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Abstract
We study the problem of fairly allocating a set of
indivisible items to a set of agents with additive val-
uations. Recently, Feige et al. (WINE’21) proved
that a maximin share (MMS) allocation exists for
all instances with n agents and no more than n+ 5
items. Moreover, they proved that an MMS alloca-
tion is not guaranteed to exist for instances with 3
agents and at least 9 items, or n ≥ 4 agents and at
least 3n+ 3 items. In this work, we shrink the gap
between these upper and lower bounds for guaran-
teed existence of MMS allocations. We prove that
for any integer c > 0, there exists a number of
agents nc such that an MMS allocation exists for
any instance with n ≥ nc agents and at most n+ c
items, where nc ≤ ⌊0.6597c · c!⌋ for allocation of
goods and nc ≤ ⌊0.7838c · c!⌋ for chores. Further-
more, we show that for n ̸= 3 agents, all instances
with n+ 6 goods have an MMS allocation.

1 Introduction
We are interested in the problem of fairly dividing a set of
resources or tasks to a set of agents—a problem that fre-
quently arises in day-to-day life and has been extensively
studied since the seminal work of Steinhaus [1948]. While
the classical setting assumes that the resources are infinitely
divisible, a variant of the problem in which a set of indivisible
items are to be allocated has been studied extensively in the
last couple of decades (see, e.g., Amanatidis et al. [2022] and
Suksompong [2021] for recent, detailed overviews).

For indivisible items, classical fairness criteria, such as
envy-freeness and proportionality, are no longer guaranteed.
Instead, relaxed fairness criteria are considered, such as the
maximin share (MMS) guarantee [Budish, 2011]. For the
MMS guarantee, each agent should receive a set of items
worth at least as much as she could guarantee herself if she
were to partition the items into bundles and got to choose a
bundle last. Surprisingly, it is not guaranteed that an alloca-
tion of this kind exists [Procaccia and Wang, 2014]. In fact,
there exists problem instances for which at least one agent re-
ceives a bundle worth no more than 39/40 of her MMS [Feige
et al., 2022]. However, good approximations exist and can be
found efficiently. The best current approximation algorithm

guarantees each agent at least 3/4 + 1/(12n) of her MMS,
where n is the number of agents [Garg and Taki, 2021].

When valuations are additive, MMS allocations are guar-
anteed to exist in certain special cases, such as when there are
at most n + 5 items [Feige et al., 2022] or the set of valua-
tion functions is restricted in certain ways [Amanatidis et al.,
2017; Heinen et al., 2018]. Our goal in this paper is to fur-
ther improve these existence results for MMS allocations—
showing that the number of items an instance can have scales
with the number of agents, beyond one item per agent.

We are interested in improving this lower bound for exis-
tence to further determine the usefulness of MMS as a fair-
ness measure, especially in real-world scenarios. Usage of
the online fair allocation tool Spliddit [Procaccia et al., 2023]
suggests that many real-world instances have few agents and
on average a few times as many items as agents [Caragiannis
et al., 2019]. As the upper bound for existence is currently
at around three times as many items as agents [Feige et al.,
2022], reducing the gap between the two bounds betters our
understanding of these real-world scenarios.

1.1 Contributions
In this work, we improve on the known bound for the num-
ber of goods, m, an instance with n agents can have and be
guaranteed to have an MMS allocation. We find that there
exists some function f(n) = ω(

√
lg n) such that an MMS

allocation exists for all instances with m ≤ n + f(n) goods,
improving on the result of m ≤ n + 5 [Feige et al., 2022].1
Specifically, for any integer c > 0 we prove the following
bound for the required number of agents for guaranteed MMS
existence in instances with m ≤ n+ c goods.
Theorem 1. For any integer c > 0, there exists an nc ≤
⌊0.6597c(c!)⌋ such that all instances with n ≥ nc agents and
no more than n+ c goods have an MMS allocation.

It has been shown by counterexample that c = 5 is the
largest constant such that an MMS allocation always exists
for all instances with any number n of agents and at most
n + c goods [Feige et al., 2022]. We show that when n ̸= 3,
an MMS allocation always exists when c = 6.
Theorem 2. For an instance with n ̸= 3 agents, an MMS
allocation always exists if there are m ≤ n+ 6 goods.

1Expressing f(n) in terms of n is nontrivial, due to the factorial
in Theorem 1.
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Finally, we show that there exists a similar existence guar-
antee for chores as was shown for goods in Theorem 1.
Theorem 3. For any integer c > 0, there exists an nc ≤
⌊0.7838c(c!)⌋ such that all instances with n ≥ nc agents and
no more than n+ c chores have an MMS allocation.

Our proofs of Theorems 1 and 3 build on two new struc-
tural properties of ordered instances. First and most impor-
tantly, we exploit a common structure in MMS partitions for
ordered instances with m ≤ 2n. When an ordered instance
has n agents and m = n + c items for some constant c ≥ 0,
each agent has an MMS partition in which the n − c most
valuable (least valuable for chores) items appear in bundles
of size one. If c ≤ n, the remaining 2c items must be placed
in the remaining c bundles. The number of ways 2c items can
be partitioned into c bundles depends only on c. Thus, as n
increases, more agents will have similar MMS partitions.

To analyse the number of agents required for there to be
enough similarity for an MMS allocation to exist, we impose
a partial ordering over the bundles, based on the concept of
domination. Due to the common preference order in ordered
instances, we can for some pairs of bundles B and B′ deter-
mine that B is better than B′ no matter the valuation function.
In this case, we say that B dominates B′. A trivial example
is when B and B′ differ by only a single item. When a suffi-
cient number of agents have bundles in their MMS partitions
that form a chain in the domination based partial ordering, a
reduction to a smaller instance can be found. By employing
induction, we use an upper bound for the size of the maxi-
mum antichain to obtain the existence bounds.

1.2 Related Work
The existence of MMS has been the focus of a range of pub-
lications in recent years. Early experiments failed to yield
problem instances for which no MMS allocation exists [Bou-
veret and Lemaı̂tre, 2016]. Procaccia and Wang [2014] later
found a way to construct counterexamples for any number
of agents n ≥ 3.2 These counterexamples used a number
of goods that was exponential in the number of agents. The
number of goods needed for a counterexample was later re-
duced to 3n + 4 by Kurokawa et al. [2016] and recently to
3n + 3 by Feige et al. [2022].3 In the opposite direction,
Bouveret and Lemaı̂tre [2016] showed that all instances with
at most n + 3 goods have MMS allocations, later improved
to n + 4 by Kurokawa et al. [2016] and n + 5 by Feige et
al. [2022]. Feige et al. also found an instance with 3 agents
and 9 goods for which no MMS allocation exists.

While MMS allocations do not always exist, it has been
shown that they exist with high probability, under certain sim-
ple assumptions [Kurokawa et al., 2016; Suksompong, 2016;
Amanatidis et al., 2017].

The existence of MMS allocations has also been explored
in cases where valuation functions are restricted. Amanatidis
et al. [2017] showed that when item values are restricted to
the set {0, 1, 2}, an MMS allocation always exists. Later,
Heinen et al. [2018] studied existence for Borda and lexico-
graphical valuation functions.

2For n < 3, MMS allocations always exist.
33n+ 1 when n is even.

There is also a rich literature on finding approximate MMS
allocations, either by providing each agent with a bundle
worth at least a percentage of her MMS [Amanatidis et
al., 2017; Garg et al., 2018; Gourvès and Monnot, 2019;
Garg and Taki, 2021; Ghodsi et al., 2021; Feige and Norkin,
2022] or providing a percentage of the agents with bundles
worth at least MMS [Hosseini and Searns, 2021].

While the main focus of the literature has been on goods,
some work has been done on MMS for chores, both on ex-
istence [Aziz et al., 2017; Feige et al., 2022] and approxi-
mation [Aziz et al., 2017; Barman and Krishnamurthy, 2020;
Huang and Lu, 2021; Feige and Norkin, 2022].

2 Preliminaries
An instance I = ⟨N,M, V ⟩ of the fair allocation problem
consists of a set N = {1, 2, . . . , n} of agents and a set
M = {1, 2, . . . ,m} of items. Additionally, there is a col-
lection V of n valuation functions, vi : 2M → R, one for
each agent i ∈ N . To simplify notation, we let both vij and
vi(j) denote vi({j}) for j ∈ M . We assume that the val-
uation functions are additive, i.e., vi(M) =

∑
g∈M vi(g),

with vi(∅) = 0. We deal, separately, with two types of items:
goods, which have non-negative value, vi(j) ≥ 0, and chores,
which have non-positive value, vi(j) ≤ 0.4 Mixed instances,
which consist of a mix of goods and chores, and perhaps have
items that are goods for some agents and chores for others,
will not be considered. Hence, the valuation functions are
monotone, i.e., for S ⊆ T ⊆ M , vi(S) ≤ vi(T ) for goods
and vi(S) ≥ vi(T ) for chores. For simplicity, we assume
throughout the paper that all instances consist of goods, ex-
cept in Section 5, which covers instances consisting of only
chores.

For any instance I = ⟨N,M, V ⟩, we wish to partition the
items in M into n bundles, one for each agent. An n-partition
of M is called an allocation. We are interested in finding allo-
cations that satisfy the fairness criteria known as the maximin
share guarantee [Budish, 2011]. That is, we wish to find an
allocation in which each agent gets a bundle valued at no less
than what she would get if she were to partition the items into
bundles and got to choose her own bundle last.
Definition 4. For an instance I = ⟨N,M, V ⟩, the maximin
share (MMS) of an agent i ∈ N is given by

µI
i = max

A∈ΠI

min
Aj∈A

vi(Aj),

where ΠI is the set of all possible allocations in I . If obvious
from context, the instance is omitted, and we write simply µi.

We say that an allocation A = ⟨A1, A2, . . . , An⟩ satisfies
the MMS guarantee or, simply, is an MMS allocation, if each
agent i ∈ N receives a bundle valued at no less than her
MMS, i.e., vi(Ai) ≥ µi. For a given agent i ∈ N we call any
allocation A in which vi(Aj) ≥ µi for every bundle Aj ∈ A,
an MMS partition of i for I . By definition, each agent has at
least one MMS partition for any instance I , but can possibly
have several.

4By this definition, an item j with vij = 0 is both a good and a
chore. However, as we do not consider mixed instances, the over-
lapping definitions do not matter.
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Several useful properties of MMS have been discovered in
previous work. Perhaps the most useful, is the concept of or-
dered instances, in which the agents have the same preference
order over the items.
Definition 5. Instance I = ⟨N,M, V ⟩ is said to be ordered
if vij ≥ vi(j+1) for all i ∈ N and 1 ≤ j < |M |.5

Bouveret and Lemaı̂tre showed that both for existence and
approximation results, it is sufficient to consider only ordered
instances.
Lemma 6 (Bouveret and Lemaı̂tre, 2016). For any instance
I = ⟨N,M, V ⟩, there exists an ordered instance I ′, with
µI
i = µI′

i for all i ∈ N , and for any allocation A′ for I ′

there exists an allocation A for I such that vi(Ai) ≥ v′i(A
′
i)

for all i ∈ N .
The instance I ′ is constructed by sorting the item valua-

tions of each agent and reassigning them to the items in a
predetermined order. The MMS of an agent does not change
from I to I ′, due to the inherent one-to-one map between
items in I and I ′. Allocation A can be constructed from A′

by going through the items in order from most to least valu-
able, letting the agent i that received item j in A′ select her
most preferred remaining item in I . Since there are at least
j items in I with an equivalent or greater value than j has in
I ′, at least one of these must remain when i selects an item
for j and the selected item has at least as high value in I as j
has in I ′. Consequently, each agent’s bundle in A is at least
as valuable as in A′.

Another useful form of instance simplification, that we will
rely heavily on, is the concept of valid reductions. A valid re-
duction is, simply put, an allocation of a subset of the items
to a subset of the agents, where each agent receives a satisfac-
tory bundle,6 while the MMS of the remaining agents is not
smaller in the new, smaller instance.
Definition 7. Let I = ⟨N,M, V ⟩ be an instance. Removing
a subset of items M ′ ⊆ M and a subset of agents N ′ ⊆ N
is called a valid reduction if there exists a way to allocate the
items in M ′ to the agents in N ′ such that each agent i′ ∈ N ′

receives a bundle Bi′ with vi′(Bi′) ≥ µI
i′ and for i ∈ N \

{N ′}, we have µI′

i ≥ µI
i , where I ′ = ⟨N \N ′,M \M ′, V ′⟩.

Valid reductions are commonly used when finding approxi-
mate MMS allocations, where several simple reductions have
been found [Kurokawa et al., 2016; Amanatidis et al., 2017;
Ghodsi et al., 2018; Garg et al., 2018; Garg and Taki, 2021].
These reductions allocate a small number of goods to a single
agent—providing a powerful tool when considering instances
with only a few more goods than agents. Most of these reduc-
tions can also be used in the existence case and the ones rele-
vant to us are given below. Proofs for their validity have been
omitted due to space constraints, but can be found in the cited
papers. These proofs often use αµi for some α < 1 instead of
just µi, but trivially extend to any α ≤ 1. For completeness
we prove these results in the extended version of this paper7,
along with all other omitted proofs.

5For simplicity, we assume vij ≤ vi(j+1) for chores.
6A bundle B is satisfactory for an agent i if vi(B) ≥ µi, or in

the case of approximation vi(B) ≥ αµi for some α > 0.
7Available at https://arxiv.org/abs/2302.00264.

Lemma 8 (Bouveret and Lemaı̂tre, 2016). For an instance
I = ⟨N,M, V ⟩ with an agent i ∈ N and good j ∈ M such
that vij ≥ µi, allocating {j} to i is a valid reduction.
Lemma 9 (Ghodsi et al., 2018). Let I = ⟨N,M, V ⟩ be an
instance with an agent i ∈ N and distinct goods j, j′ ∈ M
such that vi({j, j′}) ≥ µi and vi′({j, j′}) ≤ µi′ for all i′ ∈
(N \ {i}), then allocating {j, j′} to i is a valid reduction.
Lemma 10 (Garg et al., 2018). Let I = ⟨N,M, V ⟩ be an
ordered instance. If there is an agent i ∈ N with vi({n, n +
1}) ≥ µi, then allocating {n, n+1} to i is a valid reduction.
Lemma 11 (Feige et al., 2022). Given an ordered instance
I = ⟨N,M, V ⟩, agent i ∈ N and good j ∈ M with vi(j) ≥
µi and vi′(j) < µi′ for all i′ ∈ N \ {i}, allocating {j, j′} to
i, where j′ is the worst good in M \ {j}, is a valid reduction.

In addition to valid reductions, there are several cases in
which an MMS allocation is known to exist. These cases will
be used as base cases in our existence argument.
Lemma 12 (Bouveret and Lemaı̂tre, 2016). If in an instance
I = ⟨N,M, V ⟩ there are at least n− 1 agents with the same
MMS partition, then an MMS allocation exists.
Lemma 13 (Bouveret and Lemaı̂tre, 2016). An MMS alloca-
tion always exists for an instance I = ⟨N,M, V ⟩ if n ≤ 2.
Lemma 14 (Feige et al., 2022). An MMS allocation always
exists for an instance I = ⟨N,M, V ⟩ if m ≤ n+ 5.

3 Existence for Any Constant
Our first main result is that for any c > 0, there exists an
nc > 0 such that all instances with n ≥ nc agents and n + c
goods have MMS allocations. To show this, we exploit a
structural similarity in MMS partitions when c < n. Specifi-
cally, if m < 2n, any MMS partition contains some bundles
of cardinality zero or one.8 For ordered instances of this kind
(ordering can be assumed by Lemma 6), there is a set of at
least n − c goods valued, individually, at MMS or higher by
each agent, namely the set of the n− c most valuable goods:
Lemma 15. Let I = ⟨N,M, V ⟩ be an ordered instance with
m = n+ c for some c with n > c > 0. Then vij ≥ µi for all
i ∈ N and j ∈ {1, 2, . . . , n− c}.

Proof. Agent i ∈ N either has µi = 0 or each bundle in
any one of her MMS partitions contains at least one good. If
µi = 0, then vij ≥ µi for all j ∈ M . Otherwise, at most c of
the bundles in an MMS partition can contain more than one
good. The worst good g contained in a bundle of cardinality
one, is such that g ≥ n − c. Since µi ≤ vig by definition,
µi ≤ vig ≤ vi(n− c) ≤ vi(n− c− 1) ≤ · · · ≤ vi(1).

The shared set of goods valued at MMS or higher guaran-
tees that each agent has an MMS partition where these goods
appear in bundles of cardinality one.
Lemma 16. Given an ordered instance I = ⟨N,M, V ⟩ and
agent i ∈ N , let k denote the number of goods i value at µi

or higher. Then i has an MMS partition in which each of the
goods 1, 2, . . . ,min(n − 1, k) forms a bundle of cardinality
one.

8If there is a bundle of cardinality zero in an MMS partition of
agent i, then µi = 0.
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Proof. Let A be an arbitrary MMS partition of i, Bg ∈ A
denote the bundle containing some g ∈ M and let GA =
{g ∈ {1, 2, . . . ,min(n − 1, k)} : |Bg| > 1}. If GA = ∅,
then all the goods 1, 2, . . . ,min(n − 1, k) appear in bundles
of cardinality one. We wish to show that if GA ̸= ∅, then
there exists an MMS partition A′ with |GA′ | < |GA|. As-
sume that GA ̸= ∅ and for some g ∈ GA, select Aj ∈ A such
that {1, 2, . . . ,min(n − 1, k)} ∩ Aj = ∅. Then, the alloca-
tion A′ = ⟨A1, . . . , {g}, . . . , Aj ∪ (Bg \ {g}), . . . , An⟩ is an
MMS partition of i, as vi(Aj ∪ (Ag \ {g})) ≥ vi(Aj) ≥ µi

and vig ≥ µi. Further, as only the two bundles Bg and
Aj have been modified, and Aj did not contain any good in
{1, 2, . . . ,min(n−1, k)}, we have |GA′ | = |GA|−1. Hence,
i has an MMS partition A∗ with GA∗ = ∅.

Lemma 16 enforces a particularly useful restriction on
the set of n-partitions of M when n > c. As a result of
Lemma 15, Lemma 16 guarantees that each agent has at least
one MMS partition in which the n − c most valuable goods
appear in bundles of cardinality one. In this MMS partition,
the remaining 2c goods are partitioned into c bundles. Ignor-
ing the possibility of having empty bundles, the number of
ways to partition these 2c goods into c bundles is

{
2c
c

}
, where{

2c
c

}
is a Stirling number of the second kind.9

The value of
{
2c
c

}
does not depend on the value of n. Thus,

as the number of agents increases, there must eventually be
multiple agents with the same MMS partition. Specifically,
when there are

{
2c
c

}
(c − 2) + 1 agents, at least c − 1 of

them share the same MMS partition of the type outlined in
Lemma 16. Then an MMS allocation can be constructed by
allocating the goods 1, 2, . . . , n − c to n − c of the other
n− c+1 agents. The last of the n− c+1 agents receives her
favorite remaining bundle in the shared MMS partition, and
the last c−1 agents each receives an arbitrary remaining bun-
dle in the shared MMS partition. This is an MMS allocation,
as all but one agent receives a bundle from one of her MMS
partitions, and the remaining agent i receives a bundle worth
at least (vi(M)− vi({1, 2, . . . , n− c}))/c ≥ (cµi)/c = µi.

While the above argument is sufficient for showing exis-
tence for any c > 0, the lower bounds of Rennie and Dob-
son [1969] on Stirling numbers give nc =

{
2c
c

}
(c− 2)+ 1 >

cc. Hence, while straightforward, the argument is not suffi-
cient to prove the bound of Theorem 1, nc ≤ ⌊0.6597c · c!⌋.
For that, we will use a more involved inductive argument.

Our inductive procedure builds on the observation that a
full MMS allocation need not be found directly. Instead, it
is sufficient to use valid reductions to obtain an instance with
a smaller number c′ of additional goods. If this smaller in-
stance has at least nc′ agents, an MMS allocation exists for
the original instance. Here, the existence for n′ ≥ nc′ with
m′ ≤ n′ + c′ is assumed proven, using Lemma 14 and The-
orem 2 as base cases. To show the existence of valid reduc-
tions, we again exploit the structure of the MMS partitions
guaranteed by Lemmas 15 and 16 in order to construct an up-
per bound on the number of agents required before enough
agents have MMS partitions with additional shared structure.

9If there is an empty bundle, then all n-partitions, including those
without empty bundles, are MMS partitions of the agent.

To construct valid reductions, and as a definition of shared
structure, we utilize a partial ordering of bundles. For ordered
instances, it is often possible to say that some subset of goods
B ⊆ M is at least as good as some other subset B′ ⊆ M ,
no matter the valuation function. Obviously, this holds when
B′ ⊆ B, even for non-ordered instances. However, due to
the common preference-order of the agents, it could be that
B is better than B′ even when B′ ̸⊆ B. For example, when
B = {3, 7, 8, 11, 14} and B′ = {6, 7, 11, 13}. As illustrated
in Fig. 1, B is at least as valuable as B′, since vi(3) ≥ vi(6),
vi(8) ≥ vi(13), {7, 11} ⊂ B, and {7, 11} ⊂ B′. We can
formalize the partial ordering as follows.

Definition 17. For an ordered instance I = ⟨N,M, V ⟩, a
subset of goods B ⊆ M dominates a subset of goods B′ ⊆
M if there is an injective function f : B′ → B such that
f(j) ≤ j for all j ∈ B′. If B dominates B′, we denote this
by B ⪰ B′. We use B ≻ B′ for the case where B ̸= B′.

The domination ordering provides a useful set of valid re-
ductions. Whenever an agent i values a bundle B at MMS or
higher, and every other agent in the instance has a bundle in
her MMS partition that dominates B, then allocating B to i
forms a valid reduction.

Lemma 18. Let I = ⟨N,M, V ⟩ be an ordered instance and
B be a bundle with vi(B) ≥ µi for some i ∈ N . If each
agent i′ ∈ N \ {i} has a bundle Bi′ in her MMS partition
with Bi′ ⪰ B, then allocating B to i is a valid reduction.

Proof. For any agent i′ ∈ N \ {i}, we wish to show that her
MMS is at least as high in the reduced instance as in the origi-
nal instance. Since Bi′ ⪰ B, there exists an injective function
fi′ : B → Bi′ with fi′(g) ≤ g for g ∈ B. We will show that
an MMS partition of i′ can be turned into a n-partition con-
taining B and n − 1 bundles valued at µi′ or higher. Then,
in the reduced instance, the MMS of i′ cannot be less than
the value of the least valuable bundle among these n− 1 bun-
dles, which has a value of at least µi′ . The conversion is done
by performing the following steps on an MMS partition of i′
containing Bi′ .

1. Go through the goods g ∈ B from least to most valuable,
exchanging the position of g and fi′(g) in the partition.

2. Move all goods in Bi′ \ B to any other bundle in the
partition.

Since fi′(g) ≤ g, after exchanging the position of g and
fi′(g) in step 1, g will not move. Further, since fi′ is in-
jective, fi′(g) will not be moved before it is exchanged with
g. Thus, since fi′(g) ∈ Bi′ before the step, B ⊆ Bi′ af-
ter all the exchanges. Additionally, after step 1 the value of
any other bundle in the partition cannot have decreased, as
vi′(g) ≤ vi′(fi′(g)). As adding an item to a bundle does not
decrease the value of the bundle, step 2 does not decrease the
value of other bundles than Bi′ . Thus, afterwards, Bi′ = B
and the value of each other bundle remains at least µi′ .

In order to find valid reductions through the domination
ordering, we will consider bundles that are of the same size
k ≥ 2.10 When two bundles of size k share a subset of k − 1

10Bundles of size 1 immediately induce a valid reduction.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
B

B′

Figure 1: A bundle B dominating a bundle B′ in an instance with
14 goods. The arrows represent a possible function f (out of the two
possible functions).

goods, we know that one dominates the other, as each bun-
dle only contains one good in addition to the shared subset.11

With multiple bundles of size k that all share the same subset
of k − 1 goods, at least one of the bundles is dominated by
all the other bundles. Thus, if for some (k − 1)-sized subset
of goods S ⊂ M , each agent has a k-sized bundle contain-
ing S in one of her MMS partitions, then there exists a valid
reduction that removes one agent and k goods.

Lemma 19. Let I = ⟨N,M, V ⟩ be an ordered instance, k >
0 an integer, and S ⊂ M a subset of k − 1 goods. For each
agent i ∈ N , let Bi be a bundle in an MMS partition of i such
that |Bi| = k and S ⊂ Bi. Then, there is an agent i′ ∈ N
such that allocating Bi′ to i′ is a valid reduction.

Proof. Let g = max{g′ : i ∈ N, g′ ∈ (Bi \ S)}. Then, for
any i ∈ N , Bi ⪰ (S ∪ {g}) and there is i′ ∈ N such that
Bi′ = S ∪ {g}. By Lemma 18, giving Bi′ to i′ is a valid
reduction.

Making use of Lemma 19 requires an instance where all
agents share similar k-sized bundles in one of their MMS
partitions—a property that usually does not hold for arbitrary
instances. However, for any integer c > 0, Lemmas 15 and 16
guarantee that when n > c, all agents have MMS partitions
in which any bundle of size greater than one is a subset of
the 2c worst goods. Thus, as the number of agents increases,
there will eventually be some k ≥ 2 for which some set S of
k − 1 goods is shared between k-sized bundles in the MMS
partitions of multiple agents. When there are at least c such
agents, the combination of Lemmas 15 and 19 provides a way
to create a valid reduction removing n′ ≤ n−c+1 agents and
n′+k−1 goods. Simply allocate one of 1, 2, . . . , n−c to each
of the at most n − c agents without an MMS partition con-
taining a k-sized bundle with subset S, and use the method
of Lemma 19 to allocate a k-sized bundle to one of the re-
maining agents. This approach can be used in our inductive
argument as long as n− n′ ≥ nc−k+1. In other words, there
must be at least max(c, nc−k+1 + 1) agents with a k-sized
bundle in one of their MMS partitions that has S as a subset.

To obtain the bound in Theorem 1, we will, instead of using
max(c, nc−k+1 +1), show that if nc′ ≥ nc′−1 +1 for c′ > 6
and there are at least c agents with a k-sized bundle in their
MMS partition, then we only need max(c−k+1, nc−k+1+1)
agents with a k-sized bundle sharing the same (k − 1)-sized
subset of goods. Our proof relies on a result of Aigner-Horev
and Segal-Halevi [2022] on envy-free matchings.12 In this

11The bundles may be equal. However, by definition they domi-
nate each other when equal.

12Their result has previously been used in MMS approximation.

setting, for a graph G and set X of vertices in G, NG(X)
denotes the union of the open neighbourhood in G of each
vertex in X .

Definition 20. A matching M in a bipartite graph G = (X∪
Y,E) is envy-free with regards to X if no unmatched vertex
in X is adjacent in G to a matched vertex in Y .

Theorem 21 (Aigner-Horev and Segal-Halevi, 2022). Given
a bipartite graph G = (X ∪ Y,E), there exists a non-empty
envy-free matching with regards to X if |NG(X)| ≥ |X| ≥ 1.

Using Theorem 21 and the assumptions described above,
we show that an MMS allocation exists if an agent has an
MMS partition with at most one bundle containing more than
two goods.

Lemma 22. Let I = ⟨N,M, V ⟩ be an ordered instance,
with m = n + c goods for some c > 0 and assume that
for c > c′ > 5, there exists an integer nc′ > 0 such that
all instances with n′ ≥ nc′ agents and m′ = n′ + c′ goods
have MMS allocations and nc′ > nc′−1 for c′ > 6. Then,
if n > nc−1 and an agent i ∈ N has an MMS partition A
with at least n − 1 bundles of size less than three, an MMS
allocation exists.

Proof sketch (full proof in extended version). If µi = 0, the
result follows from Lemma 10. If µi > 0, each bundle in A,
except at most one, has size one or two. We wish to show
that unless there exists a perfect matching of agents to bun-
dles in A they value at MMS or more, there instead exists a
non-empty envy-free matching that only contains bundles of
size one or two. Given such an envy-free matching, a valid
reduction that removes x agents and 2x goods can be found
by allocating all bundles of size two in the matching before
applying Lemma 11 to each bundle of size one.

To find a non-empty envy-free matching, we exploit that
Hall’s marriage theorem allows us to create a subgraph with
fewer agents than bundles, where an envy-free matching in
the subgraph is envy-free in the original graph. Agent i will
be present in the subgraph, as bundles are from i’s MMS par-
tition. Furthermore, there are fewer agents than bundles in
the subgraph. Thus, we can additionally remove the bundle
of size three or larger, unless already removed, while Theo-
rem 21 still guarantees a non-empty envy-free matching.

Using Lemma 22 we can improve our lower bound on the
number of goods valued at MMS or higher by an agent i based
on the size of the bundles in their MMS partitions.

Lemma 23. Let I = ⟨N,M, V ⟩ be an ordered instance, with
m = n + c goods for some c > 0 and assume that for any
c′ > 5, there exists an integer nc′ > 0 such that all instances
with n′ ≥ nc′ agents and m′ = n′ + c′ goods have MMS
allocations and nc′ > nc′−1 for c′ > 6. If n > nc−1 and
agent i ∈ N has an MMS partition A with a bundle of size
k > 2, then either vi(n − c + k − 1) ≥ µi or an MMS
allocation exists.

Proof. If µi = 0, then vi(n− c+ k− 1) ≥ µi. Now, assume
that µi > 0, and as a result k ≤ c+1. If vi(n−c+k−1) < µi,
then at most n − c + k − 2 bundles in A have size one and
no bundle is empty. Of the remaining bundles, there is one of
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size k and the c−k+1 others contain at least two goods each.
These bundles of size at least two, contain the remaining n+
c− (n− c+ k− 2)− k = 2(c− k+1) goods. Thus, each of
these bundles contains exactly two goods, and A contains a
single bundle of cardinality greater than 2. Consequently, an
MMS allocation exists by Lemma 22.

Lemma 23 guarantees an MMS allocation unless vi(n−c+
k − 1) ≥ µi for any agent i with a k-sized bundle. Thus, if
there are at least c agents with at k-sized bundle in their MMS
partition, we can construct a valid reduction to an instance
with any (c−k+1)-sized subset of these agents by allocating
one of the goods 1, 2, . . . , n− c+ k − 1 to each of the other
agents. Hence, as long as there are c agents in the instance
with a k-sized bundle in their MMS partition, only max(c −
k+1, nc−k+1+1) of them need a shared (k−1)-sized subset.

Theorem 1. For any integer c > 0, there exists an nc ≤
⌊0.6597c(c!)⌋ such that all instances with n ≥ nc agents and
no more than n+ c goods have an MMS allocation.

Proof. Lemma 14 guarantees that for any c ≤ 5, an MMS
allocation always exists for any number of agents. Further,
Theorem 2, which is proven without Theorem 1, guarantees
that an MMS allocation always exists when c = 6 and n ≥
4 < ⌊0.65976 · 6!⌋. Thus, the conditions of the theorem hold
for all c < 7 and we only need to consider cases where c ≥ 7.

To show that the theorem holds for every integer c ≥ 7,
we will use induction with c < 7 as base case. For a given
c ≥ 7, we will assume that the theorem holds for all c′ < c
and then show that any instance with at least ⌊0.6597c · c!⌋
agents and at most m = n+ c goods has an MMS allocation.
That is, we assume that for any integer c′ with 6 < c′ < c,
an MMS allocation exists for all instances with at least nc′ =
⌊0.6597c′ · c′!⌋ agents and at most n′ + c′ goods. Under this
assumption we know that ⌊0.6597c′−1(c′−1)!⌋ < ⌊0.6597c′ ·
c′!⌋ for all values of c′. Hence, we are able to use Lemmas 22
and 23 and need only consider instances where m = n+ c.

Let I = ⟨N,M, V ⟩ be an ordered instance of n agents and
m = n + c goods, where n ≥ ⌊0.6597c(c!)⌋. Let AI(i) be
an MMS partition of agent i ∈ N of the type described by
Lemma 16, maximizing the number of bundles of cardinality
one. To show that I has an MMS allocation, we will con-
sider domination between particularly bad bundles in AI(i)
of different agents. Since AI(i) contains n disjoint bundles,
at most n−1 of these can contain goods in {1, 2, . . . , n−1}.
Thus, there is a bundle in AI(i) in which the best good g is
such that n ≤ g. Let BI(i) be such a bundle in AI(i). Ob-
serve that if |BI(i)| = k for some integer k, BI(i) is one of(
c+1
k

)
possible k-sized subsets of {n, n+ 1, . . . , n+ c}.

Before proceeding, we will deal with some special cases,
to simplify and tighten the further analysis. If for any agent
i ∈ N it holds that µi = 0 or |BI(i)| ≤ 2, then vi({n, n +
1}) ≥ µi and an MMS allocation exists by Lemma 10. If
|BI(i)| > c−1, then an MMS allocation exists by Lemma 22.
Furthermore, if µi > 0 and |BI(i)| = c − 1, then either an
MMS allocation exists by Lemma 22 or AI(i) contains n− 2
bundles of size one and vi(n − 2) ≥ µi. If vi(n − 2) ≥ µi,
there could exist a subset N ′ ⊂ N of n − 2 agents such that
removing N ′ and {1, 2, . . . , n − 2} forms a valid reduction.

Otherwise, there is a non-empty subset N ′′ ⊂ N of agents
and an equally-sized subset M ′′ ⊂ M of at most c goods such
that no agent in N \ N ′′ values any good in M ′′ at MMS or
higher and there exists a perfect matching between the agents
in N ′′ and goods they value at MMS or higher in M ′′. The
method from Lemma 22 can be used to extend the perfect
matching to a valid reduction with |N ′′| agents and 2|N ′′|
goods. Thus, an MMS allocation exists if |BI(i)| = c− 1.

We can now assume that 2 < |BI(i)| < c − 1 and µi > 0
for all i ∈ N . We wish to determine the number of agents
required such that for at least one k ∈ {3, 4, . . . , c− 2}, there
must be at least max(c − k + 1, nc−k+1 + 1) agents with
|BI(i)| = k and where the bundles BI(i) share a (k−1)-sized
subset of goods. If there are this many agents, Lemmas 19
and 23 guarantee a valid reduction to an instance in which an
MMS allocation exists by our inductive hypothesis.

Since BI(i) ⊂ {n, n+1, . . . , n+ c}, there are
(
c+1
k−1

)
pos-

sible subsets of size k− 1. Since |BI(i)| = k, BI(i) contains
k distinct subsets of size k − 1. Thus, if there are at least
1 + z

(
c+1
k−1

)
/k agents with |BI(i)| = k for some z ≥ 0, at

least z + 1 of the agents have the same (k − 1)-sized subset
in their BI(i). If we separately consider subsets contain good
n, we get that if there for a k ∈ {3, 4, . . . , c− 2} is at least

1 +

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
max(c− k, nc−k+1) (1)

agents for which |BI(i)| = k, then there are at least max(c−
k + 1, nc−k+1 + 1) bundles in the multiset {BI(i) : i ∈
N, |BI(i)| = k} that share the same (k − 1)-sized subset of
goods. Combining Eq. (1) for all possible size of BI(i), we
get that when there are

1 +
c−2∑
k=3

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
max(c− k, nc−k+1) (2)

agents, there is some 3 ≤ k ≤ c − 2 for which there are at
least max(c − k + 1, nc−k+1 + 1) agents with |BI(i)| = k,
where the BI(i) share the same (k − 1)-sized subset.

We wish to show that Eq. (2) is bounded from above by
⌊0.6597c(c!)⌋. In order to prove the bound, we make the fol-
lowing observations. Since nc′ = ⌊0.6597c′ ·c′!⌋ for c > c′ >
0, when k < c− 2 we have max(c− k, nc−k+1) = nc−k+1.
Also, since c ≥ 7 we can use Lemma 14 to show that:

2 +
c−2∑

k=c−4

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
max(c− k, nc−k+1)

<
c−2∑

k=c−4

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
⌊0.6597c−k+1(c− k + 1)!⌋

Additionally, for any k ∈ {3, 4, . . . , c− 2}, it holds that((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
⌊0.6597c−k+1(c− k + 1)!⌋ ≥ c

Combining the observations with Eq. (2), we get that if there
are at least

−1+
c−2∑
k=3

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
⌊0.6597c−k+1(c−k+1)!⌋ (3)
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agents in I , an MMS allocation must exist, since there is some
k ∈ {3, 4, . . . , c − 2} for which there are c or more agents
with |BI(i)| = k and at least max(c − k + 1, nc−k+1 + 1)
of them have the same (k − 1)-sized subset of BI(i). Thus,
we must show that Eq. (3) is less than or equal to our bound
⌊0.6597c · c!⌋. We have that for α > 0:

c−2∑
k=3

((
c

k−1

)
k

+

(
c

k−2

)
k − 1

)
⌊αc−k+1(c− k + 1)!⌋

≤ αc · c!
c−2∑
k=3

(
α−k+1

k!
+

α−k+1

k!(c− k + 1)

) (4)

Using the Maclaurin series ey =
∑∞

j=0 y
j/(j!), we get that

c−2∑
k=3

(
α−k+1

k!
+

α−k+1

k!(c− k + 1)

)
(5)

≤ 1

12 · α2
+ (α+

1

4
)

∞∑
k=3

α−k

k!
(6)

=
1

12 · α2
+ (α+

1

4
)

(
e

1
α − 1

2 · α2
− 1

α
− 1

)
(7)

Equation (7) is equal to 1 if α = 0.65964118 . . . , and less
than 1 if α is larger.13 Thus, as a result of Eq. (4), we know
from Eq. (3) that the number of required agents is less than or
equal to −1 + 0.6597c · c! < ⌊0.6597c · c!⌋. Consequently, I
has an MMS allocation by our inductive hypothesis.

4 Improved Bounds for Small Constants
In the previous section, we saw that for any integer constant
c > 0, there exists a, rather large, number nc such that all
instances with n ≥ nc agents and no more than n + c goods
have MMS allocations. There exists some slack in the calcu-
lations of the limit, especially for smaller values of c. More-
over, while hard to make use of in the general case, there ex-
ist additional, unused properties and interactions between the
MMS partitions of different agents. As a result, it is possible
to, on a case-by-case basis, show better bounds for small con-
stants by analyzing the possible structures of MMS partitions
and their interactions for specific values of c. We state the
two following results for c = 6 and c = 7. Both proofs rely
on an exhaustive analysis of possible MMS partition structure
combinations, and are given in the extended version.
Theorem 2. For an instance with n ̸= 3 agents, an MMS
allocation always exists if there are m ≤ n+ 6 goods.
Theorem 24. For an instance with m = n + 7 goods, an
MMS allocation always exists if there are n ≥ 8 agents.

5 Fair Allocation of Chores
So far we have only considered instances in which the items
are goods. In this section, we show that a similar result to
the one for goods in Theorem 1 exists for chores. The re-
sulting bounds for nc are somewhat worse for chores due to

13The exact value α for which Eq. (7) is equal to 1 can be used in
Theorem 1 instead of the rounded value 0.6597.

minor differences in the way that valid reductions can be con-
structed. The main difference is the lack of a result equivalent
to Lemma 10. In practice, this means that while we for goods
could ignore bundles of cardinality two in our domination-
based counting argument, we must include bundles of cardi-
nality two for chores. Fortunately, it is possible to show that
the bundles of cardinality two that are of interest to us are all
the same bundle. Thus, the number of agents with a bundle of
cardinality two required to find a reduction is relatively small.
Lemma 25. Let I = ⟨N,M, V ⟩ be an ordered instance for
chores, and i ∈ N an agent with an MMS partition A con-
taining a bundle B with |B| = 2, B ∩ {1, 2, . . . , n− 1} = ∅.
Then i has an MMS partition A′ such that (i) |Aj | = |A′

j | for
all j ∈ N , (ii) {n, n + 1} ∈ A′, and (iii) the position of the
chores 1, 2, . . . , n− 1 is the same in A and A′.

Proof. Assume that B = {x, y}, where x < y. Let A′ be
the allocation equivalent to A, except for that x and y have
changed place with, respectively, n and n + 1. We wish to
show that A′ is an MMS partition and satisfies (i), (ii) and
(iii). In any MMS partition, there must be at least one bundle
B′ with |B′∩{1, 2, . . . , n+1}| ≥ 2. Thus, vi({n, n+1}) ≥
vi(B

′) ≥ µi. Since n ≤ x and n + 1 ≤ y, the bundles that
contained n and n + 1 are no worse after the swap and A′ is
an MMS partition of i.

Since the only difference between A and A′ is two swaps
of chores, and {n, n+ 1, x, y} ∩ {1, 2, . . . , n− 1} = ∅, both
(i) and (iii) hold. Furthermore, after the swap B = {n, n+1}
and B ∈ A′, thus (ii) holds.

The method used to prove Theorem 3 is almost identical to
the one used for Theorem 1. The domination property trans-
fers to chores perfectly, except that a bundle that dominates
another bundle is now worse (or equivalent to) the bundle it
dominates. Consequently, we wish to find a bundle that dom-
inates bundles of the other agents, rather than one that is dom-
inated by bundles of the other agents. Furthermore, one can
show that all agents have MMS partitions with a similar struc-
ture to the one given in Lemma 16. Due to the close similarity
to the proof of Theorem 1 and space constraints, the proof of
Theorem 3 is given in the extended version.
Theorem 3. For any integer c > 0, there exists an nc ≤
⌊0.7838c(c!)⌋ such that all instances with n ≥ nc agents and
no more than n+ c chores have an MMS allocation.

6 Conclusion and Future Work
Theorems 1 and 3 show that instances with n agents and n+c
items will for any c > 0 have an MMS allocation if n is suf-
ficiently large. The required value for n does, however, grow
exponentially in c. As a consequence, the result is mostly of
use for instances with few agents, such as the motivating real-
world instances, where the value for c is comparably large.

It is probable that the bounds can be improved by an ap-
proach that builds upon our domination-based partial order-
ing. By better understanding how quickly large chains must
appear in the ordering, one can potentially replace Eq. (1) or
Eq. (2) by a smaller term and obtain a better bound. To this
end, we can extend Lemma 16 so that there is no domination
within the MMS partition, unless both bundles have size one.
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