-
dergoing payment drops find the chores of h attractive enough
to enter their MPB set. Alternatively, one could raise the pay-
ments of chores of h, along with possibly some other chores
to ensure that the MPB condition of no agent is violated, until
an agent who did not undergo a payment rise finds the chores
of h attractive enough to enter their MPB set. Once there is
an agent i such that there is a chore j ∈ xh ∩MPBi, we can
transfer j from h to i. Our goal is to perform chore transfers
facilitated via payment drops or raises to modify an initial
allocation to one that is EF1 (or pEF1).

Two agents will be of particular interest to execute the
above ideas. An agent ℓ is called a least earner (LE) among
agent set A if ℓ ∈ argmini∈Ap(xi). An agent b is called a big
earner (BE) among agent set A if b ∈ argmaxi∈Ap−1(xi),
i.e., among agents in A, b earns the highest payment from her
bundle of chores after every agent removes their highest pay-
ing chore. We call an agent the global least/big earner when
A = N . We will assume that a mentioned least earner or big
earner is global unless explicitly noted otherwise. The next
lemma shows the importance of the BE and LE agents.

Lemma 2. An integral competitive equilibrium (x,p) is
pEF1 if and only if a big earner b does not pEF1-envy a least
earner ℓ.

Proof. It is clear that if (x,p) is pEF1 then b does not
pEF1-envy ℓ. We need only show that if b does not pEF1-
envy ℓ, then (x,p) is pEF1. For all i, h ∈ N , we have
that p−1(xi) ≤ p−1(xb) by the definition of BE, and that
p(xℓ) ≤ p(xh) by the definition of LE. Putting these to-
gether with p−1(xb) ≤ p(xℓ) since b does not pEF1-envy ℓ,
we get that p−1(xi) ≤ p(xh). Thus i does not pEF1-envy h
and (x,p) is pEF1.

3 EF1 + fPO for Three Agents
In this section we prove the first main result of our paper.

Theorem 1. Given a chore allocation instance (N,M,D)
with three agents, an EF1 + fPO allocation exists. Further-
more, it can be computed in strongly polynomial-time.

We prove Theorem 1 by showing that Algorithm 1 com-
putes an EF1 + fPO allocation in polynomial time. Algo-
rithm 1 begins by allocating the entire set of chores M to an
arbitrarily chosen agent i ∈ N , with payments set so that
pj = di(j), giving αi = 1.2 This gives us an initial com-
petitive equilibrium (x,p) where i is the big earner (BE). We
define agent ℓ to be the least earner (LE) and agent h to be
the middle earner (ME), i.e., the agent who is neither the big
earner nor the least earner. In the initial allocation, ℓ and h
are chosen arbitrarily after the BE i is chosen.

At a high-level, Algorithm 1 maintains a competitive equi-
librium while transferring chores away from the initial BE
i, while ensuring that the ME h and LE ℓ remain EF1 w.r.t.
each other. Eventually, i must cease to be the BE. We show
that when this happens we arrive at an EF1 allocation almost
immediately.

First, we check if a chore transfer is possible from b to ℓ
directly (Line 8), and if so, we make the transfer (Lines 9-
10). If not, we check if there is a chore j ∈ xh ∩ MPBℓ

that can be potentially transferred from h to ℓ (Line 11). If
h pEF1-envies ℓ w.r.t. a chore j ∈ xh ∩ MPBℓ, then j is
transferred from h to ℓ. If h does not pEF1-envy ℓ, and if a
chore j′ can be transferred from b to h, then we perform the
transfer (Lines 15-17). If there is no such chore j′, then the
payments of chores owned by both ℓ and h are dropped until a
chore of b joins one of their MPB sets (Lines 19-21). Finally,
if no chore of either h or b can be transferred to ℓ, we lower
payments of chores of ℓ until a chore of h or b joins the MPB
set of ℓ (Lines 23-25).

Thus, Algorithm 1 makes progress towards obtaining an
EF1 allocation by reallocating chores while maintaining the
following key properties.

(i) Agent i neither gains chores nor experiences payment
drops.

2We can assume w.l.o.g. that di(j) > 0 for all i, j. Otherwise if
di(j) = 0 for some i, j, we can simply allocate j to i and remove j
from further consideration. It is easy to check that doing so does not
affect EF1 or fPO properties.
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Algorithm 1 Computing an EF1+fPO allocation for 3 agents
Input: Fair division instance (N,M,D) with |N | = 3
Output: An integral allocation x

1: x← give M to some agent i ∈ {1, 2, 3}
2: for j ∈M do
3: pj ← di(j)

4: while x is not EF1 do
5: b← argmaxk∈Np−1(xk) ▷ Big earner
6: ℓ← argmink∈Np(xk) ▷ Least earner
7: h← k ∈ N \ {b, ℓ} ▷ Middle earner
8: if ∃j ∈ xb ∩MPBℓ then ▷ A chore can be

potentially transferred from b to ℓ
9: xb ← xb \ j

10: xℓ ← xℓ ∪ j
11: else if ∃j ∈ xh ∩MPBℓ then ▷ A chore can be

potentially transferred from h to ℓ
12: if p(xh \ j) > p(xℓ) then ▷ h pEF1-envies ℓ

w.r.t. any chore j ∈ xh ∩MPBℓ

13: xh ← xh \ j
14: xℓ ← xℓ ∪ j
15: else if ∃j′ ∈ xb ∩MPBh then ▷ A chore can be

potentially transferred from b to h
16: xb ← xb \ j′
17: xh ← xh ∪ j′

18: else▷ No chore can be transferred from b to h or ℓ
19: β ← maxi∈{ℓ,h},j∈xb

αi

di(j)/pj

20: for j ∈ xℓ ∪ xh do
21: pj ← pj · β ▷ Lower payments until a

chore of b is MPB for ℓ or h
22: else ▷ No chore can be transferred from b or h to ℓ
23: β ← maxj∈xb∪xh

αℓ

dℓ(j)/pj

24: for j ∈ xℓ do
25: pj ← pj · β ▷ Lower payments until a chore

of b or h is MPB for ℓ
26: return x

(ii) If agent i ceases to be the big earner, an EF1 allocation
is found in at most one chore transfer.

(iii) The allocation is always fPO. This is done by performing
payment drops as necessary to maintain a competitive
equilibrium, and ensuring chore transfers do not violate
the competitive equilibrium.

We use Property (i) to bound the number of steps for i to cease
being the big earner, after which Property (ii) gives us an EF1
allocation. Property (iii) then guarantees that our EF1 alloca-
tion is additionally fPO. We start with a preliminary lemma.

Lemma 3. Given an integral competitive equilibrium (x,p)
with big earner b and least earner ℓ, if after a single chore
transfer b becomes a least earner or ℓ becomes a big earner,
then the resulting allocation must be pEF1.

Proof. Let (x′,p) be the CE after the transfer and let b′ and ℓ′

denote the big earner and least earner respectively in (x′,p).
We first show that if b = ℓ′ then (x′,p) is pEF1. Since

a chore transfer was performed, (x,p) was not pEF1 and
thus p−1(xb) > p(xℓ). Since b becomes a least earner in

(x′,p), it must be that a chore was transferred to ℓ, as we
would otherwise have p(x′

b) ≥ p−1(xb) > p(xℓ) = p(x′
ℓ)

and b could not be a least earner in (x′,p). The earning
up to one chore of the big earner cannot increase in (x′,p)
as compared to (x,p), as ℓ is the only agent who gets an
extra chore, and we have p−1(x

′
ℓ) ≤ p(xℓ) < p−1(xb).

Thus, p−1(x
′
b′) ≤ p−1(xb). It follows then that p−1(x

′
b′) ≤

p−1(xb) ≤ p(x′
b) = p(x′

ℓ′), since b = ℓ′. Hence by
Lemma 1 (x′,p) is pEF1.

We now show that if ℓ = b′ then (x′,p) is pEF1. As be-
fore, since a chore transfer was performed, (x,p) was not
pEF1 and so p−1(xb) > p(xℓ). It must then be that a chore
was taken from b, as we would otherwise have p−1(x

′
b) ≥

p−1(xb) > p(xℓ) ≥ p−1(x
′
ℓ) and ℓ could not be a big

earner in (x′p). The earning of the least earner cannot de-
crease in (x′,p) as compared to (x,p), as b is the only agent
who loses a chore, and we have p(x′

b) ≥ p−1(xb) > p(xℓ).
Thus, p(x′

ℓ′) ≥ p(xℓ). It follows that p(x′
ℓ′) ≥ p(xℓ) =

p(xb′) ≥ p−1(x
′
b′) since ℓ = b′. Hence by Lemma 1 (x′,p)

is pEF1.

We now record an important property of the algorithm
when the identity of the least earner changes.

Lemma 4. During the run of Algorithm 1, if an agent ℓ stops
being the least earner, then either the pEF1 condition is satis-
fied or ℓ becomes the middle earner and does not pEF1-envy
the new least earner.

Proof. Clearly it cannot happen that agent ℓ stops being the
least earner due to a payment drop. Thus ℓ stops being a least
earner due to a chore transfer. Let x be the allocation imme-
diately before the transfer and let x′ be the allocation imme-
diately afterwards, and let p be the payment vector. Addition-
ally let b be the big earner and h the middle earner in (x,p).
By Lemma 3, if b becomes the least earner or ℓ becomes the
big earner in (x′,p), then (x′,p) is pEF1. Thus, if (x′,p) is
not, it must be that in (x′,p), agent ℓ is the new middle earner
and h is the new least earner. We now show that the new mid-
dle earner ℓ does not pEF1-envy the new least earner h by
considering the possible combinations of agents involved in
the transfer:

• Suppose a chore was transferred from b to h. In this case,
p(x′

ℓ) = p(xℓ) < p−1(xb) ≤ p(x′
b), so ℓ would remain

the least earner in (x′,p), leading to a contradiction.

• Suppose a chore was transferred from b to ℓ. In this case,
p−1(x

′
ℓ) ≤ p(xℓ) ≤ p(xh) = p(x′

h), thus showing that ℓ
does not pEF1-envy h.

• Suppose a chore was transferred from h to ℓ. In this case,
p(xh \ j) > p(xℓ) for j ∈ xh. Then, p−1(x

′
ℓ) ≤ p(xℓ) <

p(xh \ j) = p(x′
h). This again shows that the ℓ does not

pEF1-envy h.

In conclusion, either the allocation after the transfer is pEF1,
or the new middle earner does not pEF1-envy the new least
earner.

Initially agent i is allocated all the chores, and is thus the
big earner. We show that if agent i stops being the big earner
then an EF1+fPO allocation is found almost immediately.
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Lemma 5. If agent i ceases to be the big earner then Algo-
rithm 1 finds an EF1 allocation in at most one chore transfer.

We defer the proof of Lemma 5 to the full version [Garg et
al., 2022b]. We now complete the proof of Theorem 1 with
the following lemma.
Lemma 6. During the run of Algorithm 1, the initial BE i
ceases to be the BE in poly(m) steps.

Proof. Throughout the run of the algorithm, i undergoes no
payment drops and may only lose chores. Then, she must
cease to be the big earner before losing all of her chores,
which are at most m in number.

While i is a big earner, note that there can be at most two
payment drops before a chore transfer must occur: one drop
which makes a chore in xh join the MPB set of ℓ, and one
drop which makes a chore in xi join the MPB set for either h
or ℓ. We now bound the number of chore transfers between
middle earner h and least earner ℓ before a chore must be
taken from i. Since transfers between h and ℓ are always
from h to ℓ, it must be that h becomes the least earner by the
time she transfers all of her at most m chores to ℓ. Suppose
h becomes the new least earner after transferring chore j to
ℓ. Let x be the allocation before transferring j and let x′

be the allocation after transferring j. By Lemma 3, ℓ must
be the middle earner in (x′,p) or we already have the pEF1
condition. Since j was transferred from h to ℓ we have p(xh\
j) > p(xℓ) and it follows that p−1(x

′
ℓ) ≤ p(xℓ) < p(xh \

j) = p(x′
h). Notably, it remains that j is MPB for the least

earner h in (x′,p) and the next chore transfer is guaranteed
to not be between h and ℓ. Subsequently, payments of chores
in xℓ ∪ xh will be decreased until some chore j′ in xi joins
the MPB set for either ℓ or h, if one is not already. Then j′

will be transferred from i. Thus, in at most poly(m) chore
transfers and payment drops, a chore is taken from i.

Since i can lose only m chores, in poly(m) steps i ceases
to be the big earner.

Having shown that EF1+fPO allocation is efficiently com-
putable for three agents, a natural follow-up question is to
investigate the existence and computation of EFX+fPO allo-
cations for the same class. The following result shows that
EFX+fPO allocations need not exist even for two agents.
Theorem 2. There exists a two-type, 2-ary chore allocation
instance with two agents which does not admit an EFX+fPO
allocation.

Despite this, we show in Theorem 4 that for bivalued in-
stances with three agents an EFX+fPO allocation exists and
can be computed in strongly polynomial-time.

4 EF1 + fPO for Two Types of Agents
In this section, we present Algorithm 3 which computes
an EF1+fPO allocation for two-type instances in strongly
polynomial-time. Due to Lemma 1, we seek a pEF1 integral
competitive equilibrium (x,p). Let N1 (resp. N2) be an or-
dered list of agents with disutility function d1, called Type-1
agents (resp. d2, called Type-2 agents). Algorithm 3 main-
tains a partition of the chores M into sets M1 and M2, where
Mi is allocated to Ni, for i ∈ {1, 2}. Initially, M1 = M and

Algorithm 2 RoundRobin (RR) procedure
Input: Ordered list of identical v agents N ′, set of chores M ′

Output: An allocation x

1: xi ← ∅ for each i ∈ N ′, i← 1, P ←M ′

2: while P ̸= ∅ do
3: j ← argminj′∈P di(j

′)
4: xi ← xi ∪ {j}, P ← P \ {j}, i← i mod |N ′|+ 1

5: return x

M2 = ∅, and pj = d1(j) for each j ∈ M . The chores in M1

are allocated to N1 using the RoundRobin procedure (Algo-
rithm 2). Given an ordered list of agents N ′ and chores M ′,
RoundRobin allocates chores as follows. Agents take turns
picking chores according to the order specified by N ′ and
each agent picks the least cost chore among the pool of re-
maining chores during their turn. It is a well-known folklore
result that RoundRobin returns an EF1 allocation.

Initially, agents in N1 have chores while N2 have none,
causing agents in N1 to potentially pEF1-envy agents in N2.
Thus we must transfer chores from M1 to M2 to reduce this
pEF1-envy. When necessary, payments of chores in M1 are
raised appropriately before such a transfer to maintain that
chores in Mi are MPB for agents in Ni, for each i ∈ {1, 2}3.
After each transfer, the chores in the (updated) sets Mi are
re-allocated to Ni using the RoundRobin procedure, always
using the same ordering of agents. Since agents in Ni have
the same disutility function and chores in Mi are MPB for
Ni, we have the following feature.
Invariant 1. Throughout the run of Algorithm 3, agents in
Ni do not pEF1-envy each other, for each i ∈ {1, 2}.

By Invariant 1, no agent can pEF1-envy another agent of
the same type. Thus, if we do not have pEF1, it must be that
the global BE pEF1-envies the global LE, with the BE and LE
being in different groups. Initially, the BE is in N1 and the LE
is in N2. Our goal is now to eliminate the pEF1-envy between
the BE and LE, and to do this we transfer chores from M1

to M2 with necessary payment raises and RoundRobin re-
allocations. We then reconsider the pEF1-envy between the
new BE and the new LE. The algorithm terminates when the
BE no longer pEF1-envies the LE. We argue that this must
happen.

While the BE remains in N1, chores are transferred from
M1 to M2. Clearly there can be at most m such transfers,
since always |M1| ≤ m. If in some iteration both the BE and
LE belong to the same group Ni, then we must be done due to
Invariant 1. The only remaining case is if the BE becomes an
agent in N2 and the LE becomes an agent in N1. We address
this case in the following lemma.
Lemma 7. If the BE is in N2 and the LE is in N1, the alloca-
tion must already be pEF1.

Proof. We first note that payment-raises do not change the
identity of the LE and BE. Therefore, suppose that there is a

3Note that in this algorithm we perform payment raises instead of
payment drops as in Algorithm 1. This is purely for ease of presen-
tation, as we could equivalently perform payment drops on chores
in M2 instead of performing payment raises on chores in M1
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Algorithm 3 EF1+fPO for two types of agents
Input: Two-type instance (N,M,D) with di ∈ {d1, d2}
Output: An allocation x

1: N1 ← {i ∈ N | di = d1}, N2 ← {i ∈ N | di = d2}
2: For each j ∈M , set pj ← d1(j)
3: M1 ←M,M2 ← ∅
4: x← RR(N1,M1) ∪ RR(N2,M2) ▷ RR = RoundRobin
5: while (x,p) is not pEF1 do
6: MPB2 ← {j ∈M : j is MPB for agents in N2}
7: if ∃j ∈M1 ∩MPB2 then
8: M1 ←M1 \ {j}, M2 ←M2 ∪ {j}
9: x← RR(N1,M1) ∪ RR(N2,M2)

10: else
11: Raise payments of M1 until |M1 ∩MPB2| > 0

12: return x

transfer prior to which the global BE is in N1 and global LE
in N2, but after which the global BE is in N2 and global LE in
N1. Let x (resp. x′) denote the allocation immediately before
(resp. after) the transfer. For i ∈ {1, 2}, let bi and ℓi denote
the BE and LE among agent set Ni before the transfer, and
let b′i and ℓ′i denote the BE and LE among agent sets Ni after
the transfer. Let p be the payments vector accompanying x
and x′. We use the following:

Observation 1. In a RoundRobin allocation of a set of chores
M ′ to a list of agents N ′ = {1, . . . , n′} with identical valu-
ations, the big earner (assuming payment vector is propor-
tional to disutility vector) is the agent i who picks the last
chore while the least earner is the agent h = (i mod n′)+ 1
who would pick immediately after i.

This is because agents pick chores according to increasing
disutility since they all have the same cost function. Thus in
x, the BE bi picked the last chore when Mi was RoundRobin
-allocated to Ni, for i ∈ {1, 2}. We now examine how the
identity and earning of the BE and LE of each agent set Ni

change after a chore j is transferred from M1 to M2.
When M1 \ {j} is RoundRobin -allocated to N1, the agent

who picks immediately before b1 now picks last, and is the
new BE. Thus Obs. 1 implies that new LE in N1 is in fact b1,
i.e., ℓ′1 = b1. Additionally, b1’s new total earning is at least
as much as her previous earning without her highest paying
chore, since in each round up to the last round she must now
pick a weakly higher disutility (and thus higher paying) chore
than before, but she no longer picks a chore in the last round.
Thus:

p(x′
ℓ′1
) = p(x′

b1) ≥ p−1(xb1). (1)

Conversely, when M2 ∪ {j} is RoundRobin -allocated to
N2, the previous LE ℓ2 now picks the last chore. Thus by
Obs.1, ℓ2 is the new BE, i.e., b′2 = ℓ2. In each round up to the
last ℓ2 now picks a weakly lower disutility (and thus lower
paying) chore than before, but ℓ2 now receives a new worst
chore in the last round. Thus:

p−1(x
′
b′2
) = p−1(x

′
ℓ2) ≤ p(xℓ2). (2)

Let us now examine the pEF1-envy before and after the
chore transfer. Prior to the transfer, i.e., in (x,p), the global

BE and LE are b1 and ℓ2 respectively. Since (x,p) is not
pEF1, p−1(xb1) > p(xℓ2). Using (1) and (2), we get:

p(x′
ℓ′1
) ≥ p−1(xb1) > p(xℓ2) ≥ p−1(x

′
b′2
),

implying that after the transfer, i.e., in (x′,p), the global BE
b′2 does not pEF1-envy the global LE ℓ′1. Thus (x′,p) must
be pEF1 by Lemma 2.

In conclusion, chores are transferred unilaterally from M1

to M2 with necessary payment-raises and RoundRobin re-
allocations among agents of the same type until the allocation
is pEF1+fPO. Clearly, Algorithm 3 runs in poly(n,m) time.
We conclude:

Theorem 3. Given a two-type chore allocation instance
(N,M,D), an EF1 + fPO allocation exists and can be com-
puted in strongly polynomial-time.

In contrast, Theorem 2 shows that EFX+fPO allocations
need not exist for two-type instances. We conclude this sec-
tion by noting that the same techniques apply to goods.

Remark 1. An EF1+fPO allocation is strongly polynomial-
time computable for a two-type goods allocation instance.

5 EFX for Three Bivalued Agents
Recall from Theorem 2 that an EFX+fPO allocation is not
guaranteed to exist, even for 2-ary instances. We therefore
study the computation of EFX+fPO allocations for bivalued
instances. Our third result is:

Theorem 4. Given a bivalued chore allocation instance
(N,M,D) with three agents, an EFX+fPO allocation exists
and can be computed in strongly polynomial-time.

The proof of Theorem 4 is quite involved, and we defer the
discussion of involved algorithms and their analyses to the
full version of the paper due to space constraints [Garg et al.,
2022b]. Along the way, we also obtain the following result:

Lemma 8. For 2-ary instances where ∀i ∈ N, ki ≥ m, an
EF1+PO allocation can be found in polynomial time.

6 Conclusion
In this work, we described new algorithms computing fair and
efficient allocations of chores under the fairness notions of
EF1/EFX, and the efficiency notion of fPO. Our algorithms
for the three agents and two-types setting are among the few
positive non-trivial results known for the EF1+fPO problem.
Combining CE-based frameworks with envy-resolving algo-
rithms like RoundRobin may be an important tool in settling
the problem in its full generality. We also described an al-
gorithm for computing an EFX+fPO allocation for three bi-
valued agents. Extending and generalizing our approach to
higher numbers of agents is a natural next step.
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