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Abstract
We study the computational complexity of fair di-
vision of indivisible items in an enriched model:
there is an underlying graph on the set of items.
And we have to allocate the items (i.e., the vertices
of the graph) to a set of agents in such a way that (a)
the allocation is fair (for appropriate notions of fair-
ness) and (b) each agent receives a bundle of items
(i.e., a subset of vertices) that induces a subgraph
with a specific “nice structure.” This model has pre-
viously been studied in the literature with the nice
structure being a connected subgraph. In this paper,
we propose an alternative for connectivity in fair di-
vision. We introduce compact graphs, and look for
fair allocations in which each agent receives a com-
pact bundle of items. Through compactness, we at-
tempt to capture the idea that every agent must re-
ceive a bundle of “closely related” items. We prove
a host of hardness and tractability results with re-
spect to fairness concepts such as proportionality,
envy-freeness and maximin share guarantee.

1 Introduction
We study a fair allocation problem: m indivisible items are
to be allocated among n agents, where the items are the ver-
tices of a graph. The agents have preferences over the items,
and we have to allocate the items in such a way that the al-
location is fair (for appropriate notions of fairness) and each
agent receives a bundle of items (i.e., a subset of vertices) that
induces a subgraph with a specific “nice structure.” The fair-
ness notions that we study are proportionality, envy-freeness
and maximin share guarantee; and the nice structure that we
study requires that each agent must receive a set of “closely
related” items.

While fair division of indivisible items has been studied
extensively from both economics and computational perspec-
tives [Moulin, 2003; Aziz et al., 2022; Amanatidis et al.,
2022], fair division of graphs is a relatively recent line of
study, starting with the work of [Bouveret et al., 2017]. The
classic fair division literature assumes no relationship among
the items; the items are independent of each other. But there
are any number of scenarios where the items to be allocated,
rather than being an assortment of isolated units, are related

to one another. And we can often model such relationships
between the items using a graph. The items, for example,
may be rooms in a large building, and the graph models adja-
cency between pairs of rooms; or the items may be a valuable
collection of postage stamps, and the graph models similari-
ties between pairs of stamps on the basis of country, design or
typography; or the items may be the topics for a course (to be
divided between two professors who are planning to co-teach
the course), and the graph models connections between the
topics. Fair division of graphs attempts to capture precisely
such settings.

While fair division of graphs has received considerable at-
tention in recent years [Deligkas et al., 2021; Bilò et al.,
2022; Greco and Scarcello, 2020; Igarashi and Peters, 2019;
Bei et al., 2022], to the best of our knowledge, all work so
far has focused solely on connected fair division. That is,
each agent should receive a set of vertices that induces a
connected subgraph. Bouveret et al. [2017], who introduced
this model of fair division of graphs, considered the exam-
ple of office spaces in a university being allocated to various
research groups, where each research group should receive
a contiguous set of offices. This scenario can be modelled
as a fair-division-of-a graph problem where each agent must
get a connected subgraph—agents represent various research
groups and the vertices and the edges of the graph respec-
tively represent the offices and adjacency between offices.
Notice that while contiguity might be useful, the “closeness”
of the offices allocated to each group might be just as im-
portant. Simply demanding contiguity might leave a research
group with a set of offices along a long and narrow corridor,
which may not be an attractive proposition to the members of
the group. In the absence of other constraints, the connectiv-
ity requirement, while desirable, might produce bundles with
unwieldy topologies. In some cases, demanding connected
bundles for every agent may be too stringent a requirement.
For example, imagine a scenario with just one agent and two
items that are isolated from each other. The agent has a utility
of 1/2 for each of the two items and a total utility of 1 for the
two items together. As we can see, demanding connectivity
results in only one item being allocated to the agent, costing
her half her total utility for the set of items.

We can also think of the connectivity requirement in the
fair division of graphs as a direct adaptation of the con-
tiguity requirement in the fair division of divisible items,
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i.e., the cake cutting problem where each agent should re-
ceive a contiguous piece of the cake [Stromquist, 1980;
Goldberg et al., 2020]. But contiguity is a singularly im-
portant consideration in the cake cutting setting, for oth-
erwise an agent “who hopes only for a modest interval of
cake may be presented instead with a countable union of
crumbs” [Stromquist, 1980]. That is not the case with graphs.
Moreover, graphs are a rich combinatorial structure capable
of modelling a variety of relationships among the items. And
connectivity of the items allocated to each agent may not al-
ways be the most important consideration. There is, however,
a void when it comes to our understanding of fair division
of graphs under constraints other than connectivity. In this
paper, we take a first step towards filling this void.

1.1 Our Contribution
We make three contributions. (1) Propose meaningful alter-
natives for connectivity in the fair division of graphs. (2)
Study the computational complexity of finding fair alloca-
tions under such alternative constraints, even on restricted in-
puts. The restrictions on the input are based on the nature
of the valuation functions and the structure of the graph on
the set of items. (3) Identify and exploit results and tech-
niques from structural and algorithmic graph theory to design
efficient algorithms for fair division of graphs. To that end,
we propose an alternative for connectivity: We demand that
each agent must receive a compact bundle of items. Through
compactness, we try to capture the idea that each agent must
receive a set of closely related items.

To formally define compact graphs, we introduce the fol-
lowing notation. For n ∈ N, [n] denotes the set {1, 2, . . . , n}
and [n]0 = [n] ∪ {0}. For a graph G, V (G) and E(G) re-
spectively denote the set of vertices and edges of G. For
vertices z, z′ ∈ V (G), the distance between z and z′, de-
noted by distG(z, z′), is the length of a shortest path be-
tween z and z′. For z ∈ V (G) and a non-negative inte-
ger β, BG(z, β) = {z′ ∈ V (G) | distG(z, z′) ≤ β}; we call
BG(z, β) the ball of radius β centred at z.
Compact graphs: Definitions. For non-negative integers
α and β, we say that a graph G is (α, β)-compact if there
exist vertices z1, z2, . . . , zα ∈ V (G) such that for every
z ∈ V (G), dist(z, zi) ≤ β for some i ∈ [α], i.e., V (G) =⋃α
i=1BG(zi, β).1 That is, G is (α, β)-compact if G can be

“covered by α many balls, each of radius at most β.” We
also define a related class of graphs called strongly (α, β)-
compact graphs. A graph G is strongly (α, β)-compact if
there exist vertex subsets V1, V2, . . . , Vα ⊆ V (G) such that
V (G) =

⋃α
i=1 Vi and for every i ∈ [α] and for every

z, z′ ∈ Vi, distG(z, z′) ≤ β. In this paper, we focus primarily
on (α, β)-compact graphs. (We consider the empty graph—
the graph G with V (G) = E(G) = ∅—to be both (α, β)-
compact and strongly (α, β)-compact for every α, β ≥ 0.)
Compact graphs: Examples. If a graph G is strongly
(α, β)-compact, then it also (α, β)-compact. But the con-

1In graph theory literature, a set Z ⊆ V (G) of vertices such
that V (G) =

⋃
z∈Z BG(z, β) is called a distance-β dominating

set [Haynes et al., 2020]. So (α, β)-compact graphs are precisely
those graphs that have a distance-β dominating set of size at most α.

verse need not hold. For example, a star is (1, 1)-compact,
but not strongly (1, 1)-compact. But if G is (α, β) compact,
then it is strongly (α, 2β)-compact. When β = 0, the two
definitions coincide. For example, a graph is G is (strongly)
(α, 0)-compact if and only if G has at most α many vertices.
And G is strongly (1, 1)-compact if and only if G is a clique;
and G is strongly (1, β)-compact if and only if G has diame-
ter at most β. In particular, anm-vertex graphG is connected
if and only if G is (strongly) (1,m − 1)-compact. Similarly,
a graph G with α connected components is strongly (α, β)-
compact if and only if every component has diameter at most
β. As these examples show, (strong) compactness is expan-
sive enough to accommodate several natural restrictions on
the structure of G, including properties of graphs such as
number of vertices, connectivity, bounded diameter etc.

Our Model
We study fair division problems of the following type. A typ-
ical instance of our problem consists of a triplet (G,N,V),
where G is an m-vertex graph, N is a set of agents with
|N | = n, and V is an n-tuple of functions (vi)i∈N , where
vi : 2V (G) → Q≥0. For i ∈ N , vi is called the valuation func-
tion or the utility function of agent i. We assume through-
out that the valuation functions are additive (unless other-
wise stated). That is, for i ∈ N and S ⊆ V (G), we have
vi(S) =

∑
z∈S vi({z}) and vi(∅) = 0. When S = {z} is a

singleton set, we omit the braces and simply write vi(z). We
call the set of vertices of G goods or items as well. Through-
out the paper, we use m for the number of items and n for the
number of agents. And we use N or [n] for the set of agents.

Compact allocations. Consider (G,N,V). An allocation
is a function that assigns pairwise disjoint subsets of V (G) to
the agents. That is, an allocation is a function π : N → 2V (G)

such that π(i) ∩ π(j) = ∅ for distinct i, j ∈ N . Consider an
allocation π. We call π(i) agent i’s bundle under the allo-
cation π. We say that π(i) is (α, β)-compact if G[π(i)] is
(α, β)-compact. An allocation π is (α, β)-compact if π(i) is
(α, β)-compact for every i ∈ N . We define a strongly (α, β)-
compact allocation analogously.

Fairness concepts. We consider three well-studied fairness
concepts—proportionality, envy-freeness and maximin fair-
ness. An allocation π is proportional if vi(π(i)) ≥ (1/n) ·
vi(V (G)) for every i ∈ N , i.e., every agent receives at least
a 1/n fraction of her utility for the whole graph. And we
say that π is envy-free if vi(π(i)) ≥ vi(π(j)) for every pair
of distinct agents i, j ∈ N , i.e., every agent prefers her own
bundle to that of the other agents. We now define maximin
fair allocations by suitably adapting the definition introduced
by Budish [2011]. For (G,N,V), let Π(G,N,V) be the set
of all allocations φ : N → 2V (G). Let Γ ⊆ Π(G,N,V) be
any non-empty set of allocations. For every agent i ∈ N ,
we define the Γ-maximin share guarantee of i, denoted by
Γ-mmsi(G,N,V), as follows:

Γ-mmsi(G,N,V) = max
π∈Γ

min
j∈N

vi(π(j)).

Informally, Γ-mmsi(G,N,V) is the maximum utility agent
i could guarantee for herself if agent i were to allocate the
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items, with the caveat that the allocation be in Γ, and al-
lowed to choose only the least valued bundle for herself.
We say that an allocation φ : N → 2V (G) is Γ-maximin fair
if vi(π(i)) ≥ Γ-mmsi(G,N,V). We are interested in Γ-
maximin fair allocations, where Γ is the set of all (α, β)-
compact allocations, which we denote by Γ((α, β)-com).

Economic efficiency constraints. We say that an alloca-
tion π is complete if π allocates all the vertices of G, i.e.,⋃
i∈N π(i) = V (G). And we say that π is Pareto-optimal if

there exists no allocation π′ such that vi(π′(i)) > vi(π(i)) for
some i ∈ N and vj(π′(j)) ≥ vj(π(j)) for every j ∈ N \{i}.
Computational questions. Let α and β be fixed integers.
We are interested in computational problems that take an
instance (G,N,V) as input, and the question is to decide
if (G,N,V) admits an allocation that is (strongly) (α, β)-
compact and fair? Depending on the fairness concept, we
have the following specific problems.

• PROP-(α, β)-COMPACT-FD: Does (G,N,V) admit an
allocation that is proportional and (α, β)-compact?

• EF-(α, β)-COMPACT-FD: Does (G,N,V) admit an al-
location that is envy-free and (α, β)-compact? As the
empty allocation (where no item is allocated) is triv-
ially envy-free, we often combine envy-freeness with
efficiency constraints such as completeness or Pareto-
optimality (PO). Accordingly, we have the correspond-
ing problems: COMPLETE-EF-(α, β)-COMPACT-FD
and PO-EF-(α, β)-COMPACT-FD.

• MMS-(α, β)-COMPACT-FD: Does (G,N,V) admit
an allocation that is Γ((α, β)-com)-maximin fair and
(α, β)-compact?

We define the strongly compact variants of the problems anal-
ogously. Notice that α and β are fixed constants and not part
of the input.

Our Results
We prove a host of hardness and algorithmic results for [X]-
(α, β)-COMPACT-FD, where we use [X] as a placeholder for
one of the three fairness concepts discussed above. Recall
that n is the number of agents andm is the number of vertices
in the input graph. We first discuss the polynomial time solv-
ability versus (weak and strong) NP-hardness of the prob-
lems. These results are further divided into cases based on the
choices for α and β. The hardness results hold only for prob-
lems corresponding to proportionality and envy-freeness, and
they all hold for additive valuations. And then we move on to
our algorithmic results, specifically, FPT and XP algorithms
w.r.t. a combination of parameters, including the number of
agents, maximum degree and treewidth of the graph. We now
list our results one by one.

NP-hardness. A reduction due to Lipton et al. [2004]
from the PARTITION problem shows that PROP-(α, β)-
COMPACT-FD, COMPLETE-EF-(α, β)-COMPACT-FD and
PO-EF-(α, β)-COMPACT-FD are all NP-hard for every
α, β ≥ 1. But notice that a reduction from PARTITION only
implies weak NP-hardness. Besides, these results do not
cover the case when β = 0.

The case of β = 0. This case warrants special attention. In
this case, every agent can receive at most α items as a graph is
(α, 0)-compact if and only if it has at most α vertices. (So we
can ignore the graph and treat the problem as an instance of
the classic fair division problem with the additional constraint
on the size of the bundles.) We have the following results.

1. If α = 1, then every agent can receive at most one
item. In this case, for all three fairness notions, the cor-
responding problems are polynomial time solvable. We
can reduce each of the problems to a matching problem
in an agents-items bipartite graph. For envy-freeness,
we have the the additional constraint that every agent
must receive exactly one item; and the polynomial time
algorithm is due to Gan et al. [2019].

2. The case of α = 2. PROP-(2, 0)-COMPACT-FD is NP-
hard; implied by a result due to Ferraioli et al. [2014].
The complexity of the problem corresponding to envy-
freeness is still open.

3. The case of α ≥ 3 is covered by the next result.
The case of α ≥ 3. We prove that PROP-(α, β)-
COMPACT-FD, COMPLETE-EF-(α, β)-COMPACT-FD and
PO-EF-(α, β)-COMPACT-FD are all strongly NP-hard for
every α ≥ 3 and β ≥ 0, even when G is edgeless.
Proportionality + (α = 1) + paths. If α = 1 and the
graph G is a path, then for proportionality, the corresponding
problem admits an algorithm with runtime 2n · mO(1), and
hence is fixed-parameter tractable (FPT) with respect to the
number of agents. We also extend this result to an algorithm
with runtime np · mO(1), where p is the number of types of
agents. Two agents are of the same type if their valuations are
identical. These results hold for arbitrary valuations. Our al-
gorithms involve dynamic programming, and are only a slight
adaptation of the algorithm of Bouveret et al. [2017] for pro-
portional and connected fair division. But the fact that α = 1
is crucial for these algorithms to work.
XP algorithms w.r.t. n + ∆. For all three fairness con-
cepts (and arbitrary valuations), we design slicewise poly-
nomial time (XP) algorithms with respect to the parameter
n + ∆, where ∆ is the maximum degree of G. The algo-
rithms follow from the simple observation that for any vertex
z ∈ V (G), |BG(z, β)| ≤ ∆β+1. Hence we can enumerate all
(α, β)-compact allocations in time mO(αn) · 2αn·∆O(β)

.
Pseudo-XP algorithms w.r.t. n + tw. For problems cor-
responding to all three fairness fairness concepts, we design
pseudo-XP algorithms with respect to the parameter tw + n,
where tw is the treewidth of G. We design a single dynamic
programming procedure that works for all three fairness con-
cepts. We assume here that the valuations are integer-valued.
Let W be the maximum value any agent has for the whole
graph, i.e., W = maxi∈N vi(V (G)). Our algorithms have
a runtime of (tw + n)O(tw+n) · βO(tw) · mO(αn) · WO(n2).
In particular, when the valuations are polynomially bounded,
we have XP algorithms. These algorithms yield a number of
interesting corollaries, which we discuss below.

1. Welfare maximisation: We can use our dynamic pro-
gramming procedure to compute (α, β)-compact alloca-
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tions that maximise welfare. For example, we can an-
swer questions such as this: Among all the allocations
that maximise the utilitarian social welfare, is there one
that is also (α, β)-compact? The utilitarian social wel-
fare of an allocation π is the sum of the utilities of the
agents have under π, i.e.,

∑
i∈N vi(π(i)).

2. Connected fair division: As noted earlier, an m-
vertex graphs is connected if and only if it is (1,m −
1) compact. Hence our algorithms work for con-
nected fair division as well, with a runtime of (tw +

n)O(tw+n)mO(tw+n) ·WO(n2).
3. Implications for planar graphs (and more): On pla-

nar graphs, our algorithms run in time nO(n) ·mO(αn) ·
WO(n2), i.e., a pseudo-XP algorithm parameterized by
n. To derive this result, we leverage the follwing two
facts. (1) Treewidth of a planar graph is O(D), where
D is the diameter of the graph. (2) Diameter of ev-
ery connected component of an (α, β)-compact graph
isO(αβ). In fact, a runtime of nO(n) ·mO(αn) ·WO(n2)

is possible not just on planar graphs, but on all graphs
whose treewidth is bounded by a function of its diameter.
In particular, if F is a minor-closed family of graphs and
F excludes an apex-graph, then on any graph G ∈ F ,
our algorithms run in time f(n) · mO(αn) · WO(n2),
where the function f depends only on F . This follows
from a result due to Eppstein [2000].

Results for strongly compact variants. All our hardness
results mentioned above hold for the strongly compact vari-
ants of the respective problems as well. So do (i) our algo-
rithm for proportional allocations on paths when α = 1 and
(ii) the XP algorithms parametrized by n + ∆. In addition,
we show that for proportionality and envy-freeness + com-
pleteness, the corresponding strongly compact variants of the
problems are strongly NP-hard for every α, β ≥ 1. (Notice
that our strong NP-hardness results for the compact variants
only cover the case of α ≥ 3.)
Runtime of our algorithms. The runtimes of the algorith-
mic results discussed above have an exponential dependence
on n (the number of agents). But this need not be a disquali-
fying factor as several fair division settings only have a con-
stant number of agents, and often, just two agents. Common
examples of 2-agent settings, as noted by Plaut and Rough-
garden [2020], include divorce settlements, inheritance divi-
sion and international border disputes. In fact, 2-agent set-
ting is one of the most intensively studied special cases in
fair division; see, for example, [Brams and Fishburn, 2000;
Brams et al., 2022]. We would also like to point out that
the dependence of the runtime of our treewidth-based algo-
rithm on both n and tw is also essential. Our NP-hardness re-
sults for proportional or envy-free, compact allocations when
α ≥ 3 hold for graphs of treewidth zero (even when the val-
uations are additive and polynomially bounded). The run-
time of our treewidth-based algorithm depends also on W ,
the maximum valuation of an agent for the whole graph. This
may be inevitable as well. As noted above, we can use our
algorithms to find welfare-maximising allocations. Our algo-
rithms thus compute allocations with three properties: fair-

ness, compactness and economic efficiency. And for algo-
rithms that find efficient allocations, “pseudo” runtimes are
rather common [Barman et al., 2018; Aziz et al., 2023].

Choice of parameters. We would also like to emphasise
that the parameterizations that we use to design our algo-
rithm are all commonly studied in the literature. In particu-
lar, parameterizations by the number of agents or agent types
have been used by Bouveret et al. [2017] and Deligkas et
al. [2021]. It is quite common in parameterized algorithms
literature to leverage structural parameters such as maxi-
mum degree, degeneracy or treewidth to design efficient al-
gorithms. Treewidth, in particular, is a popular structural pa-
rameter; see, for example, [Fomin et al., 2020] for the many
applications of treewidth in algorithm design. We must also
add that connected fair division of graphs has previously been
studied on special graphs such as paths, stars, trees, cycles
etc., which are all graphs of treewidth 1 or 2. Also, param-
eters such as treewidth and cliquewidth have been used as
structural parameters in connected fair division. We discuss
many of these works below. So it is very much in line with the
existing literature to use treewidth as a parameter to design al-
gorithms. In particular, one of our goals was to apply results
and techniques from graph theory literature to problems in
fair division. And for this purpose, treewidth is arguably the
most suitable choice.

1.2 Related Work
Modern fair division literature goes back at least to the pio-
neering work of Steinhaus [1948]. See the surveys by Lindner
and Rothe [2016] for the divisible goods setting; and by Aziz
et al. [2022] or by Amanatidis et al. [2022] for the indivisible
goods setting.

There is also a large volume of literature on fair division
under connectivity constraints. As for the cake cutting set-
ting (i.e., divisible goods), Stromquist [1980] proved that an
envy-free allocation of the cake into connected pieces exists,
but there is no finite protocol that can find such an alloca-
tion [Stromquist, 2008]. Coming to the indivisible goods set-
ting, the work of Bouveret et al. [2017], which formally in-
troduced this line of study, contains several algorithmic and
hardness results for connected fair division of a graph. They
showed that finding a connected allocation that is envy-free
or proportional is NP-hard, even when the graph is a path.
On the other hand, a maximin allocation always exists and
can be computed in polynomial time if the graph is a tree.
They also designed several FPT and XP algorithms with re-
spect to parameters such as number of agents and number of
agent types, for special cases of the graph. This was followed
by the work of Lonc and Truszczynski [2018], who studied
the existence and complexity of maximin fair allocations on
cycles. Among other results, they proved that when there are
only three agents, there exists an allocation that guarantees
each agent a constant fraction of her maximin share. Most
related to our work is that of Deligkas et al. [2021], who un-
dertook an in-depth study of the parameterized complexity of
connected fair division. They established a host of hardness
and algorithmic results—under various combinations of pa-
rameters such as the number of agents, treewidth, cliquewidth
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etc.—with respect to fairness concepts such as proportional-
ity, envy-freeness, EF1 and EFX. A number of recent works
deal with the special case when the graph is a path, under
various fairness notions. In particular, Bilò et al. [2022]
studied the existence and complexity of EF1 and EF2 allo-
cations; Igarashi [2022] studied EF1 allocations and showed
that EF1 allocations always exists for any number of agents
with monotone valuations; Suksompong [2019] studied ap-
proximate guarantees for proportionality, envy-freeness and
equitability; and Misra et al. [2021] studied the complexity
of finding allocations that are equitable up to one item (EQ1)
combined with economic efficiency notions such as Pareto-
optimality, non-wastefulness etc. In addition to these works
that mainly deal with the existence or computational ques-
tions associated with connected fair division, Bei et al. [2022]
studied the price of connectivity—the loss incurred by agents
when the connectivity constraint is imposed—for maximin
fair allocations. Their techniques included the application of
several graph theoretic tools and concepts to fair division.

Much of the literature on fair division under restricted in-
put settings focus on restrictions on valuations, number of
agents or relaxations of fairness notions. To the best of our
knowledge, there have only been a handful of works that
consider restrictions on the structure of bundles allocated to
agents (other than connected fair division in the context of
graphs). The typical restriction on bundles involves what can
be called cardinality constraints. The canonical example is
the house allocation problem, where each agent must receive
exactly one item. Gan et al. [2019] studied envy-freeness and
Kamiyama et al. [2021] studied proportionality and equitabil-
ity in the house allocation setting. Ferraioli et al. [2014] et al.
studied the problem of maximising egalitarian welfare, under
the additional constraint that each agent be allocated exactly k
items. Biswas and Barman [2018] introduced a more general
variant of cardinality constraints: the items are partitioned
into groups and there is a cap on each group’s contribution to
any agent’s bundle. Among other results, they showed that
a 1/3-approximate maximin fair allocation can be computed
efficiently. Recently, Hummel and Hetland [2022] improved
the approximation guarantee to 1/2. See the survey by Suk-
sompong [2021] for a comprehensive discussion of various
constraints in fair division.
Organisation of the paper. Due to space constraints, we
present only a representative subset of results here. We sketch
the proofs for an NP-hardness result and our treewidth DP.

2 Strong NP-Hardness of Compact FD
We show that checking if a proportional, (α, β)-compact al-
location exists is strongly NP-hard when α ≥ 3.
Theorem 1. For every α ≥ 3 and β ≥ 0, PROP-(α, β)-
COMPACT-FD is strongly NP-hard.

Proof sketch. Fix α ≥ 3 and β ≥ 0. We show the NP-
hardness of PROP-(α, β)-COMPACT-FD by a reduction from
EXACT COVER BY α-SETS (XαC), which is known to be
NP-complete for every α ≥ 3 [Karp, 1972].2 In XαC, the

2Karp [1972] only shows the NP hardness of X3C. But it is
straightforward to reduce X3C to XαC for every α > 3.

input consists of a set X such that |X| = αs and a fam-
ily F ⊆ 2X of subsets of X such that |F | = α for every
F ∈ F ; and the question is to decide if (X,F) has an ex-
act cover, i.e., a sub-family F ′ ⊆ F such that |F ′| = s and⋃
F∈F ′ F = X . Consider an instance (X,F) of XαC. Let
|F | = r and F = {F1, F2, . . . , Fr}. We assume without
loss of generality that r > s. Given (X,F), we now con-
struct an instance (G,N,V) of PROP-(α, β)-COMPACT-FD
as follows. Corresponding to each Fi ∈ F , we introduce an
agent i; in addition we introduce a “dummy” agent r + 1.
Thus N = [r + 1]. Corresponding to each x ∈ X , we in-
troduce an item wx; in addition, we introduce r − s “aux-
iliary” items y1, y2, . . . , yr−s and a “special” item y∗. And
we define the graph G to be the edge-less graph with vertex
set V (G) = {y∗} ∪ {yj | j ∈ [r − s]} ∪ {wx | x ∈ X}. Fi-
nally, we define the valuation functions as follows. Consider
i ∈ [r]. For each x ∈ X , we set

vi(wx) =

{
1/(αr + α), if x ∈ Fi
0, if x /∈ Fi;

vi(yj) = 1/(r+1) for every j ∈ [r−s]; and vi(y∗) = s/(r+
1). Finally, vr+1(wx) = 0 for every x ∈ X; vr+1(yj) = 0
for every j ∈ [r − s]; and vr+1(y∗) = 1. Notice that we
have

∑
z∈V (G) vi(z) = 1 for every i ∈ N . And notice also

that since G is edge-less, for every non-empty subset S ⊆
V (G), the subgraph G[S] is (α, β)-compact if and only if
|S| ≤ α. We can verify that (X,F) is a yes-instance of XαC
if and only if (G,N,V) is a yes-instance of PROP-(α, β)-
COMPACT-FD.

3 Fair Division of Graphs of Bounded
Treewidth

In this section, we show that for each of the three fair-
ness concepts—proportionality, envy-freeness and maximin
fairness—the corresponding problem of checking if there ex-
ists an allocation that is fair and (α, β) compact admits a
pseudo-XP algorithm, when parameterized by the treewidth
of the item graph and the number of agents. We design a
single dynamic programming procedure that works for all
three fairness concepts. We assume that the valuations are
integer-valued. The following theorem is the main contribu-
tion of this section.

Theorem 2. For everyα and β, PROP-(α, β)-COMPACT-FD,
EF-(α, β)-COMPACT-FD and MMS-(α, β)-COMPACT-FD
admit algorithms that run in time (tw + n)O(tw+n) · βtw ·
mO(αn)·WO(n2), where tw is the treewidth of the input graph
G and W is the maximum valuation of an agent for G, i.e.,
W = maxi∈N vi(V (G)).

Annotated allocations. To prove theorem 2, we introduce
an auxiliary problem. For a graph G, a vertex ẑ ∈ V (G)
and β > 0, we say that G is a (ẑ;β)-annotated graph if
z ∈ BG(ẑ, β) for every z ∈ V (G), i.e., every vertex in
G is within a distance of at most β from ẑ. Consider a
graph G, a set N of n agents and β > 0. For an n-tuple
(ẑi)i∈N and an allocation π : N → 2V (G), we say that π is
((ẑi)i∈N ;β)-annotated if for every i ∈ N , ẑi ∈ π(i) and
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G[π(i)] is a (ẑi;β)-annotated graph. And we define the asso-
ciated computational problem ANNOTATED-FD as follows:
Given (G,N,V), (ẑi)i∈N and β as input, does (G,N,V) ad-
mit a ((ẑi)i∈N ;β)-annotated allocation?
Remark 3 (Reducing to ANNOTATED-FD). We now show
how to use annotated allocations to prove Theorem 2. Sup-
pose (G,N,V) is a yes-instance [X]-(α, β)-COMPACT-FD;
and let π : N → 2V (G) be the hypothetical fair and (α, β)-
compact allocation that we are looking for. Then for ev-
ery i ∈ N , G[π(i)] is (α, β)-compact. Hence for every
i ∈ N , there exist vertices z1

i , z
2
i , . . . , z

α
i such that π(i) =⋃α

j=1BG[π(i)](z
j
i , β). To design our algorithm, we first

guess the vertices z1i , z2i , . . . , zαi for every i ∈ N . There
are mO(αn) many guesses. For each guess, we do as follows.
For every i ∈ N , we add a new vertex ẑi and make it adjacent
to z1

i , z
2
i , . . . , z

α
i ; and for every j ∈ N , we set vj(ẑi) = 0.

We then look for a fair and ((ẑi)i∈N , β+1)-annotated alloca-
tion. Notice that for any vertex z ∈ V (G) and i ∈ N, j ∈ [α],
z is at a distance of at most β from zji if and only if z is at a
distance of at most β+ 1 from ẑi. To summarise, given an in-
stance of [X]-(α, β)-COMPACT-FD, we can constructmO(αn)

instances of ANNOTATED-FD such that the original instance
is a yes-instance if and only if at least one of the instances of
ANNOTATED-FD is a yes-instance.

In light of Remark 3, to solve [X]-(α, β)-COMPACT-FD, it
is enough to solve ANNOTATED-FD, for which we design an
algorithm. More precisely, we prove the following lemma.
Lemma 4. There is an algorithm that, given an instance
(G, [n],V, β, (ẑi)i∈[n]) of ANNOTATED-FD, an n2 tuple
(ŵij)i,j∈[n], where 0 ≤ ŵij ≤ W for every i, j ∈ [n] and
a nice tree decomposition (T, {Xt | t ∈ V (T )}) of G as in-
put, runs in time (tw+n)O(tw+n) ·βO(tw+n) ·mO(1) ·WO(n2),
and correctly decides if (G, [n],V, β, (ẑi)i∈[n])) admits a
((ẑi)i∈[n];β)-annotated allocation π : [n]→ 2V (G) such that
vi(π(j)) = ŵij for each i, j ∈ [n].

The rest of this section is dedicated to sketching a proof
of Lemma 4. And for that, we design a dynamic program-
ming algorithm over a (nice) tree decomposition of G. We
assume basic familiarity with tree decompositions and refer
the reader to [Cygan et al., 2015, Chapter 7] for an overview
on tree decomposition based algorithms.
A tool for our DP: Rooted partition. Consider a non-
empty set S. A partition of S is a family P ⊆ 2S of non-
empty subsets of S such that

⋃
P∈P P = S and P ∩ P ′ = ∅

for every distinct P, P ′ ∈ P . For a partition P of S, each set
P ∈ P is called a block of P . And for z ∈ S, we denote the
unique block of P that contains z by blockP(z). We now
define what we call a rooted partition. For a non-empty set
S, a rooted partition P of S is nothing but a partition of S,
but each block P of P has a designated element, which we
call the root of P . Formally, a rooted partition of S is an or-
dered pair (P, R) such that P is a partition of S, R ⊆ S with
|R| = |P| and for each block P of P , |P ∩R| = 1; we call
the unique element of P ∩R the root of P .

From now on, we assume that we are given
(G, [n],V, β, (ẑi)i∈[n]), an n2 tuple (ŵij)i,j∈[n], where

0 ≤ ŵij ≤ W for every i, j ∈ [n] and a nice tree decompo-
sition (T, {Xt | t ∈ V (T )}) of G of width tw. We first add
the vertices ẑ1, ẑ2, . . . , ẑn to every bag Xt (and denote
the resulting tree decomposition by (T, {Xt | t ∈ V (T )})
as well). Notice that this increases the width of the tree
decomposition by n; and (T, {Xt | t ∈ V (T )}) still remains
a nice tree decomposition but for the fact that the bags
corresponding to the root node and the leaf nodes of T are
non-empty. In particular, for t ∈ V (T ), where t is a leaf
node or t is the root of T , we have Xt = {ẑ1, ẑ2, . . . , ẑn}.
Outline of our algorithm. Suppose that π is the
((ẑi)i∈[n];β)-annotated allocation that we are looking for.
Then distG[π(i)](ẑi, z) ≤ β for each i ∈ [n] and for each
z ∈ π(i). LetHi be a BFS tree ofG[π(i)], rooted at ẑi. Since
Hi is a BFS tree rooted at ẑi, we have distG[π(i)](ẑi, z) =
distHi(ẑi, z) for every z ∈ π(i). For a node t ∈ V (T ), we
guess how Hi intersects with the graph Gt. Notice that Hi

is an acyclic graph and it could possibly split into multiple
connected components when intersected with Gt. With this
in mind, we guess the following features of the intersection of
Hi with Gt: (a) the intersection of V (Hi)(= π(i)) with Xt,
(b) howHi partitions the vertices ofXt∩π(i) into connected
components (c) for each z ∈ Xt ∩ π(i), the distance in Hi

between z and ẑi and (4) agent i’s valuations for the subsets
of goods in Gt that have been allocated to herself as well as
the other agents, i.e., vi(π(j) ∩ V (Gt)) for every i, j ∈ [n].
We argue that these four pieces of information are sufficient
to design a dynamic programming algorithm that constructs
π in a bottom up fashion over T .

Designing the DP: Necessary Ingredients. To design our
DP, for each node t ∈ V (T ), we first define a set Ct, (which
formalises our guesses). Formally, for each t ∈ V (T ), let
Ct be the set of all tuples ((Si, fi, (Pi, Ri))i∈[n], (wij)i,j∈[n])
with the following properties.

• For each i ∈ [n], Si is a vertex subset such that ẑi ∈ Si
and Si ⊆ Xt ∩ BG(ẑi, β) and Si ∩ Sj = ∅ for every
j ∈ [n] \ {i}.

• For each i ∈ [n], (Pi, Ri) is a rooted partition of Si such
that ẑi ∈ Ri.

• For each i ∈ [n], fi : Si → [β]0 is a function such that
fi(ẑi) = 0 and fi(z) 6= 0 for every z ∈ Si \ {ẑi}.

• The tuple (wij)i,j∈[n] is an n2-tuple of non-negative in-
tegers such that 0 ≤ wij ≤W for every i, j ∈ [n].

Observation 5. For each t ∈ V (T ), we have |C|t ≤ (tw +

n)O(tw+n) · βO(tw) · WO(n2). To see this, observe the fol-
lowing facts that follow from the definition of Ct. (i) As the
sets S1, S2, . . . , Sn ⊆ Xt are pairwise disjoint, each element
of Xt belongs to at most one Si, and therefore, the number
of choices for (Si)i∈[n] is (n + 1)|Xt|. By identical rea-
soning, the number of choices for (Ri)i∈[n] is (n + 1)|Xt|.
(ii) For each choice of (Si)i∈[n], the family

⋃n
i=1 Pi is a

partition of
⋃n
i=1 Si ⊆ Xt. Therefore, corresponding to

each (Si)i∈[n], the number of choices for (Pi)i∈[n] is at most
|Xt||Xt|. (iii) As the sets S1, S2, . . . , Sn are pairwise dis-
joint, we may think of the n-tuple (fi)i∈[n] of functions as a
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single function from
⋃n
i=1 Si to [β]0. Therefore, the number

of choices for (fi)i∈[n] is at most (β + 1)|Xt|. (iv) We have
|Xt| ≤ tw + 1 + n; the “+n” accounts for the fact that we
added ẑ1, ẑ2, . . . , ẑn to every bag. (v) The number of choices
for the tuple (wij)i,j∈[n] is at most (W + 1)n

2

.
Valid allocations. We now define what we call valid allo-
cations. Informally, these are allocations that agree with our
guesses (i.e., the tuples in Ct). For a node t ∈ V (T ), letGt be
the subgraph ofGmade up of all the vertices and edges intro-
duced in the subtree rooted at t. Consider a node t ∈ V (T )
and an allocation π : [n]→ 2V (Gt). For a tuple η ∈ Ct, where
η = ((Si, fi, (Pi, Ri))i∈[n], (wij)i,j∈[n]), we say that π is
(t, η)-valid if

(VA.1) for each i ∈ [n], π(i) ∩Xt = Si;
(VA.2) for each i ∈ [n], Gt[π(i)] has a spanning forest Hi such

that
(a) for every z, z′ ∈ Si, z and z′ are in the same con-

nected component of Hi if and only if z and z′ are
in the same block of Pi;

(b) for every z ∈ Si, fi(z) = fi(x) + distHi(x, z),
where x is the root of blockPi(z);

(c) for every z ∈ π(i) \ Xt, there exists y ∈ Ri such
that distHi(y, z) ≤ β − fi(y); and

(VA.3) for each i, j ∈ [n], vi(π(j)) = wij .
For a t ∈ V (T ), η ∈ Ct, a (t, η)-valid allocation

π : [n]→ 2V (Gt) and i ∈ [n], we call a spanning forest Hi

of Gt[π(i)] that satisfies conditions (VA.2)(a)–(VA.2)(c) a
(t, η, i)-witness for π. The correctness of our DP crucially re-
lies on the following lemma, which says that every connected
component of a (t, η, i)-witness intersects Xt.
Lemma 6. Consider i ∈ [n]. For t ∈ V (T )
and η = ((Si, fi, (Pi, Ri))i∈[n], (wij)i,j∈[n]) ∈ Ct, let
π : [n]→ 2V (Gt) be a (t, η)-valid allocation and Hi a
(t, η, i)-witness for π. Then for each connected component
H of Hi, there exists a unique vertex xH ∈ V (H) ∩Ri.
Observation 7 ((Structure of a (t, η, i)-witness)). For i ∈
[n], we can think of a (t, η, i)-witness Hi as a rooted forest—
each connected component is a rooted tree;Ri is precisely the
set of roots of the components of Hi, each connected compo-
nent of Hi intersects Xt and the partition Pi is such that for
z, z′ ∈ Si, z and z′ are in the same block of Pi if and only if
z and z′ are in the same connected component of Hi.

Before proceeding further with our DP, let us first see how
valid allocations help us prove Lemma 4.
Lemma 8. Consider (G, [n],V, β, (ẑi)i∈[n]), (ŵij)i,j∈[n],
and (T, {Xt | t ∈ V (T )}) of G as defined in Lemma 4.
And consider an allocation π : [n]→ 2V (G). Then π
is a ((ẑi)i∈[n];β)-annotated allocation with vi(π(j)) =

ŵij for every i, j ∈ [n] if and only if π is (t̂, η̂)-
valid, where t̂ is the root of the tree T and η̂ =
((Si, fi, (Pi, Ri))i∈[n], (ŵij)i,j∈[n]) ∈ Ct̂ with Si = {ẑi},
fi : Si → [β]0 is the function that maps ẑi to 0, Pi = {{ẑi}}
and Ri = {ẑi} for each i ∈ [n].

Proof. Assume first that π is a ((ẑi)i∈[n];β)-annotated allo-
cation and vi(π(j)) = ŵij for every i, j ∈ [n]. We show

that π satisfies each of the conditions in the definition of
(t̂, η̂)-valid allocation. Recall that Xt̂ = {ẑ1, ẑ2, . . . , ẑn}
and Gt̂ = G. Consider i ∈ [n]. First, π(i) ∩ Xt̂ =
π(i) ∩ {ẑ1, ẑ2, . . . , ẑn} = {ẑi} = Si. Thus π satis-
fies condition (VA.1). Since π is ((ẑi)i∈[n];β)-annotated,
distG[π(i)](ẑi, z) ≤ β for every z ∈ π(i). Now, fix a BFS
tree Hi of G[π(i)], rooted at ẑi. Since π(i) ∩ Xt = {ẑi}
and Pi = {{ẑi}}, Hi trivially satisfies condition (VA.2)(a).
Again, since Si = {ẑi}, fi(ẑi) = 0 and distHi(ẑi, ẑi) = 0,
Hi trivially satisfies condition (VA.2)(b) as well. Observe
now that by the definition of a BFS tree, for every z ∈ π(i),
we have distHi(ẑi, z) = distG[π(i)](ẑi, z) ≤ β, which along
with the fact that fi(ẑi) = 0, implies that distHi(ẑi, z) ≤
β − fi(ẑi). Thus Hi satisfies condition (VA.2)(c). Finally, as
vi(π(j)) = ŵij , π satisfies condition (VA.3). We have thus
shown that π is (t̂, η̂)-valid.

Conversely, assume that π is (t̂, η̂)-valid. Consider i ∈ [n].
Recall that Si = {ẑi} and fi(ẑi) = 0. By condition (VA.1),
we have ẑi ∈ π(i). By the definition of a (t̂, η̂)-valid alloca-
tion, π has a (t, η, i)-witness, sayH ′i . By condition (VA.2)(c),
for every z ∈ π(i) \ {ẑi}, we have distH′

i
(ẑi, z) ≤ β,

which implies that distG[π(i)](ẑi, z) ≤ β. Thus ((ẑi)i∈[n];β)-
annotated.

Definition of the states of the DP. Lemma 8 tells us that to
check if (G,N,V) admits a ((ẑi)i∈[n];β)-annotated alloca-
tion, it is sufficient to check if (G,N,V) admits a (t̂, η̂)-valid
allocation. In light of this, we now define the states of our DP
as follows. For each t ∈ V (T ) and each tuple η ∈ Ct, we
define A[t, η] = 1 if there exists a (t, η)-valid allocation
andA[t, η] = 0 otherwise.

We omit the details of the computation of A[t, η]. We con-
clude with the observation that since the DP allows us to
check if there exists an allocation π with vi(π(j)) = wij for
all possible values of wij for every i, j ∈ [n], it is straight-
forward to check if there exists an allocation that satisfies the
required fairness constraints.

4 Conclusion
We proposed an alternative for connectivity in the fair divi-
sion of graphs. Our results demonstrate that we can achieve
tractability results under such alternative constraints. Our re-
sults also demonstrate that a number of tools and deep results
from graph theory could find applications in fair division; this
is still an under-explored direction. Compact allocations, we
believe, can be a compelling alternative for connected allo-
cations, and warrant further study. This work leaves several
questions open. First, it would be interesting to see if our
algorithmic results translate to the strongly compact setting.
Second, all our strong NP-hardness results rely on an arbi-
trary number of agents and non-identical valuations. It would
be interesting to see if strong NP-hardness results can be
proved for restricted input settings. Third, apart from connec-
tivity and compactness, there may be other structured bundles
that are worth investigating. We hope this work will trigger
such questions.
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