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Abstract
We study the complexity of deciding if there is a
tie in a given approval-based multiwinner election,
as well as the complexity of counting tied winning
committees. We consider a family of Thiele rules,
their greedy variants, Phragmén’s sequential rule,
and Method of Equal Shares. For most cases, our
problems are computationally hard, but for sequen-
tial rules we find an FPT algorithm for discovering
ties (parameterized by the committee size). We also
show experimentally that in elections of moderate
size ties are quite frequent.

1 Introduction
In an approval-based multiwinner election, a group of vot-
ers expresses their preferences about a set of candidates—
i.e., each voter indicates which of them he or she approves—
and then, using some prespecified rule, the organizer selects
a winning committee (a fixed-size subset of the candidates).
Multiwinner elections can be used to resolve very serious
matters—such as choosing a country’s parliament—or rather
frivolous ones—such as choosing the tourist attractions that a
group of friends would visit—or those positioned anywhere
in between these two extremes—such as choosing a depart-
ment’s representation for the university senate. In large elec-
tions, one typically does not expect ties to occur (although
surprisingly many such cases are known1), but for small and
moderately sized ones the issue is unclear (whenever we
speak of a size of an election, we mean both the number of
candidates and the number of voters). While perhaps a group
of friends may manage to not spoil their holidays upon dis-
covery that they were as willing to visit one monument as
another, a person not selected for a university senate due to a
tie may be quite upset, especially if this tie is discovered af-
ter announcing the results. To address such possibilities, we
study the following three issues:

1. We consider the complexity of detecting if two or more
committees tie under a given voting rule. While for most
rules this problem turns out to be intractable, for many
settings we find practical solutions (in most cases it is ei-

1https://en.wikipedia.org/wiki/List of close election results

ther possible to use a natural integer linear programming
trick or an FPT algorithm that we provide).

2. We consider the complexity of counting the number of
winning committees. We do so, because being able to
count winning committees would be helpful in sampling
them uniformly. Unfortunately, in this case we mostly
find hardness and hardness of approximation results.

3. We generate a number of elections, both synthetic and
based on real-life data, and evaluate the frequency of
ties. It turns out to be surprisingly high.

We focus on a subfamily of Thiele rules [Thiele, 1895;
Aziz et al., 2015; Lackner and Skowron, 2021] that in-
cludes the multiwinner approval rule (AV), the approval-
based Chamberlin–Courant rule (CCAV), and the propor-
tional approval voting rule (PAV), as well as on their greedy
variants. We also study satisfaction approval voting (SAV),
the Phragmén rule, and Method of Equal Shares (MEqS).
This set includes rules appropriate for selecting committees
of individually excellent candidates (e.g., AV or SAV), di-
verse committees (e.g., CCAV or GreedyCCAV), or propor-
tional ones (e.g., PAV, GreedyPAV, Phragmén, or MEqS); see
the works of Elkind et al. [2017] and Faliszewski et al. [2017]
for more details on classifying multiwinner rules with respect
to their application. We summarize our results in Table 1.

The issue of ties and tie-breaking has already received quite
some attention in the literature, although typically in the con-
text of single-winner voting. For example, Obraztsova and
Elkind [2011] and Obraztsova et al. [2011] consider how var-
ious tie-breaking mechanisms affect the complexity of ma-
nipulating elections, Freeman et al. [2015] study different
tie-breaking schemes, such as parallel-universes tie-breaking
and randomized ones, in single-winner voting (mainly for
STV), and recently Xia [2021] has made a breakthrough in
studying the probability of ties in large, randomly-generated
single-winner elections. Xia [2022] also developed a novel
tie-breaking mechanism, albeit for a somewhat different set-
ting than ours. Finally, Conitzer et al. [2009] have shown that
deciding if a candidate is a tied winner in an STV election is
NP-hard. While STV is not an approval-based rule and they
focused on the single-winner setting, many of our results are
in a similar spirit. Omitted proofs are in the full version of
the paper [Janeczko and Faliszewski, 2023].
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Rule UNIQUE-COMMITTEE #WINNING-COMM.

AV P P
SAV P P

CCAV coNP-h., coW[1]-h.(k) #P-h., #W[1]-h.(k)
PAV coNP-h., coW[1]-h.(k) #P-h., #W[1]-h.(k)

GreedyCCAV coNP-com., FPT(k) #P-h., #W[1]-h.(k)
GreedyPAV coNP-com., FPT(k) #P-h., #W[1]-h.(k)
Phragmén coNP-com., FPT(k) #P-h., #W[1]-h.(k)
MEqS (Ph. 1) coNP-com., FPT(k) #P-h.

Table 1: Our complexity results. The coNP-completeness re-
sults regarding {GreedyCCAV, GreedyPAV, Phragmén}-UNIQUE-
COMMITTEE follow from the work of Faliszewski et al. [2022] The
polynomial-time algorithms for AV and SAV are folk knowledge.

2 Preliminaries
By R+ we denote the set of nonnegative real numbers. For
each integer t, we write [t] to mean {1, . . . , t}. We use the
Iverson bracket notation, i.e., for a logical expression F , we
interpret [F ] as 1 if F is true and as 0 if it is false. Given
a graph G, we write V (G) to denote its set of vertices and
E(G) to denote its set of edges. For a vertex v, by d(v) we
mean its degree (i.e., the number of edges that touch it).

An election E = (C, V,A) consists of a set of candi-
dates C = {c1, . . . , cm} and a collection of voters V =
(v1, . . . , vn), where each voter vi has a set A(vi) ⊆ C of
candidates that he or she approves. We refer to this set as vi’s
approval set or vi’s vote, interchangeably. We typically omit
writing A (as it is clear from the context) and use a short-
ened notation E = (C, V ). By a small abuse of notation, for
a candidate c we write A(c) to denote the set of voters that
approve him or her. A multiwinner voting rule f is a func-
tion that given an election E = (C, V ) and committee size
k ∈ [|C|] outputs a family of size-k subsets of C, i.e., a fam-
ily of winning committees (denoted as f(E, k)). Below we
describe the rules that we focus on.

Let E = (C, V ) be an election and let k be the committee
size. Under the multiwinner approval rule (AV), each voter
assigns a single point to each candidate that he or she ap-
proves and winning committees consist of k candidates with
the highest scores. Satisfaction approval voting (SAV) pro-
ceeds analogously, except that each voter v ∈ V assigns
1/|A(v)| points to each candidate he or she approves. In other
words, under AV each voter can give a single point to each
approved candidate, but under SAV he or she needs to split a
single point equally among them.

Next we consider the class of Thiele rules, defined origi-
nally by Thiele [1895] and discussed, e.g., by Lackner and
Skowron [2021] and Aziz et al. [2015]. Given a nondecreas-
ing weight function w : N → R+ such that w(0) = 0, we
define the w-Thiele score (w-score) of a committee S =
{s1, . . . , sk} in election E to be:

w-scoreE(S) =
∑

v∈V w(|A(v) ∩ S|).

The w-Thiele rule outputs all committees with the highest w-
score. We require that for each of our weight functions w,
it is possible to compute each value w(i) in polynomial time
with respect to i. Additionally, we focus on functions such

that w(1) = 1 and for each positive integer i it holds that
w(i)−w(i−1) ≥ w(i+1)−w(i). We refer to such functions,
and the Thiele rules that they define, as 1-concave. Three
best-known 1-concave Thiele rules include the already de-
fined AV rule, which uses function wAV(t) = t, the approval-
based Chamberlin–Courant rule (CCAV), which uses func-
tion wCCAV(t) = [t ≥ 1], and the proportional approval vot-
ing rule (PAV), which uses the function wPAV(t) =

∑t
i=1

1/i.
While it is easy to compute some winning committees un-

der the AV rule in polynomial time (out of possibly exponen-
tially many), for the other Thiele rules, including CCAV and
PAV, even deciding if a committee with at least a given score
exists is NP-hard (see the works of Procaccia et al. [2008]
and Betzler et al. [2013] for the case of CCAV, and the works
of Aziz et al. [2015] and Skowron et al. [2016] for the gen-
eral case). Hence, sometimes the following greedy variants
of Thiele rules are used (E is the input election and k is the
desired committee size):

Let f be a w-Thiele rule. Its greedy variant, denoted
Greedy-f , first sets W0 := ∅ and then executes k iter-
ations, where for each i ∈ [k], in the i-th iteration it
computes Wi := Wi−1 ∪ {c} such that c is a candidate
in C \Wi−1 that maximizes the w-score of Wi. Finally,
it outputs Wk. In case of internal ties, i.e., if at some
iteration there is more than one candidate that the algo-
rithm may choose, the algorithm outputs all committees
that can be obtained for some way of resolving each of
these ties. In other words, we use the parallel-universes
tie-breaking model [Conitzer et al., 2009].

When we discuss the operation of some Greedy-f rule on an
election E and we discuss the situation after its i-th iteration,
where, so far, subcommittee Wi was selected, then by the
score of a (not-yet-selected) candidate c we mean the value
w-scoreE(Wi ∪ {c}) − w-scoreE(Wi), i.e., the marginal in-
crease of the w-score that would result from selecting c. We
refer to the greedy variants of CCAV and PAV as Greedy-
CCAV and GreedyPAV (in the literature, these rules are also
sometimes called sequential variants of CCAV and PAV, see,
e.g., the book of Lackner and Skowron [2023]). Given a
greedy variant of a 1-concave Thiele rule, it is always pos-
sible to compute at least one of its winning committees in
polynomial time by breaking internal ties arbitrarily. Further,
it is well-known that the w-score of this committee is at least
a 1− 1/e ≈ 0.63 fraction of the highest possible w-score; this
follows from the classic result of Nemhauser et al. [1978] and
the fact that w-score is monotone and submodular.

The Phragmén (sequential) rule proceeds as follows (see,
e.g., the works of Janson [2016] and Brill et al. [2017]):

Let E = (C, V ) be an election and let k be the commit-
tee size. Each candidate costs a unit of currency. The
voters start with no money, but they receive it continu-
ously at a constant rate. As soon as there is a group of
voters who approve a certain not-yet-selected candidate
and who together have a unit of currency, these voters
“buy” this candidate (i.e., they give away all their money
and the candidate is included in the committee). The
process stops as soon as k candidates are selected. For
internal ties, we use the parallel-universes tie-breaking.
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Method of Equal Shares (MEqS), introduced by Peters and
Skowron [2020] and Peters et al. [2021], is similar in spirit,
but gives the voters their “money” up front (we use the same
notation as above):

Initially, each voter has a budget equal to k/|V |. The
rule starts with an empty committee and executes up
to k iterations as follows (for each voter v, let b(v)
denote v’s budget in the current iteration): For each
not-yet-selected candidate c we check if the voters
that approve c have at least a unit of currency (i.e.,∑

v∈A(c) b(v) ≥ 1). If so, then we compute value ρc
such that

∑
v∈A(c) min(b(v), ρc) = 1, which we call

the per-voter cost of c. We extend the committee with
this candidate c′, whose per-voter cost ρc′ is the lowest;
the voters approving c′ “pay” for him or her (i.e., each
voter v ∈ A(c′) gives away min(b(v), ρc′) of his or her
budget). In case of internal ties, we use the parallel-
universes tie-breaking. The process stops as soon as no
candidate can be selected.

The above process, referred to as Phase 1 of MEqS, often
selects fewer than k candidates. To deal with this, we extend
the committee with candidates selected by Phragmén (started
off with the budgets that the voters had at the end of Phase 1).
We jointly refer to the greedy rules, Phragmén, MEqS, and
Phase 1 of MEqS as sequential rules.

We assume familiarity with basic classes of computational
complexity such as P, NP, and coNP. #P is the class
of functions that can be expressed as counting accepting
paths of nondeterministic polynomial-time Turing machines.
Additionally, we consider parameterized complexity classes
such as FPT and W[1] (see, e.g., the textbooks of Nieder-
meier [2006] and Cygan et al. [2015]). #W[1] is a parameter-
ized counting class which relates to W[1] in the same way as
#P relates to NP [Flum and Grohe, 2004]. When discussing
counting problems, it is standard to use Turing reductions: A
counting problem #A reduces to a counting problem #B if
there is a polynomial time algorithm that solves #A in poly-
nomial time, provided it has oracle access to #B (i.e., it can
solve #B in constant time).2

3 Unique Winning Committee
In this section we consider the problem of deciding if a given
multiwinner rule outputs a unique committee in a given elec-
tion. Formally, we are interested in the following problem.
Definition 3.1. Let f be a multiwinner voting rule. In the f -
UNIQUE-COMMITTEE problem we are given an election E
and a committee size k, and we ask if |f(E, k)| = 1.

It is a folk result that for AV and SAV this problem is in P
(see beginning of Section 4 for an argument). For Thiele rules
other than AV, the situation is more intriguing. In particular,
already the problem of deciding if a given committee is win-
ning under the CCAV rule is coNP-complete [Sonar et al.,
2020]. We show that for 1-concave Thiele rules other than
AV the UNIQUE-COMMITTEE problem is coNP-hard (and
we conjecture that the problem is not in coNP).

2For #W[1], the running time can even be larger, but our
#W[1]-hardness proofs use polynomial-time reductions.

Proposition 3.1. Let f be a 1-concave w-Thiele rule other
than AV. Then f -UNIQUE-COMMITTEE is coNP-hard.

Proof. Let x = w(2) − w(1) and assume, for now, that
x < 1. We give a reduction from INDEPENDENT-SET to
the complement of f -UNIQUE-COMMITTEE. An instance of
INDEPENDENT-SET consists of a graph G and an integer k,
and we ask if there are k vertices neither of which is con-
nected with the others. Let G′ be a graph obtained from G by
adding k vertices such that each of the new vertices is con-
nected to each of the old ones (but the new vertices are not
connected to each other). If G does not have a size-k inde-
pendent set, then G′ has a unique one, and if G has at least
one size-k independent set, then G′ has at least two. Let us
denote the vertices of G′ as V (G′) = {v1, . . . , vn} and its
edges as E(G′) = {e1, . . . , em}. Let d(vi) be the degree of
a vertex vi and δ be the highest degree in V (G′). We fix the
committee size to be k and we form an election E with the
candidate set V (G′) and with the following voters:

1. For each edge eℓ = {vi, vj} there is a single voter who
approves vi and vj .

2. For each vertex vi there are δ−d(vi) voters approving vi.

Consider a set of k vertices from V (G′). If this set is an in-
dependent set, then interpreted as a committee in election E,
it has w-score equal to δk. On the other hand, if S is not an
independent set, then its score is at most (δk − 1) + x < δk.
We know that G′ has an independent set of size k. If G also
has one, then our election has at least two winning commit-
tees and, otherwise, the winning committee is unique. The
case where x = 1 is in the full version of the paper.

For greedy variants of Thiele rules (with the natural excep-
tion of AV) and for the Phragmén rule, deciding if the winning
committee is unique is coNP-complete. Our proof for the
greedy variants of Thiele rules is inspired by a complexity-
of-robustness proof for GreedyPAV, provided by Faliszewski
et al. [2022]. For Phragmén, somewhat surprisingly, their ro-
bustness proof directly implies our desired result. We also get
analogous result for Method of Equal Shares and its Phase 1.

Theorem 3.2. Let f be a 1-concave w-Thiele rule, f ̸= AV.
Greedy-f -UNIQUE-COMMITTEE is coNP-complete.

Corollary 3.3. UNIQUE-COMMITTEE is coNP-complete for
GreedyCCAV, GreedyPAV, and PHRAGMÉN.

Theorem 3.4. UNIQUE-COMMITTEE is coNP-complete for
Phase 1 of MEqS.

Proof. One can verify that the problem is in coNP. To show
hardness, we give a reduction from the complement of the
classic NP-complete problem, X3C. An instance of X3C
consists of a universe set U = {u1, . . . , u3n} and a family
S = {S1, . . . , S3n} of size-3 subsets of U . We ask if there
are n sets from S whose union is U (we refer to such a family
as an exact cover of U ; note that the sets in such a cover must
be disjoint). Without loss of generality, we assume that each
member of U belongs to exactly three sets from S [Gonzalez,
1985] and that n is even.
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Now we describe our election. Ideally, we would like to
distribute different amounts of budget between different vot-
ers, but as MEqS splits the budget evenly, we design the elec-
tion in such a way that in the initial iterations the respective
voters spend appropriate amounts of money on the candidates
that otherwise are not crucial for the construction. We form
the following groups of voters (we reassure the reader that the
analysis is more pleasant than it may appear):

1. Group B, which contains 144n3 − 12n voters.
2. Group BU , which contains 54n3 + 9n2 voters.
3. Group U ′, which models the elements of the universe

set U . For each ui ∈ U , there is a single corresponding
voter in U ′. We have |U ′| = 3n.

4. Group U ′′, which serves a similar purpose as U ′, but
contains more voters. Specifically, for each ui ∈ U ,
there are 6n corresponding voters in U ′′; |U ′′| = 18n2.

5. Group Vpd, which contains 12n voters.
6. Group VS , which contains 9n voters.
7. Two voters, d1 and d2.

In total, there are 198n3 + 27n2 + 12n + 2 voters. Further,
we have the following groups of candidates:

1. Group CB of 144n3 − 12n2 candidates approved by the
144n3 voters from B ∪ Vpd.

2. Group CU of 54n3 + 24n2 + 5n/2 candidates approved
by the 54n3 + 27n2 + 3n voters from BU ∪ U ′ ∪ U ′′.

3. Candidate p approved by the 12n voters from Vpd.
4. Candidate d approved by the 15n voters from Vpd ∪ U ′.
5. Candidates c1 and c2, both approved by d1 and d2.
6. Group D of 15n2 + 45n

2 +5 candidates approved by d1.
7. For each set Sℓ ∈ S such that Sℓ = {ui, uj , ut} we have

a corresponding candidate sℓ approved by: (a) three
unique voters from VS , (b) the voters from U ′ and U ′′

that correspond to the elements ui, uj , ut. We write S to
denote this group of candidates and we refer to its mem-
bers as the S-candidates. Each S-candidate is approved
by 3 + 3 + 3 · 6n = 18n+ 6 voters.

We have 198n3+27n2+28n+9 candidates in total. We set
the committee size k to be equal to the number of voters, i.e.,
k = 198n3 + 27n2 + 12n+ 2. Let us consider the following
two committees (note that each of them contains fewer than
k candidates; indeed, Phase 1 of MEqS sometimes chooses
committees smaller than requested):

Wd = CB ∪ CU ∪ S ∪ {c1, c2} ∪ {d},
Wp = CB ∪ CU ∪ S ∪ {c1, c2} ∪ {p}.

We claim that Phase 1 of MEqS always outputs committee
Wd, and if (U,S) is a yes-instance then it also outputs Wp.

Let us analyze how Phase 1 of MEqS proceeds on our elec-
tion. Since the committee size is equal to the number of vot-
ers, initially each voter receives budget equal to 1.

At first, we will select all candidates from CB . Indeed,
there are 144n3 − 12n2 candidates in this group, each ap-
proved by 144n3 voters (from B ∪ Vpd). Each of these vot-
ers pays 1/144n3 for each of the candidates (this is the lowest

per-voter candidate cost at this point). After these purchases,
each voter from B ∪ Vpd will be left with budget equal to
1− (144n3 − 12n2) · (1/144n3) = 1/12n.

Next, we will select all candidates from CU . Indeed,
this set contains 54n3 + 24n2 + 5n/2 candidates approved
by 54n3 + 27n2 + 3n voters (from BU ∪ U ′ ∪ U ′′) who
have not spent any part of their budget yet. All candi-
dates in CU will be purchased at the same pre-voter cost of
1/(54n3+27n2+3n) (the lowest one at this point). Each voter
in BU ∪ U ′ ∪ U ′′ will be left with budget equal to 1 −
(54n3 +24n2 + 5n/2) · 1/(54n3+27n2+3n) = 3n2+n/2

54n3+27n2+3n =
6n+1

108n2+54n+6 = 6n+1
(6n+1)·(18n+6) =

1/(18n+6).
Next, we consider the S-candidates who, at this point, have

the highest approval score among the yet unselected candi-
dates. As each S-candidate is approved by exactly 18n + 6
voters and each voter still has budget higher or equal to
1/(18n+6), we keep selecting the S-candidates at the per-voter
cost of 1/(18n+6) as long as there is at least one such candidate
whose all voters still have budget of at least 1/(18n+6).

Upon selecting a given S-candidate, corresponding to set
Sℓ, all the voters who approve him or her pay 1/(18n+6). This
includes the three unique voters from VS and the voters from
U ′ and U ′′ who correspond to the members of Sℓ. Prior to
this payment, the voters from U ′ and U ′′ have budget equal
to 1/(18n+6), so they end up with 0 afterward (and we say
that they are covered by this S-candidate). Consequently, the
S-candidates that we buy at the per-voter cost of 1/(18n+6)

correspond to disjoint sets.
Now let us consider what happens when there is no S-

candidate left who can be purchased at the per-voter cost of
1/(18n+6). This means that for each unselected S candidate, at
least 6n+ 1 voters approving him have already been covered
and have no budget left. Hence, for a given S-candidate there
are at least 6n+1 voters (from U ′ and U ′′) whose budget is 0,
at most 12n+2 voters (from U ′ and U ′′) who each have bud-
get of 1/(18n+6), and three voters (from VS) who each have
budget equal to 1. To buy this S candidate, the voters from
U ′ and U ′′ would have to use up their whole budget, and the
voters from VS would have to pay at least:

1
3 (1− (12n+ 2) · 1

18n+6 ) =
18n+6−(12n+2)

3·(18n+6) = 3n+2
27n+9

each. However, at this point there are two candidates that can
be purchased at lower per-voter cost.

Indeed, candidate p could be purchased by the 12n vot-
ers from Vpd at the per-voter cost of 1/12n (after buying the
candidates from CB , they still have exactly this amount of
budget left). Since candidate d also is approved by all the
voters from Vpd, and also by the voters from U ′, candidate d
would either have the same per-voter cost as p (in case all the
members of U ′ were already covered) or would have an even
lower per-voter cost. The only other remaining candidates are
c1, c2, and the candidates from D, but their per-voter costs
are greater or equal to 1/2. Hence, at this point, MEqS either
selects p or d. The former is possible exactly if the already
selected S-candidates form an exact cover of U ′ (and, hence,
correspond to an exact cover for our input instance of X3C).

If we select p, then the 12n voters from Vpd use up all
their budget. The remaining voters who approve d, those in
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U ′, have total budget equal to at most 3n · 1
18n+6 < 1, so d

cannot be selected in any of the following iterations (within
Phase 1). On the other hand, if we select d, then all the voters
from U ′ would have to pay all they had left (that is, either 0 or

1
18n+6 , each) and voters from Vpd would split the remaining
cost. That is, each voter from Vpd would have to pay at least:

1−3n· 1
18n+6

12n = 18n+6−3n
12n·(18n+6) =

15n+6
12n·(18n+6) .

Consequently, each voter from Vpd would be left with at most:

1
12n − 15n+6

12n·(18n+6) =
18n+6−(15n+6)
12n·(18n+6) = 1

72n+24 .

This would not suffice to purchase p, as 12n · 1
72n+24 < 1.

Thus either we select d (and not p) or we select p (and not
d; where this is possible only if we previously purchased S-
candidates that cover all members of U ′).

In the following iterations, we purchase all remaining S-
candidates (because each of them is approved by three unique
voters from VS), as well as candidates c1 and c2 (voters d1
and d2 buy them with per-voter cost of 1/2 for each). This
uses up the budget of d1 and, so, no candidate from D is
selected. All in all, if there is no exact cover for the input
X3C instance, then Wd is the unique winning committee, but
otherwise Wd and Wp tie. This finishes the proof.

UNIQUE-COMMITTEE is also coNP-complete for the full
version of MEqS. To see this, it suffices to note that af-
ter adding enough voters with empty votes, MEqS becomes
equivalent to Phragmén (because per-voter budget is so low
that Phase 1 becomes vacuous) and inherits its hardness.

On the positive side, for sequential rules we can solve
UNIQUE-COMMITTEE in FPT time with respect to the com-
mittee size: In essence, we first compute some winning com-
mittee and then we try all ways of breaking internal ties to find
a different one. For small values of k, such as, e.g., k ≤ 10,
the algorithm is fast enough to be practical.
Theorem 3.5. Let f be MEqS, Phase 1 of MEqS, Phragmén,
or a greedy variant of a 1-concave Thiele rule. There is an
FPT algorithm for f -UNIQUE-COMMITTEE parameterized
by the committee size.

Proof. Let E be the input election and let k be the commit-
tee size. First, we compute some committee W in f(E, k),
by running the algorithm for f and breaking the internal ties
arbitrarily. Next, we rerun the algorithm, but whenever it is
about to add a candidate into the constructed committee, we
do as follows (let T be the set of candidates that the algorithm
can insert into the committee): If T contains some candidate
c that does not belong to W , then we halt and indicate that
there are at least two winning committees (W and those that
include c). If T is a subset of W , then we recursively try each
way of breaking the tie. If the algorithm completes without
halting, we report that there is a unique winning committee
(see the full version of the paper for correctness argument
and running time analysis).

For 1-concave Thiele rules other than AV, UNIQUE-
COMMITTEE is co-W[1]-hard when parameterized by the
committee size (this follows from the proof of Proposition 3.1

as INDEPENDENT-SET is W[1]-hard for parameter k). To
solve the problem in practice, we note that for each 1-concave
Thiele rule there is an integer linear program (ILP) whose so-
lution corresponds to a winning committee. We can either
use the ability of some ILP solvers to output several solutions
(which only succeeds in case of a tie), or we can use the fol-
lowing strategy: First, we compute some winning committee
using the basic ILP formulation. Then, we extend the for-
mulation with a constraint that requires the committee to be
different from the previous one and compute a new one. If
both committees have the same score, then there is a tie.

4 Counting Winning Committees
Let us now consider the problem of counting the winning
committees. Formally, our problem is as follows.

Definition 4.1. Let f be a multiwinner voting rule. In the f -
#WINNING-COMMITTEES problem we are given an election
and a committee size k; we ask for |f(E, k)|.

There are polynomial-time algorithms for computing the
number of winning committees for AV and SAV. For an elec-
tion E with committee size k, we first sort the candidates with
respect to their scores in a non-increasing order and we let x
be the score of the k-th candidate. Then, we let S be the num-
ber of candidates whose score is greater than x, and we let T
be the number of candidates with score equal to x. There are(

T
k−S

)
winning committees.

Proposition 4.1. {AV, SAV}-#WINNING-COMMITTEES ∈P

On the other hand, whenever f -UNIQUE-COMMITTEE is
intractable, so is f -#WINNING-COMMITTEES. Indeed, it im-
mediately follows that there is no polynomial-time (2 − ε)-
approximation algorithm for f -#WINNING-COMMITTEES
for any ε > 0 (such an algorithm could solve f -UNIQUE-
COMMITTEE in polynomial time as for an election with a
single winning committee it would have to output 1, and for
an election with more winning committees it would have to
output an integer greater or equal 2

2−ε > 1, so we could dis-
tinguish these cases3). Yet, we have a stronger result.

Proposition 4.2. Let f be a 1-concave Thiele rule (different
from AV), its greedy variant, Phragmén, MEqS or Phase 1
of MEqS. Unless P = NP, there is no polynomial-time ap-
proximation algorithm for f -#WINNING-COMMITTEES with
polynomially-bounded approximation ratio.4

We note that the construction given in the proof of Propo-
sition 3.1 also shows that for each 1-concave Thiele rule
f ̸= AV, f -#WINNING-COMMITTEES is both #P-hard
and #W[1]-hard for parameterization by the committee size
(this reduction produces elections that have one more win-
ning committees than the number of size-k independent
sets in the input graph, and counting independent sets is

3We assume here that if a solution for a counting problem is x ∈
N, then an α-approximation algorithm, with α ≥ 1, has to output
an integer between x/α and αx. If we allowed rational values on
output, the inapproximability bound would drop to

√
2− ε.

4There is no polynomial p such that there exists a p-
approximation algorithm solving f -#WINNING-COMMITTEES
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(a) m = 30, k = 5, k/2 approvals/vote,
resampling model, ϕ = 0.75

(b) m = 30, k = 5, k approvals/vote
resampling model, ϕ = 0.75

(c) m = 30, k = 5, 2k approvals/vote
resampling model, ϕ = 0.75

(d) m = 30, k = 5, k/2 approvals/vote
Interval

(e) m = 30, k = 5, k approvals/vote
Interval

(f) m = 30, k = 5,
PabuLib (Warsaw)

Figure 1: Results of our experiments. By “k/2 approvals/vote” we mean that on average a single vote contains approximately k/2 approvals
(the meaning of k and 2k is analogous).

both #P-complete and #W[1]-complete for parameteriza-
tion by k [Valiant, 1979; Flum and Grohe, 2004]). For greedy
variants of 1-concave Thiele rules and Phragmén, we give a
new hardness proof, as UNIQUE-COMMITTEE is in FPT.

Theorem 4.3. Let f be Phragmén or a greedy variant of
a 1-concave Thiele rule (different from AV). f -#WINNING-
COMMITTEES is #P-hard and #W[1]-hard (for the param-
eterization by the committee size).

Proof. We first consider greedy variants of 1-concave Thiele
rules. Let w be the weight function used by f . Let x =
w(2) − w(1). We have w(1) = 1 and we assume that x < 1
(we will consider the other case later). We show a reduc-
tion from the #MATCHING problem, where we are given a
graph G, an integer k, and we ask for the number of size-k
matchings (i.e., the number of size-k sets of edges such that
no two edges in the set share a vertex). #MATCHING is #P-
complete and #W[1]-hard for parameterization by k [Curt-
icapean and Marx, 2014].

Let G and k be our input. We form an election E where the
edges of G are the candidates and the vertices are the voters.
For each edge e = {u, v}, the corresponding edge candidate
is approved by the vertex voters corresponding to u and v.
We also form an election Ep, equal to E except that it has
two extra voters who both approve a single new candidate, p.

We note that every candidate in both E and Ep is approved

by exactly two voters. Hence, the greedy procedure first
keeps on choosing candidates whose score is 2 (i.e., edges
that jointly form a matching, or candidate p in Ep). It se-
lects the candidates with lower scores (i.e., edges that break a
matching) only when score-2 candidates disappear.

Let W be some size-k f -winning committee for elec-
tion Ep. We consider two cases:

1. If p does not belong to W , then the edge candidates in W
form a matching. If it were not the case, then before
including an edge candidate with score lower than 2, the
greedy algorithm would include p in the committee.

2. If p belongs to W then W \ {p} is an f -winning com-
mittee of size k − 1 for election E. Indeed, if we take
the run of the greedy algorithm that computes W and re-
move the iteration where p is selected, we get a correct
run of the algorithm for election E and committee size
k − 1. Further, for every size-(k − 1) committee win-
ning in E, S ∪ {p} is a size-k winning committee in Ep

(because we can always select p in the first iteration).
So, to compute the number of size-k matchings in G, we

take the number of winning size-k committees in Ep and sub-
tract from it the number of winning size-(k − 1) committees
in E. Rest of the argument is in the full paper.

Corollary 4.4. #WINNING-COMMITTEES is #P-hard and
#W[1]-hard (for the parameterization by the committee size)
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for GreedyCCAV, GreedyPAV, Phragmén, and MEqS.
The above result holds for MEqS because of its relation to

Phragmén. For Phase 1 of MEqS, we have #P-hardness but
#W[1]-hardness so far remains elusive.
Theorem 4.5. #WINNING-COMMITTEES is #P-hard for
Phase 1 of MEqS.

5 Experiments
A’priori, it is not clear how frequent ties are in multiwinner
elections. In this section we present experiments that show
that they are quite common, at least if one considers elections
of moderate size. Our code is available at https://github.com/
Project-PRAGMA/Ties-IJCAI-2023.

5.1 Statistical Cultures and the Basic Experiment
Below we describe how we generate elections and how we
perform our basic experiments.
Resampling Model [Szufa et al., 2022] We have two pa-
rameters, p and ϕ, both between 0 and 1. To generate an
election with candidate set C = {c1, . . . , cm} and with n
voters, we first choose uniformly at random a central vote u
approving exactly ⌊pm⌋ candidates. Then, we generate the
votes, for each considering the candidates independently, one
by one. For a vote v and candidate c, with probability 1 − ϕ
we copy c’s approval status from u to v (i.e., if u approves
c, then so does v; if u does not approve c then neither does
v), and with probability ϕ we “resample” the approval status
of c, i.e., we let v approve c with probability p. On average,
each voter approves about pm candidates.
Interval Model. In the Interval model, each voter and each
candidate is a point on the interval [0, 1], chosen uniformly
at random. Additionally, each candidate c has radius rc and
a voter v approves candidate c if the distance between their
points is at most rc. Intuitively, the larger the radius, the
more appealing a given candidate is. We generate the radii
of the candidates by taking a base radius r as input and, then,
choosing each candidates’ radius from the normal distribution
with mean r and standard deviation r/2. Such spatial models
are discussed in detail, e.g., by Enelow and Hinich; Enelow
and Hinich [1984; 1990]. In the approval setting, they were
recently considered, e.g., by Bredereck et al. [2019] and
Godziszewski et al. [2021].
PabuLib Data. PabuLib is a library of real-life participa-
tory budgeting (PB) instances, mostly from Polish cities [Fal-
iszewski et al., 2023]. A PB instance is a multiwinner elec-
tion where the candidates (referred to as projects) have costs
and the goal is to choose a “committee” of at most a given
total cost. We restrict our attention to instances from Warsaw,
which use approval voting, and we disregard the cost infor-
mation (while this makes our data less realistic, we are not
aware of other sources of real-life data for approval elections
that would include sufficiently large candidate and voter sets).
To generate an election with m candidates and n voters, we
randomly select a Warsaw PB instance, remove all but m can-
didates with the highest approval score, and randomly draw
n voters (with repetition, restricting our attention only to vot-
ers who approve at least one of the remaining candidates). We

also considered several other strategies of choosing the candi-
dates and obtained very similar results. Another argument for
focusing on the most approved candidates is that the voters
cared about them the most (in aggregate). We consider 120
PB instances from Warsaw that include at least 30 candidates
(and each of them includes at least a thousand votes).

Basic Experiment. In a basic experiment we fix the num-
ber of candidates m, the committee size k, and a statistical
culture. Then, for each number n of voters between 20 and
100 (with a step of 1) we generate 1000 elections with m can-
didates and n voters, and for each of them compute whether
our rules have a unique winning committee (we omit Greedy-
CCAV). Then we present a figure that on the x axis has the
number of voters and on the y axis has the fraction of elec-
tions that had a unique winning committee for a given rule.
For AV and SAV, we use the algorithm from the beginning of
Section 4, for sequential rules we use the FPT algorithm from
Theorem 3.5, and for CCAV and PAV we use the ILP-based
approach, with a solver that provides multiple solutions.

5.2 Results

All our experiments regard 30 candidates and committee
size 5. First, we performed three basic experiments for the
resampling model with the parameter p (approval probabil-
ity) set so that, on average, each voter approved either k/2, k,
or 2k candidates. We used ϕ = 0.75 (according to the results
of Szufa et al. [2022], this value gives elections that resemble
the real-life ones). We present the results in the top row of
Figure 1. Next, we also performed two basic experiments for
the Interval model (with the base radius selected so that, on
average, each voter approved either k/2 or k candidates), and
with the PabuLib data (see the second row of Figure 1). These
experiments support the following general conclusions.

First, for most scenarios and for most of our rules, there is
a nonnegligible probability of having a tie (where, depending
on the rule and the number of voters, this probability may be
as low as 5% or as high as nearly 100%). This justifies why
one needs to be ready to detect and handle ties in moderately
sized multiwinner elections.

Second, we see that SAV generally leads to fewest ties,
CCAV leads to most, and AV often holds a strong second
position in this category. The other rules are in between.
Phase 1 of MEqS often has significantly fewer ties than the
other rules, but full version of MEqS does not stand out. PAV
occasionally leads to fewer ties (in particular, on PabuLib data
and on the resampling model with 2k approvals per vote).

6 Summary
We have shown that, in general, detecting ties in multiwin-
ner elections is intractable, but doing so for moderately-sized
ones is perfectly possible. Our experiments show that ties
in such elections are a realistic possibility and one should
be ready to handle them. Intractability of counting winning
committees suggests that tie-breaking by sampling commit-
tees may not be feasible. Looking for fair tie-breaking mech-
anisms is a natural follow-up research direction.
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P. Skowron. Proportional participatory budgeting
with additive utilities. In Proceedings of NeurIPS-2021,
pages 12726–12737, 2021.

[Procaccia et al., 2008] A. Procaccia, J. Rosenschein, and
A. Zohar. On the complexity of achieving proportional

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2772



representation. Social Choice and Welfare, 30(3):353–
362, 2008.

[Skowron et al., 2016] P. Skowron, P. Faliszewski, and
J. Lang. Finding a collective set of items: From propor-
tional multirepresentation to group recommendation. Ar-
tificial Intelligence, 241:191–216, 2016.

[Sonar et al., 2020] C. Sonar, P. Dey, and N. Misra. On the
complexity of winner verification and candidate winner for
multiwinner voting rules. In Proceedings of IJCAI-2020,
pages 89–95, 2020.

[Szufa et al., 2022] S. Szufa, P. Faliszewski, L. Janeczko,
M. Lackner, A. Slinko, K. Sornat, and N. Talmon. How
to sample approval elections? In Proceedings of IJCAI-
2022, pages 496–502, 2022.

[Thiele, 1895] T. Thiele. Om flerfoldsvalg. In Oversigt over
det Kongelige Danske Videnskabernes Selskabs Forhan-
dlinger, pages 415–441. 1895.

[Valiant, 1979] L. Valiant. The complexity of computing the
permanent. Theoretical Computer Science, 8(2):189–201,
1979.

[Xia, 2021] L. Xia. How likely are large elections tied? In
Proceedings of EC-2021, pages 884–885, 2021.

[Xia, 2022] L. Xia. Fair and fast tie-breaking for voting.
Technical Report arXiv:2204.14838 [cs.GT], arXiv.org,
May 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2773


	Introduction
	Preliminaries
	Unique Winning Committee
	Counting Winning Committees
	Experiments
	Statistical Cultures and the Basic Experiment
	Results

	Summary

