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Abstract
Assigning applicants to posts in the presence of
the preferences of applicants and quotas associated
with posts is extensively investigated. For a post,
lower quota guarantees, and upper quota limits the
number of applicants assigned to it. Typically, quo-
tas are assumed to be fixed, which need not be the
case in practice. We address this by introducing
a soft quota setting, in which every post is associ-
ated with two values – lower target and upper tar-
get which together denote a range for the intended
number of applicants in any assignment. Unlike the
fixed quota setting, we allow the number of appli-
cants assigned to a post to fall outside the range.
This leads to assignments with deviation. Here, we
study the problem of computing an assignment that
has two orthogonal optimization objectives – mini-
mizing the deviation (maximum or total) w.r.t. soft
quotas and ensuring optimality w.r.t. preferences of
applicants (rank-maximality or fairness). The or-
der in which these objectives are considered, the
different possibilities to optimize deviation com-
bined with the well-studied notions of optimality
w.r.t. preferences open up a range of optimization
problems of practical importance. We present ef-
ficient algorithms based on flow-networks to solve
these optimization problems.

1 Introduction
We study the many-to-one bipartite matching problem where
we have a bipartite graph G = (A ∪ P , E) of applicants A
and posts P in the presence of preferences of applicants over
the posts. Typically, every post p ∈ P is associated with an
input upper quota q+(p) that limits the maximum number of
applicants assigned to p in any allocation. Every applicant
ranks all the posts in its neighborhood and this ranking can
involve ties between the posts. A matching M is a collection
of edges where an applicant has at most one edge incident to
it in M and a post p has at most q+(p) many edges incident
on it in M . In the literature, this setting is termed as house
allocation setting [Abraham et al., 2004] and can be used to
model different problems such as assigning applicants to jobs,
allocating courses to students [Biró, 2017], assigning papers

to referees [Garg et al., 2010], students to schools [Abraham,
2009], and rental inventories to customers [Abraham et al.,
2006].

In certain applications like allocating courses or projects
to students [Biró et al., 2010; Arulselvan et al., 2018;
Cseh et al., 2022], the posts may require a minimum num-
ber of applicants to be assigned in order to be operational.
Lower quotas are extensively investigated in the two-sided
preference list setting called the Hospital Residents problem
[Goko et al., 2022; Goto et al., 2014; Hamada et al., 2016;
Fleiner and Kamiyama, 2016; Monte and Tumennasan, 2013;
Nasre and Nimbhorkar, 2018; Nasre et al., 2021; Fragiadakis
et al., 2016]. Here, the lower quota of a hospital denotes
the minimum number of residents (doctors) needed for the
smooth functioning of the hospital. To capture this, for a
post p in addition to the upper quota q+(p), a lower-quota
q−(p) is associated with it. For a matching M and a post
p, M(p) denotes the set of applicants assigned to p in M .
In this setting, a matching M is feasible if for every post p,
q−(p) ≤ |M(p)| ≤ q+(p). We refer to this setting as the fixed
quota setting throughout the paper. In the presence of lower
quotas, there are simple instances where no feasible matching
exists (see Figure 1 for an example).

In many practical applications, quotas need not be rigid as
is assumed in the fixed quota setting and relaxing the lower
quotas and augmenting the upper quotas have been consid-
ered in the literature. For instance, instead of hospitals clos-
ing down for want of a minimum number of doctors, they
may simply reduce their service levels as described in [Goko
et al., 2022]. Similarly, in the context of school choice, ca-
pacity planning to augment the number of available seats has
been considered recently in multiple works [Abe et al., 2022;
Bobbio et al., 2021; Bobbio et al., 2022]. Motivated by such
applications, we relax the fixed quota assumption by propos-
ing and studying a soft quota setting for the assignment prob-
lem in the one-sided preference list model.

2 Soft Quota Setting
An instance of the problem in the soft quota setting consists
of a bipartite graph G = (A ∪ P , E) where applicants have
preference over posts and a post p has two values – a lower
target ℓ(p) and an upper target u(p). For a post p, the two
values ℓ(p) and u(p) define a range for the intended number
of applicants for p in any matching. There is no restriction on
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the number of applicants that can be assigned to a post in any
matching. However, in order to control skew, we measure the
deviation of a post p w.r.t. a matching M as defined below:

dM (p) = max{0, ℓ(p)− |M(p)|, |M(p)| − u(p)}.
Our goal in the soft quota setting is to compute an assignment
that has two orthogonal optimization objectives:
(i) Minimizing deviation. For a matching M , we define the
total deviation dtot(M) and max deviation dmax(M) as be-
low, and our goal is to minimize one of them.

dtot(M) =
∑
p∈P

dM (p) dmax(M) = max
p∈P

dM (p)

(ii) Optimality w.r.t. preferences. Two well-studied notions
of optimality in the fixed quota setting for one-sided prefer-
ences are rank-maximality [Irving et al., 2006; Paluch, 2013;
Hosseini et al., 2021; Peters, 2022], and fairness [Huang et
al., 2016]. A rank-maximal matching matches maximum
number of applicants to rank 1 post, subject to that maximum
number of applicants to rank 2 posts and so on. A fair match-
ing minimizes the number of unmatched applicants, subject
to that minimizes the number of applicants matched to the
last rank post and so on. The signature of a matching allows
us to formalize these notions. Let r be the maximum rank
used by an applicant to order a post in G. The signature of
a matching M (σ(M)) is an r + 1 tuple (x1, x2, . . . , xr+1)
where xi denotes the number of applicants matched to their
rank i post in M for i ∈ [r] and xr+1 denotes the number of
unmatched applicants in M .
Definition 1 (Rank-maximality). For two matchings M and
M ′ with signatures σ(M) = (x1, . . . , xr+1) and σ(M ′) =
(y1, . . . , yr+1), we say M is more rank-maximal than M ′

(M >R M ′) if there exists an ℓ for ℓ ∈ [r] such that xℓ > yℓ
and for j ∈ [ℓ − 1], we have xj = yj . A matching that
has a maximum signature under the ordering >R is a rank-
maximal matching.

The notion of fairness can be defined analogously. In the
fixed quota setting where the lower quota of every post is
zero, both these notions are guaranteed to exist, and optimal
matchings are efficiently computable by the algorithms given
in [Irving et al., 2006; Paluch, 2013; Huang et al., 2016].
Even in the presence of lower quotas an optimal matching
amongst all the feasible matchings can be efficiently com-
puted by extending the algorithm in [Huang et al., 2016].

2.1 Our Problems
Deviation first, preference optimality next. There ex-
ist applications where having as low deviation as possible
is required and subject to that optimality with respect to
preferences needs to be respected. For example, in allo-
cating projects to students [Cooper, 2020] or dividing po-
litical representatives to seats [Dhamala and Thapa, 2009;
Pukelsheim et al., 2012; Serafini and Simeone, 2012] it is de-
sirable to minimize the difference between input values and
the assigned numbers. Let M be the set of all matchings in
the instance G of the soft quota setting. Let Mt (Mm) de-
note the set of matchings that have minimum value of total
deviation (respectively the minimum value of maximum de-
viation). We define our first set of problems:

a1 : p1
a2 : p1
a3 : p1, p2, p3
a4 : p1, p6, p7
a5 : p1, p4, p5
a6 : p6, p7
a7 : p1, p6

applicants

p1 [1, 1]

p2 [1, 1]

p3 [1, 1]

p4 [1, 1]

p5 [1, 1]

p6 [0, 1]

p7 [0, 1]

posts

a1

a2

a3

a4

a5

a6

a7
M1

p1 ✓
p3 ⊗

p7 ✓

p4 ✓

p6 ✓

p2 ✓

p5 ⊗

Figure 1: Example instance G with |A| = |P| = 7. Applicants
along with their preferences are given. Each post has two values
– a lower value and an upper value. In the fixed quota setting
these numbers represent rigid lower and upper quotas. In the soft
quota setting these numbers are lower and upper target respectively.
Matching M1 shown beside is an infeasible matching in the fixed
quota setting but is valid assignment in the soft quota setting.

• OPT-MIN-TOT: The goal is to compute a matching that
satisfies the notion OPT w.r.t. preferences in the set Mt.
For instance, if the notion OPT is rank-maximality then
the problem RMM-MIN-TOT outputs a rank-maximal
matching in the set Mt.

• OPT-MIN-MAX: The goal is to compute a matching that
satisfies the notion OPT in the set Mm.

Preference optimality first, deviation next. Analogously,
there exists applications where preference optimality has to
be respected first and subject to that we would like to mini-
mize a deviation parameter of interest. Since in the soft quota
setting, there is no bound on the upper quota of a post, it is not
immediate how to determine the set of matchings in which we
wish to compute a rank-maximal or fair matching. To address
this, we first introduce an additional input in our problem –
a signature requirement ρ for the output matching. We con-
sider all matchings in the soft quota setting that respect the
signature requirement with respect to the preference optimal-
ity under consideration. This is similar to what is done in
[K. A. et al., 2022] where the signature is a part of the input.

For a fixed notion of preference optimality, a matching M
meets the signature requirement if σ(M) ≥OPT ρ and let
MOPT denote all the matchings that meet the signature re-
quirement. Let M′

t (M′
m) denote the set of matchings that

have minimum value of total deviation (minimum value of
maximum deviation respectively) in MOPT . We consider
the following two problems here:

• OPT-SIGN-MIN-TOT: The goal is to output any match-
ing in M′

t.
• OPT-SIGN-MIN-MAX: The goal is to output any

matching in M′
m.

In the rest of the paper, we present the results when OPT
is set to rank-maximality (RMM). Analogous results for fair-
ness can be obtained using minor modifications to our algo-
rithms. These are deferred to the full version of the paper.
Example. We illustrate our problems using the example in-
stance G in Figure 1. Table 1 shows four matchings along
with parameters of the matching. We first consider the prob-
lems of the type deviation first, preference optimality next.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2775



Input Optimality notion Parameters of matching
Matching Signature Max Total

dev dev

G RMM-MIN-TOT M1 = {(a1, p1), (a3, p2), (a4, p7), (a5, p4), (a6, p6)} (2, 2, 1, 2) 1 2
G RMM-MIN-MAX M2 = {(a1, p1), (a2, p1), (a3, p2), (a4, p7), (a5, p4), (a6, p6), (a7, p6)} (3, 3, 1, 0) 1 4
G, ρ RMM-SIGN-MIN-TOT M3 = {(a1, p1), (a2, p1), (a3, p2), (a4, p7), (a5, p4), (a6, p6), (a7, p1)} (4, 2, 1, 0) 2 4
G, ρ RMM-SIGN-MIN-MAX M4 = {(a1, p1), (a2, p1), (a3, p2), (a4, p1), (a5, p4), (a6, p6), (a7, p6)} (4, 3, 0, 0) 2 5

Table 1: Optimal matchings in the instance given in Figure 1 corresponding to our problems. For the preference optimality first type problems,
we consider the input signature as (4, 0, 0, 3). We consider preference optimality as rank-maximality.

Any matching in the instance leaves one of p2 or p3 (simi-
larly, one of p4 or p5) unmatched. Thus, any matching in G
must have a maximum deviation of at least one and total de-
viation of at least two. It can be verified that the matchings
M1 and M2 shown in Table 1 are optimal for the problems
RMM-MIN-TOT and RMM-MIN-MAX respectively.

Now we turn to problems where preference optimality is
considered first and subject to that deviation is minimized.
For concreteness, we fix the requirement for signature as
(4, 0, 0, 3). In order to meet the signature requirement, we
must violate the upper target of the post p1 by 2 and hence
the max deviation of any matching in MR is at least 2. By
the remark in the preceding paragraph, the total lower devi-
ation of any matching in the instance is at least 2 and hence
the total deviation of any matching in MR is at least 4. Fur-
thermore, it can be verified that the matchings M3 and M4

shown in Table 1 are optimal for the problems RMM-SIGN-
MIN-TOT and RMM-SIGN-MIN-MAX respectively.

The order in which we consider the two orthogonal pa-
rameters to optimize provides us with the trade-off between
deviation and preference optimality. As expected, when the
deviation is optimized first, the output matching has a weak
signature. In contrast, when preference optimality is given
precedence, a higher deviation is incurred. Thus, our prob-
lems offer a trade-off based on the user requirement.

Our problems consider optimizing two objective func-
tions – deviation and preference optimality and hence can
be regarded as a special case of a multi-objective optimiza-
tion problem [Esfandiari et al., 2016; Korula et al., 2013;
Aggarwal et al., 2014]. These works differ from our work
in terms of the problem setup and the objectives considered.

2.2 Our Results
We show the following new results in our paper.

Theorem 1. OPT-SIGN-MIN-MAX and OPT-SIGN-MIN-
TOT admit polynomial time algorithms, where OPT can be
one of rank-maximality (RMM) or fairness (FAIR).

Theorem 2. OPT-MIN-MAX and OPT-MIN-TOT admit
polynomial time algorithms, where OPT can be one of rank-
maximality or fairness.

Our Techniques. The algorithms for computing minimum
total deviation matchings are based on a flow network that we
design. Flow networks are used to compute Pareto-optimal
matchings [Cechlárová et al., 2016; Cechlárová and Fleiner,
2017; Cseh et al., 2022], rank-maximal matchings [Nasre et
al., 2019] and cumulative signature matchings [K. A. et al.,

2022] in the literature. For computing matchings with mini-
mum value of maximum deviation we reduce the problem to
an appropriate problem in the fixed quota setting which can
be solved efficiently.

2.3 Other Related Works
Biproportional apportionment. Our soft quota setting
is similar to the biproportional apportionment problem
[Dhamala and Thapa, 2009; Pukelsheim et al., 2012; Serafini
and Simeone, 2012] which deals with fair division of political
representatives to states. Political representatives correspond
to applicants, and states correspond to posts in our model. In
our setting, we have applicant preferences which are absent
in the biproportional apportionment problem.
Soft bounds. The recent works [Ehlers et al., 2014;
Echenique and Yenmez, 2015; Gonczarowski et al., 2019;
Aziz et al., 2020; Kurata et al., 2017] in the two-sided pref-
erences model allow soft bounds on the capacity constraints.
These works focus on the controlled school choice problem
in which students are associated with types, and schools have
soft bounds on the quota of each type. For more information,
refer to the survey paper by [Aziz et al., 2022].
Other models of flexibility. In the context of school choice
problem, capacity planning is studied in [Gajulapalli et al.,
2020; Rios et al., 2021; Bobbio et al., 2021; Abe et al., 2022;
Chen and Csáji, 2023]. In the work of [Limaye and Nasre,
2023; K. A. et al., 2022] programs have costs instead of quo-
tas which allows flexibility. In all these works, flexibility of
upper quotas is considered, whereas in our work, we allow
posts to deviate on both upper and lower targets.

To the best of our knowledge, this is the first work that in-
vestigates soft quotas in the one-sided preference list model.

3 Preference Optimality First
In this section, we present the results for the preference op-
timality first, deviation next type of problems. As mentioned
earlier, apart from the input instance these problems have a
signature as a part of the input.

3.1 Algorithm for RMM-SIGN-MIN-TOT
An instance of RMM-SIGN-MIN-TOT problem consists of a
graph G with applicant preferences, soft quotas of posts and
an input signature ρ. Let MR denote the set of matchings
where for every M ∈ MR, we have σ(M) ≥R ρ. Our goal
is to output a matching M that has minimum total deviation
in the set MR. We present a flow-network based algorithm
to solve the RMM-SIGN-MIN-TOT problem.
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s

t

d′′

d′

a1

a2

an

...

p′1

p′2

p′|P|

...

p′′1

p′′2

p′′|P|
...

[0, 1]

[ld, ld] [0, 1]

[ℓ(p1), u(p1)][0, ld]

[0, ud]

[ud, ud]

Figure 2: Flow network H(ld,ud) for solving RMM-SIGN-MIN-
TOT, where ∆ = ld+ ud

Overall idea. Consider the optimal matching M∗ for the
RMM-SIGN-MIN-TOT problem. Let the total deviation of
M∗ be ∆∗. In M∗, a subset of posts incur deviation for the
lower target whereas a subset of posts (disjoint from the pre-
vious set) incur deviation for the upper target of the corre-
sponding post. Let ld∗ (ud∗) denote the sum of the deviation
of posts that deviate w.r.t. the lower target (respectively w.r.t.
the upper target). Note that ∆∗ = ld∗ + ud∗. We show that
there exists a flow network H(ld∗,ud∗) such that the matching
M∗ has a feasible flow f∗ in H(ld∗,ud∗). We use this flow
network to obtain the optimal value of total deviation.
Construction of the network. Given an instance G of
RMM-SIGN-MIN-TOT, we fix value ∆ which can be split as
the sum of two non-negative integers ld and ud. We construct
the flow network H(ld,ud) with costs and demands on the
edges. See Figure 2 for an illustration. Vertices of H(ld,ud)

are:

V (H(ld,ud)) =
{
s, d′, d′′, t

}
∪ A ∪

{
p′, p′′ : p ∈ P

}
.

For every applicant a in G, we have a node a in the net-
work H(ld,ud). For every post p in G, we have two nodes
in H(ld,ud), that is p′ (original copy) and p′′ (extended copy).
In addition to the above nodes, we have a source s, sink t and
two special nodes d′ and d′′ which help us in capturing the
lower deviation and upper deviation respectively.

Every edge e ∈ E(H(ld,ud)) in the network has a vector
[q−(e), q+(e)] that represents the demand and capacity asso-
ciated with it. The edge set E(H(ld,ud)) is the union of the
following sets:

E1 ={(s, a) : a ∈ A} with vector [0, 1]

E2 ={(a, p′), (a, p′′) : (a, p) ∈ E} with vector [0, 1]

E3 ={(p′, t) : p ∈ P} with vector [ℓ(p), u(p)]

E4 ={(p′′, d′′) : p ∈ P} with vector [0, ud]

E5 ={(d′, p′) : p ∈ P} with vector [0, ld]

E6 ={(s, d′), (d′′, t)} with vectors [ld, ld] and [ud, ud] resp.

All edges in H(ld,ud) except the edges in E2 have a cost of
0. For an edge (a, p′) or (a, p′′) in E2, if the corresponding
edge (a, p) in G is of rank i, then the cost of that edge in the
flow network is −nr−i, where n = |A|. We remark that, for

an (a, p) edge of rank i, we use the same assignment of costs
as mentioned in [Irving et al., 2006]. It is worth noting that
our reductions apply to any notion of optimality encoded as a
maximum weight matching problem.

Let f be a feasible flow in H(ld,ud). Recall that for a post
p ∈ P , there are two nodes p′ and p′′ in the network. For
the node p′, we define lower deviation of p′ w.r.t. the flow f
as f

(
d′, p′

)
and upper deviation is undefined for this node.

For the node p′′, we define upper deviation of p′′ w.r.t. f
as f

(
p′′, d′′

)
, and lower deviation is undefined for this node.

For a post p ∈ P , we define the total deviation of p w.r.t. f as
df (p) = f

(
d′, p′

)
+ f

(
p′′, d′′

)
. Similar to the definition of

total deviation of a matching, we define total deviation of the
flow f in H(ld,ud) as dtot(f) =

∑
p∈P f

(
d′, p′

)
+f

(
p′′, d′′

)
.

By the construction of the network H(ld,ud), and by the def-
inition of total deviation of a flow f in H(ld,ud), it is easy to
verify that dtot(f) = ∆ = ld + ud. There is a natural cor-
respondence between the flow f in the flow network H(ld,ud)

and matching M as follows.

M = {(a, p) | f
(
a, p′

)
= 1 or f

(
a, p′′

)
= 1, a ∈ A, p ∈ P}

It would be ideal to have a correspondence between the to-
tal deviation of f and the total deviation of M . However, it
is not true as illustrated in the simple example. Consider an
input graph G that has a single edge (a, p), and the post p has
ℓ(p) = 0 and u(p) = 1. Consider the flow network H(1,1)

for ∆ = 2. The network H(1,1) admits a feasible flow f with
value 2 that routes 1 unit of flow through the path

〈
s, d′, p′, t

〉
and 1 unit of flow through the path

〈
s, a, p′′, d′′, t

〉
. The flow

f has a total deviation dtot(f) = 2 as mentioned earlier. The
matching corresponding to f contains a single edge (a, p) and
has a total deviation of 0. Thus there is a mismatch between
the total deviation of the flow and the total deviation of the
corresponding matching. We remark that the issue arises be-
cause both the edges

(
d′, p′

)
and

(
p′′, d′′

)
carry a non-zero

flow. See full version for additional scenarios. To address
these discrepancies and ensure that the total deviation of the
flow corresponds to the total deviation of the matching, a fea-
sible flow in our flow network should satisfy additional prop-
erties which are listed below as Property 1.
Property 1. Let f be a feasible flow in H(ld,ud). The flow f
is good if for every post p ∈ P all of the following hold.

(i) at most one of the edges (d′, p′) and (p′′, d′′) has a non-
zero flow in f

(ii) if f
(
p′′, d′′

)
> 0 then f

(
p′, t

)
= u(p)

(iii) if f
(
d′, p′

)
> 0 then f

(
p′, t

)
= ℓ(p)

We note that for a good flow f in H(ld,ud), the correspond-
ing matching M in G satisfies dtot(f) = dtot(M).

It is not immediate how to compute a good flow in a flow
network. But given a feasible flow in H(ld,ud), we show how
to construct a good flow in a different flow network. We need
the following notations. For an edge (a, p) in G, we call the
path

〈
s, a, p′, t

〉
in the network as the true path, and the path〈

s, a, p′′, d′′, t
〉

as the extended path. For a post p in G, we
call the path

〈
s, d′, p′, t

〉
as dummy path. Note that corre-

sponding to an applicant a and a post p in G, we have a true
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path and an extended path using either one of this we can
route a maximum of 1 unit flow in the network. Correspond-
ing to a post p in G, we have a unique dummy path, and we
can route a maximum of min{ld, u(p)} units of flow along
this path. Let f be a feasible flow in H(ld,ud). We say that
the status of a post p ∈ P is good if the corresponding pair of
nodes p′, p′′ in the network satisfies all the conditions given
in Property 1, and otherwise the status of p is bad.

Suppose we have a bad post p in G w.r.t. the flow f . We
will reroute the flow in a certain way to turn the post p a good
post without changing the status of any other posts in G. Now
we describe different cases under which p can be a bad post
and the rerouting required in order to turn it to a good post.

Definition 2 (correcting flow). Let f be a feasible flow in the
network H(ld,ud) that has a bad post p w.r.t. f and let f ′ be
another flow in H(ld,ud) that differs in only the flow across
some of the s-t paths corresponding to the post p. Then f ′ is
called a correcting flow if it satisfies the following conditions.

(i) There exists a network H(ld′,ud′) such that f ′ is feasible
in the network H(ld′,ud′) where ld′ + ud′ < ld+ ud.

(ii) The matchings corresponding to f and f ′ are the same.

(iii) Status of a post q ∈ P \ {p} remains same in f and f ′.

We describe the types of a correcting flow f ′.

• (ld, ud)−correcting flow. We assume that the post p
is bad due to the violation of Property 1.(i). Thus,
f
(
d′, p′

)
> 0 and f

(
p′′, d′′

)
> 0. We reduce the flow

along the dummy path corresponding to p by 1. Then we
select an arbitrary extended path carrying unit flow cor-
responding to the post p, say

〈
s, a, p′′, d′′, t

〉
and reroute

the flow along the path
〈
s, a, p′, t

〉
. Note that the re-

sulting flow f ′ is feasible in a network H(ld′,ud′) where
ld′ = ld− 1 and ud′ = ud− 1.

• ud−correcting flow. We assume that the post p is
bad due to the violation of Property 1.(ii). Thus,
f
(
p′′, d′′

)
> 0 and f

(
p′, t

)
< u(p). We select an ar-

bitrary extended path carrying unit flow corresponding
to the post p, say

〈
s, a, p′′, d′′, t

〉
and reroute the flow

along the path
〈
s, a, p′, t

〉
. Note that the resulting flow

f ′ is feasible in a network H(ld′,ud′) where ld′ = ld and
ud′ = ud− 1.

• ld−correcting flow. We assume that p is bad due to the
violation of Property 1.(iii). Thus, f

(
d′, p′

)
> 0 and

f
(
p′, t

)
> ℓ(p). We reduce the flow along the dummy

path corresponding to p by 1. Note that the resulting
flow f ′ is feasible in a network H(ld′,ud′) where ld′ =
ld− 1 and ud′ = ud.

Note that in each of the above cases, if applicant a is matched
to the post p prior to the rerouting, then it continues to remain
matched to p after the rerouting. Since we have not changed
the flow w.r.t. any post q ∈ P \ {p}, the status of the post q
remains unchanged. Thus f ′ is a correcting flow.

Lemma 1. If f is a feasible flow in H(ld,ud) that does not
satisfy Property 1, then there exists a correcting flow f∗ in
H(ld,ud) that satisfies Property 1.

Proof Sketch. For each bad post p, we identify the cause(s) of
it being bad. That is, we identify which of the Property 1.(i),
(ii) or (iii) being violated. Then we apply the corresponding
correcting flow to change the status of post p to good.

To compute RMM-SIGN-MIN-TOT, we guess the value
of the total deviation ∆ which can be split as ld + ud. We
construct the network H(ld,ud) and check if the corresponding
matching M has a signature σ(M) ≥R ρ. We do a binary
search on ∆ in the range [0,|A|] to compute the smallest value
of ∆ such that we get a matching that respects preference
optimality and the corresponding flow satisfies Property 1.

3.2 Algorithm for RMM-SIGN-MIN-MAX
Given an instance of the soft quota setting, and an input sig-
nature ρ, our goal is to compute a matching M in MR that
has a minimum value of max deviation. We start by guess-
ing the max deviation value ∆ and solve the rank-maximal
matching in a fixed quota instance. This problem is called the
RMM-LQ problem (see full version for details). The fixed
quota instance has the same set of applicants and posts and
applicant preferences. For each post p, we set the lower quota
q−(p) as ℓ(p) −∆ and upper quota q+(p) as u(p) + ∆. Let
M be the resulting matching. If σ(M)≥Rρ, then we get a
feasible matching that respects rank-maximality. We do a bi-
nary search on ∆ in the range [0,|A|] to find the smallest ∆
such that we get a feasible matching. We remark that by ap-
plying the techniques used in [Huang et al., 2016], RMM-LQ
problem can be solved in Õ(rmn) time.

4 Deviation First
In this section, we present the results for the deviation first,
preference optimality next type of problems. In the interest
of space, we defer some proofs to the full version.

4.1 Algorithm for RMM-MIN-TOT
Given an instance of the soft quota setting, our goal is to com-
pute a matching that is rank-maximal amongst all matchings
that have a minimum value of total deviation. We first dis-
cuss how to compute a minimum total deviation matching in
G without applicant preferences being considered. Given an
instance G of the soft quota setting, we denote the same in-
stance viewed as an instance of the fixed quota setting by Gx.
We note that w.r.t. the problem of minimizing total deviation,
there is a useful connection between matchings in G and Gx.
If the fixed quota setting instance Gx admits a feasible match-
ing M , then M has a total deviation of 0 in G and hence an
optimal matching in G. However, if Gx does not admit a
feasible matching, any minimum total deviation matching in
G has a positive value for the total deviation. Additionally,
we observe that in an optimal matching M∗ in G, no post
incurs a violation on the upper target. To see this, if for a
post p we have more than u(p) many applicants matched to it
in M∗, then we can remove the excess number of applicants∣∣M∗(p)

∣∣−u(p) matched to p from M∗ and obtain a matching
with a smaller value of total deviation. We use the above ob-
servation and the connection between G and Gx to compute
a matching with minimum total deviation without applicant
preferences.
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Minimizing total deviation. Given the instance G, we con-
struct an instance G′ of the soft quota setting, where for every
post p, ℓ′(p) = u′(p) = ℓ(p). Consider the fixed quota setting
instance G′

x and let M ′ be an arbitrary maximum matching
in G′

x. By the maximality of M ′ in a fixed quota setting in-
stance G′

x where the lower and upper quota for every post is
the same, it is easy to observe that M ′ is a minimum total de-
viation matching in G′. To obtain a minimum total deviation
matching in the original instance G, we use the instance Gx

and augment the matching M ′ in Gx. We remark that aug-
menting a matching never decreases the number of applicants
matched to any post. Thus, augmenting M ′ in Gx increases
the size of the matching while preserving its total deviation.

For an illustration, consider the soft quota instance G given
in Figure 1. We construct the soft quota instance G′, and let
G′

x be the corresponding fixed quota instance. Consider the
maximum matching M ′ = {(a1, p1), (a3, p3), (a5, p5)} in
G′

x. We augment the matching M ′ in Gx and obtain a match-
ing M = {(a1, p1), (a3, p3), (a5, p5), (a6, p7), (a7, p6)}.
Note that M is a maximum matching in Gx and it has a to-
tal deviation of 2 in G, which is the optimum value of total
deviation.

Note that since we disregarded preferences, the above pro-
cedure does not guarantee a matching that is optimal w.r.t. the
preferences. For example, the matching M computed above
is not a solution of RMM-MIN-TOT problem in G since the
matching M1 (illustrated in Table 1) is more rank-maximal
than M . In the rest of the section, we refine our ideas above
to compute an RMM-MIN-TOT matching in G.

• We construct the instance G′ from G as discussed above.
We compute an RMM-MIN-TOT matching M in G′ us-
ing the procedure given in step (A) below.

• We augment the matching M in Gx to obtain an RMM-
MIN-TOT matching M∗ in G. The procedure for com-
puting M∗ is given in step (B).

Step (A): Computing RMM-MIN-TOT in G′. Given the
instance G′, we reduce the problem to computing a min-cost
max-flow in a suitably designed flow network H . We show
that a matching M corresponding to a min-cost max-flow in
H has the following properties:

• M is a min total deviation matching in G′ and also in G.
• M is a rank-maximal matching amongst all min total

deviation matchings in G′. Note that M need not be a
solution to RMM-MIN-TOT in G.

For every post p, we introduce ℓ(p) many dummy appli-
cants. Let Dp denote the set of dummy applicants associated
with the post p, and let D =

⋃
p∈P Dp. We construct the flow

network H as follows. The vertices of H are:
V (H) = {s, t} ∪ (A ∪D) ∪ P .

The edge set E(H) is the union of the following sets:
EsA ={(s, a) : a ∈ A}
EsD ={(s, d) : d ∈ Dp, p ∈ P}
EPt ={(p, t) : p ∈ P}
EDP ={(d, p) : d ∈ Dp, p ∈ P}
EAP ={(a, p) : a ∈ A, p ∈ P}

Cost of the edges in H . For an edge (a, p) in G′ having rank
i, we set cost of the corresponding edge in EAP as −(nr +
nr−i). For all the other edges in H , we set the cost as 0.
Capacity of the edges in H . For a (p, t) edge in EPt, we set
capacity as ℓ(p). All other edges in H have a unit capacity.

We define the deviation of a max-flow f in H .
Definition 3 (Total deviation of a max-flow). The total de-
viation of a max-flow f in H is defined as

dtot(f) =
∑
p∈P

df (p)

where df (p) =
∑

d∈Dp
f (d, p) is the incoming flow to the

vertex p through the dummy applicants.
There is a natural correspondence between a flow f in H

and a matching M in G′ as follows

M = {(a, p) | f(a, p) = 1, (a, p) ∈ EAP }.

Cost of a max-flow in H and total deviation of a matching
in G′: By the design of our network H , we ensure that the
cost of a max-flow in H is directly proportional to the total
deviation of the corresponding matching in G′. This is proved
using Lemma 2 and Lemma 3.
Lemma 2. Let f, f ′ be two max-flows in H with dtot(f) <
dtot(f

′). Then cost(f) < cost(f ′).

Proof Sketch. Due to the term −nr in the cost of each
(a, p) ∈ EAP , observe that cost(f) < cost(f ′).

Lemma 3. Let f, f ′ be two max-flows in H with cost(f) <
cost(f ′). Then dtot(f) ≤ dtot(f

′).
Proof of Lemma 3 follows from Lemma 2.

Lemma 4. Any min-cost max-flow in H corresponds to a min
total deviation matching in G′.

Lemma 5. If k is the minimum value of the total deviation
of any matching in G′, then the minimum value of the total
deviation of any matching in G is k.
Corollary 1. Any min-cost max-flow in H corresponds to a
min total deviation matching in G.

We now prove the preference optimality of the matching
obtained by step (A).
Lemma 6. Any min-cost max-flow in H corresponds to a so-
lution to RMM-MIN-TOT in G′.

Proof Sketch. By Corollary 1, a matching M corresponding
to a min-cost max-flow f is a min total deviation matching
in G′. Using the definition of rank-maximality and the corre-
spondence between matching in G′ and a max-flow in H , we
show that M is a solution to RMM-MIN-TOT in G′.

In step (A), we have computed a matching M which is
an RMM-MIN-TOT matching in G′. In step (B), we show
how to compute a matching M∗ which is an RMM-MIN-TOT
matching in G by augmenting the matching M in Gx. We
augment the matching M , such that in the j-th augmentation
we get a rank-maximal matching Mj amongst all matchings
in the fixed quota instance Gx with cardinality|M |+ j.
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Step (B): Computing RMM-MIN-TOT in G by augmenting
M in Gx. Our algorithm is iterative and we begin with the
matching M0 = M . In iteration j, we augment Mj−1 in Gx

by computing an s-t path in a directed graph Hj with costs as
defined below. Vertices of Hj are defined as follows.

V (Hj) = {s, t} ∪ A ∪ P .

Let A′ denote the set of applicants that are unmatched in
Mj−1 and let P ′ denote the set of posts with ℓ(p) ≤∣∣Mj−1(p)

∣∣ < u(p). Thus, P ′ is the set of posts with
dMj−1

(p) = 0. The edge set E(Hj) is the union of the
following sets:

EsA′ ={(s, a) : a ∈ A′}
EAP ={(a, p) : (a, p) ∈ E \M}
EP ′t ={(p, t) : p ∈ P ′}
EPA ={(p, a) : (a, p) ∈ E ∩M}

Cost of the edges in Hj . For an edge (a, p) ∈ E of rank i,

• if (a, p) ∈ EAP , cost of the edge is −nr−i

• if (p, a) ∈ EPA, cost of the edge is nr−i

All other edges in Hj have a cost of 0. Let T ′
j denote a min-

cost s-t path in Hj , and let Tj = T ′
j ∩ E. We augment the

matching Mj−1 using Tj , and the resulting matching is Mj =
Mj−1 ⊕ Tj . For a set S ⊆ E, let #i(S) denotes the number
of rank i edges in S. We require Definition 4 to prove the
correctness.
Definition 4 (Signature of a path Tj). We define the signa-
ture of a path Tj w.r.t. the matching Mj−1 as an r-tuple
(x1, x2, . . . , xr) denoted by σ(Tj), where

xi = #i(Tj ∩Mj−1) − #i(Tj \Mj−1)

Note that σ(Tj) can contain negative values. It is useful
to note the connection between the signature of a path σ(Tj)
and the cost of the path cost(Tj).

cost(Tj) =

r∑
i=1

xin
r−i.

We observe the following:
Observation 1.

∑r
i=1 xi = −1.

Observation 1 is trivial because Tj is an augmenting path.
Let σ(Mj−1) = (y1, y2, . . . , yr). The value xi > 0 in σ(Tj)
indicates that Tj has more number of matched rank i edges
than the unmatched rank i edges, and the value xi cannot be
greater than the number of matched rank i edges yi in Mj−1.
This is precisely stated in Observation 2.
Observation 2. For any i ∈ [r], if xi > 0 then xi ≤ yi.

Since Mj = Mj−1⊕Tj , it is easy to observe that σ(Mj) =
σ(Mj−1)− σ(Tj).
Observation 3. Every component in σ(Mj) is non-negative.

Observation 3 follows from Observation 2. We state a se-
ries of claims to prove the correctness of step (B). We ensure
that our augmentations do not change the value of total devi-
ation of the resulting matching, and this is stated in Claim 1.

Claim 1. If dtot(M) = k, then dtot(Mj) = k.

Next, we show that as the cost of path decreases, signature
of the path w.r.t. rank-maximality also decreases.

Claim 2. Let T ′
j and Q′

j be two s-t paths in Hj such that
cost(T ′

j) < cost(Q′
j). Then σ(Tj) <R σ(Qj).

Our iterative procedure halts in iteration j, if the graph Hj

does not admit any s-t path. Let M∗ be the matching obtained
at the end of step (B).

Lemma 7. M∗ is a solution for RMM-MIN-TOT in G

Proof. From Claim 1 and Lemma 5, M∗ is a min total devi-
ation matching in G. In each iteration, the algorithm chooses
an s-t path T ′

j in Hj of minimum cost, by Claim 2 the path
Tj has the smallest signature possible amongst all s-t paths
in Hj . Since we are subtracting the smallest signature, at the
end of step (B), the matching M∗ has largest signature w.r.t.
rank-maximality amongst all matchings with minimum total
deviation in G.

We note that our iterative algorithm in step (B) can be con-
verted to a min-cost max-flow problem in a suitably designed
network such that a single min-cost max-flow computation
captures the repeated augmentation of the matching M in Gx.

4.2 Algorithm for RMM-MIN-MAX
Given an instance of the soft quota setting, our goal is to com-
pute a rank-maximal matching amongst all matchings that
have a minimum value of max deviation. To compute the
minimum value of max deviation, we start by guessing the
max deviation value ∆ and solve a maximum matching in
the fixed quota setting instance defined as follows. The fixed
quota setting has the same set of applicants and posts and ap-
plicant preferences. For each post p, we set the lower quota
q−(p) as ℓ(p)−∆ and upper quota q+(p) as u(p)+∆. We do
a binary search on ∆ in the range [0,|A|] to find the smallest ∆
such that we get a feasible solution. For checking feasibility
we can ignore the preferences and use the standard flow net-
work for the bipartite matching with demands on the edges.
Let ∆∗ be the minimum value of ∆ obtained. Then corre-
sponding to ∆∗, we solve one instance of RMM-LQ where
for every post p, it has a lower quota of ℓ(p) − ∆∗ and an
upper quota of u(p) + ∆∗. Since we solve the RMM-LQ in-
stance for this, we get the best possible signature with the
minimum max-deviation.

5 Discussion
In this work we study the problem of computing optimal
matchings with one-sided preferences in the soft quota set-
ting. We consider two orthogonal optimization parameters
namely the deviation of the matching and the preference
optimality. For the preference optimality notions of rank-
maximality and fairness, we present efficient algorithms. Our
algorithms need to use exponential weights on the edges of
the flow network. It would be interesting to design algorithms
that do not need large weights.
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Yokoo. Matching market design with constraints. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(11):12308–12316, Jun. 2022.
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