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Abstract
Game-theoretic interactions with AI agents could
differ from traditional human-human interactions in
various ways. One such difference is that it may be
possible to simulate an AI agent (for example be-
cause its source code is known), which allows others
to accurately predict the agent’s actions. This could
lower the bar for trust and cooperation. In this paper,
we formalize games in which one player can sim-
ulate another at a cost. We first derive some basic
properties of such games and then prove a number of
results for them, including: (1) introducing simula-
tion into generic-payoff normal-form games makes
them easier to solve; (2) if the only obstacle to co-
operation is a lack of trust in the possibly-simulated
agent, simulation enables equilibria that improve
the outcome for both agents; and however (3) there
are settings where introducing simulation results in
strictly worse outcomes for both players.

1 Introduction
Game theory is in principle agnostic as to the nature of the
players: besides individual human beings, they can be house-
holds, firms, countries, and indeed AI agents. Nevertheless,
throughout most of the development of the field, game the-
orists have had in mind players that were either humans or
entities whose decisions were taken by humans; and as with
any theory, the examples one has in mind while developing
that theory are likely to affect its focus. If we try to re-develop
game theory specifically with AI agents in mind, how might
the theory turn out different? Of course, theorems in traditional
game theory will not suddenly become false just because of
the change in focus. Instead, we would expect any difference
to consist in the kinds of settings and phenomena for which
we develop models, analysis, and computational tools.

In this paper, we focus on one specific phenomenon that is
more pertinent in the context of AI agents: agents being able
to simulate each other. If an agent’s source code is available,
another agent can simulate what the former agent will do,
which intuitively appears to significantly change the game
strategically. We consider settings in which one agent can
simulate another, and if they do so, they learn what the other
agent will do in the actual game; however, simulating comes

at a cost to the simulator, and therefore it is not immediately
clear whether and when simulation will actually be used in
equilibrium. In particular, we are interested in understanding
whether and when the availability of such simulation results
in play that is more cooperative. For example, in settings
where trust is necessary for cooperative behavior [Berg et al.,
1995], one may expect that the ability to simulate the other
player can help to establish this trust. But does this in fact
happen in equilibrium? And if so, does the ability to simulate
foster cooperation in all games, or are there games where it
backfires? Are we even able to compute equilibria of games
with the ability to simulate?

In terms of related work, our setting is similar to the one of
credible commitment [von Stackelberg, 1934], except that one
needs to decide whether to pay for allowing the other player
to commit. Another perspective is that we study program
equilibria [Tennenholtz, 2004], except that only one player’s
program can read the other’s source code, and has to pay a cost
to do so. For further discussion and references, see Section 7.

In the remainder of this introduction, we describe a specific
example of a trust game and use it to overview the technical
results presented later. We also give several examples that
illustrate how simulation can lead to different results when
moving beyond trust games. For a quick overview, the key
takeaways are in Section 1.1, highlighted in italics.

1.1 Overview and Illustrative Examples
Trust Game As a motivation, consider the following Trust
Game (cf. Figure 1; our TG is a variation on the traditional one
from [Berg et al., 1995]). Alice has $100k in savings, which
are currently sitting in her bank account at a 0% interest rate.
She is considering hiring an AI assistant from the company
Bobble to manage her savings instead. If Bobble and its AI
cooperate with her, the collaboration generates a profit of $50k,
to be split evenly between her and Bobble. However, Alice is
reluctant to trust Bobble, which might have instructed the AI to
defect on Alice by pretending to malfunction, while siphoning
off all of the $150k. In fact, the only Nash equilibria of this
scenario are ones where Bobble defects on Alice with high
probability, and Alice, expecting this, walks out on Bobble.
Adding simulation Dismayed by their inability to make a
profit, Bobble decides to share with Alice a portion of the
AI’s source code. This gives Alice the ability to spend $7k
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Figure 1: The underlying trust game TG (left) and the corresponding simulation game TGsim (right).

on hiring a programmer, to simulate the AI in a sandbox and
learn whether it is going to cooperate or defect. Crucially, we
assume that the AI either does not learn whether it has been
simulated or is unable to react to this fact. We might hope that
this will ensure that Alice and Bobble can reliably cooperate.
However, perhaps Alice will try to save on the simulation cost
and trust Bobble blindly instead — and perhaps Bobble will
bet on this scenario and instruct their AI to defect.

To analyze this modified game TGsim, note that when Alice
simulates, the only sensible followup is to trust Bobble if
and only if the simulation reveals they instructed the AI to
cooperate. As a result, the normal-form representation of
TGsim is equivalent to the normal form of the original game
TG with a single added action for Alice (Fig. 2). Analyzing
TGsim reveals that it has two types of Nash equilibria. In one,
Bobble defects with high probability and Alice, expecting this,
walks out without bothering to simulate. In the other, Bobble
still sometimes defects (πB(D) = 7/100), but not enough to
stop Alice from cooperating altogether. In response, Alice
simulates often enough to stop Bobble from outright defection
(πA(S) = 1− 25/150 = 5/6), but also sometimes trusts Bobble
blindly (πA(T) = 25/150 = 1/6). In expectation, this makes
Alice and Bobble better off by $16.25k, resp. $25k relative to
the (defect, walk-out) equilibrium.

More generally, we can also consider TGc
sim, a parametriza-

tion of TGsim where simulation costs some c ∈ R. As shown
in Figure 2, the equilibria of TGc

sim are similar to the special
case c = 7 for a wide range of c.

Generalizable properties of the trust game The analysis
of Figure 2 illustrates several trends that hold more generally:
First, when simulation is subsidized, the simulation game turns
into a “pure commitment game” where the simulated player is
the Stackelberg leader (Prop. 7 (i)). Conversely, when simula-
tion is prohibitively costly, the simulation game is equivalent
to the original game (Prop. 7 (ii)). Third, the simulation game
has a finite number of breakpoints between which individual
equilibria change continuously — more specifically, the sim-
ulator’s strategy does not change at all while the simulated
player’s strategy changes linearly in c (Prop. 11). Informally
speaking, simulation games have piecewise constant/linear

equilibrium trajectories. A corollary of this observation is that
it is not the case that as simulation gets cheaper, the simulator
must use it more and more often (Fig. 2). Fourth, the indif-
ference principle implies that when the simulator simulates
with a nontrivial probability (i.e., neither 0 nor 1), the value
of information of simulating must be precisely equal to the
simulation cost. This also implies that any pure NE of the orig-
inal game is also a NE of the simulation game for any c ≥ 0
(Prop. 12). Finally, we saw that at c = 0, the outcome of the
simulation game becomes deterministic despite the strategy of
the simulator being stochastic. (For example, in the NE where
Bobble always cooperates, Alice always ends up trusting him
— either directly or after first simulating.) In Section 5, we
show that this result holds quite generally but not always: By
Theorem 2, the equilibria of generic normal-form games with
cheap simulation can be found in linear time.

Different effects of simulation There are games where sim-
ulation behaves similarly to the Trust Game above. Indeed, in
Theorem 4, we prove that simulation leads to a strict Pareto
improvement in generalized trust games with generic payoffs
(defined in Section 6). However, simulation can also affect
games quite differently from what we saw so far. For example,
simulation can benefit either of the players at the cost of the
other, or even be harmful to both of them. Indeed, simula-
tion benefits only the simulator in zero-sum games (Prop. 21),
benefits only the simulated player in the Commitment Game
(Fig. 3), and harms both if cooperation is predicated upon the
simulated player’s ability to maintain privacy (Ex. 23). In
fact, there are even cases where the Pareto optimal outcome
requires simulation to be neither free nor prohibitively expen-
sive (Ex. 27). Finally, with multiple, incompatible ways to
cooperate, a game might admit multiple simulation equilibria
(i.e., multiple NE with π1(S) > 0; cf. Fig. 3).

1.2 Outline
The remainder of the paper is structured as follows. First,
we recap the necessary background (Section 2). In Section 3,
we formally define simulation games and describe their basic
properties. In Section 4, we prove several structural properties
of simulation games; while these are instrumental for the
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Figure 2: Top left: The normal-form representation of the trust game from Figure 1, before and after adding simulation.
Bottom: The extremal equilibria of TGc

sim. The non-extremal NE are precisely the convex combinations of the last two columns.
Top right: The cooperation probability and utilities under each of these NE. The non-extremal NE are light red, the dashed lines illustrate the
NE trajectories from Proposition 11. Note that all the red NE (i.e., with π1(WO) = 1) yield u1 = u2 = 0.
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Figure 3: Left: Commitment game, where the row player prefers to
not be able to simulate. For details, see Example 22.
Right: A variant of Trust Game with multiple simulation NE.

subsequent results, we also find them interesting in their own
right. Afterwards, we analyze the computational complexity
of solving simulation games (Section 5) and the effects of
simulation on the players’ welfare (Section 6). Finally, we
review the most relevant existing work (Section 7), summarize
our results, and discuss future work (Section 8). The detailed
proofs are presented in the appendix (which is only available
in the arXiv version of the paper).

2 Background
A two-player normal-form game (NFG) is a pair G = (A, u)
where A = A1 × A2 ̸= ∅ is a finite set of actions and
u = (u1, u2) : A → R2 is the utility function. We use P1
and P2 as shorthands for “player one” and “player two”. For
finite X , ∆(X) denotes the set of all probability distributions
over X . A strategy (or policy) profile is a pair π = (π1, π2)
of strategies πi ∈ ∆(Ai). We denote the set of all strategies
as Π = Π1 ×Π2. πi is pure if it has support supp(πi) of size
1. We identify such strategy with the corresponding action.

For π ∈ Π, ui(π) :=
∑

(a,b)∈A π1(a)π2(b)ui(a, b) is the
expected utility of π. π1 is said to be a best response to π2
if π1 ∈ argmaxπ′

1∈Π1
u1(π

′
1, π2); br(π2) denotes the set of

all pure best responses to π2. Since the best-response util-
ity “u1(br, · )” is uniquely determined by π2, we denote it
as u1(br, π2) := maxa∈A1 u1(a, π2). (The analogous defini-
tions apply for P2 and π1.) A Nash equilibrium (NE) is a
strategy profile (π1, π2) under which each player’s strategy
is a best response to the strategy of the other player. We use
NE(G) to denote the set of all Nash equilibria of G.

A pure-commitment equilibrium (cf. [von Stackelberg,

1934]) is, informally, a subgame-perfect equilibrium of the
game in which the leader first commits to a pure action,
after which the follower sees the commitment and best-
responds, possibly stochastically. Since our formalism will
assume that P1 is the simulator, we naturally encounter sit-
uations where P2 acts as the leader. Formally, we will
use SEP2

pure(G) to denote all pairs (ψbr, b) where the opti-
mal commitment b ∈ A2 and P1’s best-response policy
ψbr : b′ ∈ A2 7→ ψbr(b

′) ∈ ∆(br(b′)) ⊆ ∆(A1) satisfy
b ∈ argmaxb′∈A2

Ea∼ψbr(b′) u2(a, b
′).

Below, we sometimes restrict the analysis to particular
classes of NFGs. To motivate the first one, recall that a prop-
erty is said to be generic (typical) if it holds for almost all
elements of a set [Rudin, 1987, 1.35]

Definition 1 (Generic games). We say that a statement P
holds for games with generic payoffs if, among games whose
payoffs are sampled i.i.d. from the uniform distribution over
[0, 1], P holds with probability 1.

Since different joint actions in a generic-payoff NFG neces-
sarily yield different payoffs, these games are a special case
of the following more general class:

Definition 2 (No best-response utility tiebreaking). An NFG
G is said to admit no best-response utility tiebreaking by
P1 if for every pure strategy b of P2, any two pure best-
responses a, a′ ∈ br(b) give P2 the same utility, i.e. u2(a, b) =
u2(a

′, b) =: u2(br, b).

Note that if G satisfies Def. 2, any pure-commitment equilib-
rium π ∈ SEP2

pure(G) can be identified with a joint action (a, b)
s.t. a ∈ br(b) and b ∈ argmaxb∈A2 u2(br, b).

3 Simulation Games
In this section, we formally define simulation games and de-
scribe their basic properties. To streamline this initial investiga-
tion of simulation games, we assume that when the simulator
learns the other agent’s action, they always best-respond to it —
that is, they will not execute non-credible threats [Shoham and
Leyton-Brown, 2008]. (However, this assumption somewhat
limits the applicability of the results, and we consider moving
beyond it a worthwhile future direction.)
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Notation 3. For a two-player NFG G, Ψbr := {ψbr : A2 →
∆(A1) | ∀b ∈ A2 : ψbr(b) ∈ ∆(br(b))}, resp. Ψdet

br ⊂ Ψbr, is
the set of all stochastic, resp. pure best-response policies.

Definition 4 (Simulation game). (1) For a simulation cost
c ∈ R, the simulation game Gc,all

sim is defined as the NFG
that is identical to G, except that P1 additionally has access
to “simulation” actions Sψbr , ψbr ∈ Ψdet

br , s.t. u1(Sψbr , b) :=
u1(br, b)− c, u2(Sψbr , b) := u2(ψbr(b), b).

(2) For a fixed ψbr ∈ Ψbr, Gc
sim := Gc,ψbr

sim denotes the
game where P1 has a single additional action S := Sψbr with
u1(S, b) := u1(br, b)− c, u2(S, b) := Ea∼ψbr(b)u2(a, b).

We refer to P1 as the simulator and to P2 as the simulated
player. When the exact value of c is unspecified or unimpor-
tant, we write Gsim instead of Gc

sim.

3.1 Basic Properties
In the remainder of this paper, we will only study simulation
games in the context of a fixed best-response policy. To justify
this decision, note that the variants (1) and (2) of Definition 4
are equivalent for most games:

Lemma 5. If (and only if) G admits no best-response util-
ity tiebreaking by P1, Gc,all

sim and Gc
sim are identical up to the

existence of duplicate actions.

Moreover, the problem of solving general simulation games
can be reduced to the problem of solving simulation games
for a fixed best-response policy:

Lemma 6. NE(Gc,all
sim ) \ NE(G) (i.e., the new NE introduced

by adding simulation) can be written as a disjoint union⋃̇
ψbr∈Ψbr

NE(Gc,ψbr
sim ) \ NE(G).

The next observation we make (Proposition 7) is that if
simulation is too costly, then it is never used and the simula-
tion game Gsim becomes strategically equivalent to the orig-
inal game G. Conversely, if simulation is subsidized (i.e., a
negative simulation cost), then P1 will always use it, which
effectively turns Gsim into a pure-commitment game with P2
moving first. (The situation is similar when simulation is
free but not subsidized, except that this allows for additional
equilibria where the simulation probability is less than 1.)

Proposition 7 (Equilibria for extreme simulation costs). In
any simulation game Gsim, we have:

(i) For c < 0, simulating is a strongly dominant action.
In particular, NE(Gc

sim) ⊆ SEP2
pure(G).1

(ii) For c > max
a∈A1,b∈A2

u1(a, b)− max
π1∈Π1

min
π2∈Π2

u1(π1, π2),

S is a strictly dominated action.
In particular, NE(Gc

sim) = NE(Gsim).

3.2 Information-Value of Simulation
The following definition measures the extra utility that the
simulator can gain by using the knowledge of the other player’s
strategy:

1If we allowed P1 to consider all possible best-response policies,
NE(Gc

sim) ⊆ SEP2
pure(G) would turn into equality.

Definition 8 (Value of information of simulation). The value
of information of simulation for π2 ∈ Π2 is

VoIS(π2) :=
(∑

b∈A2

π2(b) max
a∈A1

u1(a, b)

)
−max
π1∈Π1

u1(π1, π2).

Lemma 9. ∀π2 : u1(S, π2) = u1(br, π2) + VoIS(π2)− c.
Lemma 9 implies that VoIS(π2) always lies between 0 and the
difference between maximum possible u1 and P1’s maxmin
value. Moreover, to make P1 simulate with a non-trivial prob-
ability, P2 needs to pick a strategy whose value of information
is equal to the simulation cost:
Lemma 10 (VoIS is equal to simulation cost). (1) For any
π ∈ NE(Gc

sim), we have π1(S) ∈ (0, 1) =⇒ VoIS(π2) = c.
(2) Moreover, unless G admits multiple optimal commitments
of P2 that do not have a common best-response, any π ∈
NE(G0

sim) has VoIS(π2) = 0.
(Where, in (2), a set of actions having a common best-response
means that

⋂
b∈B br(b) ̸= ∅.)

4 Structural Properties
We now review several structural properties that appear in sim-
ulation games because of the special nature of the simulation
action.These results will prove instrumental when determining
the complexity of simulation games (Sec. 5) and predicting the
impact of simulation on the players’ welfare (Sec. 6). More-
over, we find these results interesting in their own right.

The first of these properties is that a change of the simu-
lation cost typically results in a very particular change in a
Nash equilibrium of the corresponding game: The strategy
of the simulating player (P1) doesn’t change at all, while
the simulated player’s strategy changes linearly. However,
to be technically accurate, we need to make two disclaimers.
First, there is a finite number of “atypical” values of c, called
breakpoints, where the nature of the NE strategies changes
discontinuously.2 Second, there can be multiple equilibria,
which complicates the formal description of the result.
Proposition 11 (Trajectories of simulation NE are piecewise
constant/linear). For every G, there is a finite set of simulation-
cost breakpoint values −∞ = e−1 < 0 = e0 < e1 < · · · <
ek < ek+1 = ∞ such that the following holds: For every
c0 ∈ (el, el+1) and every πc0 ∈ NE(Gc0

sim), there is a linear
mapping t2 : c ∈ [el, el+1] 7→ πc2 ∈ Π2 such that t2(c0) =
πc0
2 and (πc0

1 , t2(c)) ∈ NE(Gc
sim) for every c ∈ [el, el+1].

Since we were not able to find any existing result that would
immediately imply this proposition, we provide our own proof
in the appendix. However, a related result in the context of
parameterized linear programming appears in [Adler and Mon-
teiro, 1992, Prop. 2.3]. As an intuition for why this result holds,
recall that in an equilibrium, each player uses a strategy that
makes the other player indifferent between the actions in their
support. Since P2’s payoffs are not affected by c, P1 should
keep their strategy constant to keep P2 indifferent, even when

2 While all of the non-breakpoint equilibria extend to the cor-
responding breakpoints as limits (Definition 13), the breakpoints
might also admit additional non-limit equilibria, typically convex
combinations of the limits (cf. Figure 2).
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c changes. Similarly, increasing c linearly decreases P1’s
payoff for the simulate action, so P2 needs to linearly adjust
their strategy to bring P1’s payoffs back into equilibrium.

A particular corollary of Proposition 11 is that while one
might perhaps expect simulation will gradually get used more
and more as it gets more affordable, this is in fact not what
happens — instead, the simulation rate is dictated by the need
to balance the unchanging tradeoffs of the other player.

The second structural property of simulation games is the
following refinement of Proposition 7:
Proposition 12 (Gradually recovering the NE of G). Let π be
a NE of G. Then π, as a strategy in Gc

sim with π1(S) := 0, is a
NE precisely when c ≥ VoIS(π2).

In particular, VoIS(π2) is a breakpoint of G.
Together, these two results imply that with c = 0, G0

sim may
have no NE in common with G. As we increase c, the NE of
G gradually appear in Gc

sim as well, while the simulation equi-
libria of Gsim (i.e., those with π1(S) > 0) gradually disappear,
until eventually NE(Gc

sim) = NE(G).

4.1 Equilibria for Cheap Simulation
By combining the concept of value of information with the
piecewise constancy/linearity of simulation equilibria, we are
now in a position to give a more detailed description of Nash
equilibria of games where simulation is cheap. First, we iden-
tify the equilibria of Gsim with c = 0 that might be connected
to the equilibria for c > 0:
Definition 13 (Limit equilibrium of Gsim). A policy profile π0

is a limit equilibrium (at c = 0) of Gsim if it is a limit of some
πcn ∈ NE(Gcn

sim) where cn → 0+.
As witnessed by the Trust Game (and Table 2 in particular),
not every NE of G0

sim is a limit equilibrium. Note that this
definition automatically implies a stronger condition:
Lemma 14. For any limit equilibrium π0 of Gsim, there is
some e > 0 and πe2 such that for every c ∈ [0, e], (π0

1 , (1 −
c
e )π

0
2 +

c
eπ

e
2) is a NE of Gc

sim.
The following result shows that cheap-simulation equilibria

have a very particular structure. Informally, every such NE
corresponds to a “baseline” limit equilibrium πB and P2’s
“deviation policy” πD

2 . As the simulation cost increases, P2
gradually deviates away from their baseline, which forces P1
to randomize between their baseline and simulating. While the
technical formulation can seem daunting, all of the conditions
in fact have quite intuitive interpretations that can be used for
locating the simulation equilibria of small games by hand.
Lemma 15 (Structure of cheap-simulation equilibria). Let
c0 ∈ (0, e1) and suppose that G admits no best-response
utility tiebreaking by P1. Then any π ∈ NE(Gc0

sim) with
π1(S) ∈ (0, 1) is of the form π = (π1, π

c0
2 ), where

π1 = (1− π1(S)) · πB
1 + π1(S) · S

πc2 = (1− αc) · πB
2 + αc · πD

2 , α > 0,

and the following holds:
(i) For every c ∈ [0, e1], (π1, πc2) ∈ NE(Gc

sim).

(ii) πB ∈ Π is some baseline policy that satisfies:

(B1) every action in the support of πB
1 is a best-response to

every action from supp(πB
2);

(B2) every action in the support of πB
2 is an optimal commit-

ment by P2 conditional on P2 only using strategies that
satisfy (B1).

(iii) πD
2 ∈ Π2 is some deviation policy that satisfies:

(D1) No a∈supp(πB
1) lies in br(d) for all d∈supp(πD

2 ).
(D2) Every d ∈ supp(πD

2 ) satisfies one of

u2(π
B
1 , d) > u2(π

B) > u2(br, d) (D>
2 )

u2(π
B
1 , d) = u2(π

B) = u2(br, d) (D=
2 )

u2(π
B
1 , d) < u2(π

B) < u2(br, d). (D<
2 )

(D3) If d ∈ supp(πD
2 ) satisfies (D>

2 ), resp. (D<
2 ),

it maximizes the attractiveness ratio rd, resp. r−1
d

u2(π
B
1 , d

′)− u2(π
B)

u2(πB)− u2(br, d′)
resp.

u2(br, d′)− u2(π
B)

u2(πB)− u2(πB
1 , d

′)

among all d′ ∈ A2 that satisfy (D>
2 ), resp. (D<

2 ).
In a generic game, these conditions even imply that both the
baseline and deviation policies are pure.
Theorem 1 (Equilibria with binary supports). Let G be a game
with generic payoffs and c ∈ (0, e1). Then all NE of Gc

sim are
either pure or have supports of size two.

5 Computational Aspects
We now investigate the difficulty of solving simulation games.
Since many of the results hold for multiple solution concepts,
we formulate them using the phrase “solving a game”, with
the understanding that this refers to either finding all Nash
equilibria, or a single NE, or a single NE with a specific prop-
erty (e.g., one with the highest social welfare). For a specific
game G, we will also use −∞ < 0 < e1 < · · · < ek <∞ to
denote the breakpoints of Gsim (given by Proposition 11).

As an upper bound on the complexity of solving simulation
games, their definition immediately yields that:
Proposition 16 (Simulation games are no harder than general
games). Solving Gc

sim is at most as difficult as solving a normal-
form game where P1 has one more action than in G.

For extreme values of c, Prop. 7 implies the following:
Proposition 17 (Solving Gsim for extreme c). (i) For c < 0,
the time complexity of solving Gc

sim is O(|A|).
(ii) For c > ek, the time-complexity of solving Gc

sim is the same
as the time-complexity of solving G.

In contrast with Proposition 17 (ii), finding the equilibria
at low simulation costs is straightforward if we restrict our
attention to generic-payoff NFGs:
Theorem 2 (Cheap-simulation equilibria in generic games).
Let G be a NFG with generic payoffs and c ∈ (0, e1). Then
the time complexity of finding all equilibria of Gc

sim is O(|A|).
Finally, it is also generally difficult to determine whether

simulation is beneficial or not:
Theorem 3. For a general NFG G and c ∈ R, it is co-NP-
hard to determine whether there is π ∈ NE(Gc

sim) \ NE(G) s.t.
∀ρ ∈ NE(G) : u1(π) ≥ u1(ρ) & u2(π) ≥ u2(ρ).
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6 Effects on Players’ Welfare
As we saw in Theorem 3, there is no simple method for deter-
mining whether introducing simulation into a general game
will be socially beneficial. However, this does not rule out
the possibility of identifying particular sub-classes of games
where simulation is useful or harmful. We now first confirm
the hypothesis that simulation is beneficial in settings where
the only obstacle to cooperation is the missing trust in the
simulated player. We then give specific examples to illustrate
that in general games, simulation can also benefit either player
at the cost of the other, or even be harmful to both.

6.1 Simulation in Generalized Trust Games
We now show that when the only obstacle to cooperation is
the lack of trust in the possibly-simulated player, simulation
enables equilibria that improve the outcome for both players.

Definition 18 (Generalized trust games). A game G is said to
be a generalized trust game if any pure-commitment equilib-
rium (where P2 is the leader) is a strict Pareto improvement
over any π ∈ NE(G).

Theorem 4 (Simulation in trust games helps). Let G be a
generalized trust game that admits no best-response utility
tiebreaking by P1. Then for all sufficiently low c, Gc

sim admits
a Nash equilibrium with π1(S) > 0 that is a strict Pareto
improvement over any NE of G.

Proof sketch. We construct a NE where P2 mixes between
their optimal commitment b (from the pure-commitment equi-
librium corresponding to G) and some deviation d while P1
mixes between their best-response to b and simulating. We
show that (a, b) forms the baseline policy of this simulation
equilibrium, which implies that as c → 0+, this NE eventually
strictly Pareto-improves any NE of G. (And the fact that (a, b)
cannot be a NE of G ensures the existence of a suitable d.)

6.2 Simulation in General Games
We now investigate the relationship between simulation cost
and the players’ payoffs in general games. We start by listing
the two general trends that we are aware of.

The first of the general results is that for the extreme values
of c, the situation is always predictable: For c < 0, P1 al-
ways simulates (Prop. 7) and making simulation cheaper will
increase their utility without otherwise affecting the outcome.
Similarly, when c is already so high that P1 never simulates,
any further increase of c makes no additional difference.

Second, if P2 could choose the value of c, they would
generally be indifferent between all the values within a specific
interval (ei, ei+1). Indeed, this follows from Proposition 11,
which implies that P2’s utility remains constant between any
two breakpoints of Gsim.

The Examples 19-23 illustrate that the players might both
agree and disagree about their preferred value of c, and this
value might be both low and high.

Example 19 (Both players prefer cheap simulation). In the
Alice and Bobble game from Figure 2, each player’s favoured
NE exists for c = 0.

Example 20 (Only simulator prefers cheap simulation). Con-
sider the “unfair guess-the-number game” where each player
picks an integer between 1 and N . If the numbers match, P2
pays 1 to P1. Otherwise, P1 pays 1 to P2. In this game, P2
clearly prefers simulation to be prohibitively costly while P1
prefers as low c as possible.

In fact, Example 20 extends to all zero-sum games:
Proposition 21. If a zero-sum G has NE utilities (v,−v), then
∀c ∀π ∈ NE(Gc

sim): u1(π) ≥ v, u2(π) ≤ −v.
Example 22 (Only simulator prefers expensive simulation). In
the commitment game (Figure 3), introducing free simulation
creates a second NE in which P1 is strictly worse off and
stops the original NE from being trembling-hand perfect. If
simulation were subsidized, the original simulator-preferred
NE would disappear completely. (In fact, with c > 0 that is
not prohibitively costly, the situation is similar to the c = 0
case.) In summary, this shows that simulation can hurt the
simulator, even when using it is free (or even subsidized) and
voluntary.
Example 23 (Both players prefer expensive simulation). Con-
sider a Joint Project game where P1 proposes that P2 collab-
orates with them on a startup. If P2 accepts, their business
will be successful, yielding utilities u1 = u2 = 100. P2 then
picks a secure password (pw ∈ {1, . . . , 26}4) and puts their
profit in a savings account protected by that password. Fi-
nally, P1 can either do nothing or try to guess P2’s password
(g ∈ {1, . . . , 26}4) and steal their money. Successfully guess-
ing the password would result in utilities u1 = 200, u2 = −10,
where the −10 comes from opportunity costs. However, if P1
guesses wrong, they will be caught and sent to jail, yielding
utilities u1 = −999, u2 = 123 [Smith et al., 2009].

Without simulation, the NE of this game is for the players
to collaborate and for P1 to not attempt to guess the password.
However, with cheap enough simulation, P1 would simulate
P2’s choice of password and steal their money — and P2,
expecting this, would not agree to the collaboration in the first
place. As a result, both players would prefer simulation to be
prohibitively expensive.
Example 24 (The preferences depend on equilibrium selec-
tion). Consider various mixed-motive games such as the
Threat Game (e.g., [Clifton, 2020, Sec. 3-4]), Battle of the
Sexes, or Chicken (e.g., [Shoham and Leyton-Brown, 2008]).
Generally, these games have one pure NE that favours P1,
a second pure NE that favours P2, and a mixed NE that is
strictly worse than either of the pure equilibria for both P1
and P2. By introducing subsidized simulation into such a
game, we eliminate both the simulator-favoured pure NE and
the dispreferred mixed NE. This can be bad, neutral, or even
good news for the simulator, depending on which of the NE
would have been selected in the original game. Somewhat
relatedly, introducing subsidized simulation destroys the sub-
optimal equilibria in Stag Hunt and Coordination Game (e.g.,
[Shoham and Leyton-Brown, 2008]).

Beyond the examples above, players might even prefer nei-
ther c = 0 nor c = ∞ but rather something inbetween:
Example 25 (The preferred c is non-extreme). Informally, the
underlying idea behind the example is that the game should
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have the potential for a positive-sum interaction, but also be
unfair towards P1 if they never simulate and unfair towards P2
if P1 always simulates. If we then give each player the option
to opt out, the only way either of the players can profit is if
simulation is neither free nor prohibitively expensive. For a
detailed proof, see Example 27 in Appendix A.

7 Related Work
In terms of the formal framework, our work is closest to the
literature on games with commitment [Conitzer and Sandholm,
2006; von Stengel and Zamir, 2010]. This is typically mod-
elled as a Stackelberg game [von Stackelberg, 1934], where
one player commits to a strategy while the other player only se-
lects their strategy after seeing the commitment. In particular,
[Letchford et al., 2014] investigates how much the committing
player can gain from committing. Commitment in a Stack-
elberg game is always observed. (An exception is [Korzhyk
et al., 2011], which assumes a fixed chance of commitment
observation.) In contrast, the simulation considered in this
paper would correspond to a setting where (1) one player pays
for having the other player make a (pure) commitment and (2)
the latter player does not know whether their commitment is
observed, as the probability of it being observed is a param-
eter controlled by the observer. Ultimately, these differences
imply that the Stackelberg game results are highly relevant as
inspiration, but they are unlikely to have immediate technical
implications for our setting (except for when c < 0).

In terms of motivation, the setting that is the closest to
our paper is open-source game theory and program equilib-
ria [McAfee, 1984; Howard, 1988; Rubinstein, 1998], [Ten-
nenholtz, 2004, Sec. 10.4]. In program games, two (or more)
players each choose a program that will play on their behalf in
the game, and these programs can read each other. To highlight
the connection to the present paper, note that one approach
to attaining cooperative play in this formalism is to have the
programs simulate each other [Oesterheld, 2019]. The set-
ting of the program equilibrium literature differs from ours in
two important ways. First, the program equilibrium literature
assumes that both players have access to the other player’s
strategy. (Much of the literature addresses the difficulties of
mutual simulation or analysis, e.g., see [Barasz et al., 2014;
Critch, 2019; Critch et al., 2022; Oesterheld, 2022] in addition
to the above.) Second, with the exception of time discounting
[Fortnow, 2009], the program equilibrium formalism assumes
that access to the other player’s code is without cost.

Another approach to simulation is game theory with translu-
cent players [Halpern and Pass, 2018]. This framework as-
sumes that the players tentatively settle on some strategy from
which they can deviate, but doing so has some chance of being
visible to the other player. In our terminology, this corre-
sponds to a setting where each player always performs free
but unreliable simulation of the other player.

8 Discussion
Summary In this paper, we considered how the traditional
game-theoretic setting changes when one player obtains the
ability to run an accurate but costly simulation of the other.

We established some basic properties of the resulting sim-
ulation games. We saw that (between breakpoint values of
which there can be only finitely many), their equilibria change
piecewise constantly/linearly (for P1/P2) with the simulation
cost. Additionally, the value of information of simulating is
often equal to the simulation cost. These properties had strong
implications for the equilibria of games with cheap simulation
and allowed us to prove several deeper results. Our initial hope
was that simulation could counter a lack of trust — and this
turned out to be true. However, we also saw that the effects of
simulation can be ambiguous, or even harmful to both play-
ers. This suggests that before introducing simulation to a new
setting (or changing its cost), one should determine whether
doing so is likely to be beneficial or not. Fortunately, our anal-
ysis revealed that for the very general class of normal-form
games with generic payoffs, this can be done cheaply.
Future Work The future work directions we find particu-
larly promising are the following: First, the results on generic-
payoff NFGs cover the normal-form representations of some,
but not all, extensive-form games. Extending these results to
EFGs thus constitutes a natural next step. Second, we saw
that the cost of simulation that results in the socially-optimal
outcome varies between games. It might therefore be benefi-
cial to learn how to tailor the simulation cost to the specific
game, and to what value. Third, we assumed that simulation
predicts not only the simulated agent’s policy, but also the
result of any of their randomization — i.e., their precise ac-
tion. Whether this assumption makes sense depends on the
precise setting, but in any case, by considering mixtures over
behavioral strategies [Halpern and Pass, 2021], it might be
possible to go beyond this assumption while recovering most
of our results. Finally, our work assumes that simulation is
perfectly reliable, captures all parts of the other agent, and is
only available to one agent but not the other. Ultimately, it
will be necessary to go beyond these assumptions. We hope
that progress in this direction can be made by developing a
framework that encompasses both our work and some of the
formalisms discussed in Section 7 (and in particular the work
on program equilibria).
Limitations The simulation approach to cooperation has
various limitations. Apart from the obstacles implied by the
future work above, there is the issue of making sure that the
agent we are simulating is the same as the agent we end up in-
teracting with — for example, the other party might try to feed
us fake source code, or change it after sharing it. Moreover,
the simulated party needs to be willing to its policy, which
might be in tension with retaining privacy, trade secrets, etc.
Finally, the simulation approach relies on the simulated agents
being unable to differentiate between simulation and reality.
This might be difficult to achieve as the relevant situations
become more complicated and AI agents grow in capability.
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