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Abstract
We study the problem of computing an approxi-
mate Nash equilibrium of continuous-action game
without access to gradients. Such game access is
common in reinforcement learning settings, where
the environment is typically treated as a black box.
To tackle this problem, we apply zeroth-order op-
timization techniques that combine smoothed gra-
dient estimators with equilibrium-finding dynam-
ics. We model players’ strategies using artificial
neural networks. In particular, we use randomized
policy networks to model mixed strategies. These
take noise in addition to an observation as input
and can flexibly represent arbitrary observation-
dependent, continuous-action distributions. Being
able to model such mixed strategies is crucial for
tackling continuous-action games that lack pure-
strategy equilibria. We evaluate the performance
of our method using an approximation of the Nash
convergence metric from game theory, which mea-
sures how much players can benefit from unilater-
ally changing their strategy. We apply our method
to continuous Colonel Blotto games, single-item
and multi-item auctions, and a visibility game. The
experiments show that our method can quickly find
a high-quality approximate equilibrium. Further-
more, they show that the dimensionality of the
input noise is crucial for performance. To our
knowledge, this paper is the first to solve general
continuous-action games with unrestricted mixed
strategies and without any gradient information.

1 Introduction
Most work on computing equilibria of games has focused on
settings with finite, discrete action spaces. Yet many games
involving space, time, money, etc. actually have continuous
action spaces. Examples include continuous resource allo-
cation games [Ganzfried, 2021], security games in continu-
ous spaces [Kamra et al., 2017; Kamra et al., 2018; Kamra
et al., 2019], network games [Ghosh and Kundu, 2019],
simulations of military scenarios and wargaming [Marchesi
et al., 2020], and most video games [Berner et al., 2019;

Vinyals et al., 2019]. Furthermore, even if the action space
is discrete, it may be fine-grained enough to treat as con-
tinuous for computational efficiency purposes [Borel, 1938;
Chen and Ankenman, 2006; Ganzfried and Sandholm, 2010].

The typical approach to computing an equilibrium of a
game with continuous action spaces involves discretizing the
action space. That entails loss in solution quality [Kroer and
Sandholm, 2015]. Also, it does not scale well; for one, in
multidimensional action spaces it entails a combinatorial ex-
plosion of discretized points (exponential in the number of
dimensions). Therefore, other approaches are called for. Fur-
thermore, in many applications, explicit gradient information
about the game is not available.

This paper is, to our knowledge, the first to solve general
continuous-action games with unrestricted mixed strategies
and without any gradient information. In §2, we introduce
some background needed to formulate the problem. In §3,
we describe related research that tackles the problem of com-
puting an approximate equilibrium of such games. In §4, we
describe our method and its components, including smoothed
gradient estimators, equilibrium-finding dynamics, and rep-
resentation of mixed strategies using randomized policy net-
works. (We use the terms policy and strategy interchangeably.
The former is common in reinforcement learning, the latter in
game theory.) In §5, we describe the various games that we
use as benchmarks, and present our experimental results and
discussion. In §6, we present our conclusions and suggest
directions for future research.

2 Problem Description
First, we introduce some notation: △X is the set of probabil-
ity measures on X , U(X) is the uniform probability measure
on X , and [·] is an Iverson bracket, which is 1 if its argu-
ment is true and 0 otherwise. A strategic-form game is a tuple
(I, S, u) where I is a set of players, Si a set of strategies for
player i, and ui :

∏
j:I Sj → R a utility function for player

i. A strategy profile s :
∏

i:I Si maps players to strategies
and s−i denotes s excluding i’s strategy. Player i’s best re-
sponse utility bi(s−i) = supsi:Si

ui(s) is the highest utility
they can attain given the other players’ strategies. Their util-
ity gap gi(s) = bi(s−i)− ui(s) is the highest utility they can
gain from unilaterally changing their strategy, and s is an ε-
equilibrium iff supi:I gi(s) ≤ ε. A 0-equilibrium is called a
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Nash equilibrium. A common measure of closeness to Nash
equilibrium is NashConv, defined as ḡ =

∫
i∼µ

gi, where µ is
some measure on I . Typically, I is finite and µ is the count-
ing measure, making ḡ a finite sum of utility gaps. However,
some games may have infinitely many players, such as mean
field games. A game is called zero-sum if

∫
i∼µ

ui = 0, which
makes ḡ =

∫
i∼µ

bi. In a two-player zero-sum game, ḡ re-
duces to the so-called “duality gap” [Grnarova et al., 2019]:
ḡ(s) = sups′1 u(s

′
1, s2)− infs′2 u(s1, s

′
2).

In many games, the Si are infinite. The following theorems
apply to such games. If for all i, Si is nonempty and compact,
and ui is continuous in s, a mixed strategy Nash equilibrium
exists [Glicksberg, 1952]. If for all i, Si is nonempty, com-
pact, and convex, and ui is continuous in s and quasi-concave
in si, a pure strategy Nash equilibrium exists [Fudenberg and
Tirole, 1991, p. 34]. Other results include the existence of
a mixed strategy Nash equilibrium for games with discontin-
uous utilities under some mild semicontinuity conditions on
the utility functions [Dasgupta and Maskin, 1986], and the
uniqueness of a pure Nash equilibrium for continuous games
under diagonal strict concavity assumptions [Rosen, 1965].

A Bayesian game is a game of incomplete information,
that is, a game in which players have only partial informa-
tion about the game and other players. Formally, it is a tuple
(I,Ω, µ,O, τ, A, r) where I is a set of players, Ω a set of
states, µ : △Ω a distribution over states, Oi a set of observa-
tions for i, τi : Ω→ Oi an observation function for i, Ai a set
of actions for i, and ri : Ω×

∏
j:I Aj → R a payoff function

for i. A strategy for player i is a function si : Oi → △Ai.
Given strategy profile s, player i’s expected payoff is ui(s) =
Eω∼µ Eaj∼sj(τj(ω)),∀j:I ri(ω, a) and their best response pay-
off is bi(s−i) = supsi ui(s) = supsi Eω Ea ri(ω, a) =
Eoi supsi Eω|oi Ea ri(ω, a) = Eoi supai

Eω|oi Ea−i
ri(ω, a),

where ω|oi conditions ω on player i’s observation being oi.

3 Related Research
McMahan et al. [2003] introduced the double oracle algo-
rithm for normal-form games and proved its convergence.
Adam et al. [2021] extended it to two-player zero-sum con-
tinuous games. Kroupa et al. [2023] extend it to n-player
continuous games. Their algorithm maintains finite strategy
sets for each player and iteratively extends them with best
responses to an equilibrium of the induced finite sub-game.
It “converges fast when the dimension of strategy spaces is
small, and the generated subgames are not large.” For ex-
ample, in the two-player zero-sum case: “The best responses
were computed by selecting the best point of a uniform dis-
cretization for the one-dimensional problems and by using
a mixed-integer linear programming reformulation for the
Colonel Blotto games.” This approach does not scale to high-
dimensional games with general payoffs where best-response
computation is difficult. Moreover, if the game is stochas-
tic, estimating the finite subgame can be difficult and require
many samples. Furthermore, this approach does not learn
observation-dependent strategies that generalize across obser-
vations.

Ganzfried et al. [2021] introduced an algorithm for approx-

imating equilibria in continuous games called “redundant fic-
titious play” and apply it to a continuous Colonel Blotto
game. Kamra et al. [2019] presented DeepFP, an approxi-
mate extension of fictitious play to continuous action spaces.
They demonstrate stable convergence to equilibrium on sev-
eral classic games and a large forest security domain. DeepFP
represents players’ approximate best responses via generative
neural networks. The authors state that such models cannot be
trained directly in the absence of gradients, and thus employ
a game-model network that is a differentiable approximation
of the game’s payoff function, training these networks end-to-
end in a model-based learning regime. Our approach shows,
however, that these generative models can be trained directly.

Li et al. [2021] extended the double oracle approach to n-
player general-sum continuous Bayesian games. They rep-
resent agents as neural networks and optimize them using
natural evolution strategies (NES) [Wierstra et al., 2008;
Wierstra et al., 2014]. To approximate a pure-strategy equi-
librium, they formulate the problem as a bi-level optimization
and employ NES to implement both inner-loop best response
optimization and outer-loop regret minimization.

Bichler et al. [2021] represented strategies as neural net-
works and applied simultaneous gradients to provably learn
local equilibria. They focus on symmetric auction models, as-
suming symmetric prior distributions and symmetric equilib-
rium bidding strategies. Bichler et al. [2023] extended this to
asymmetric auctions, where one needs to train multiple neu-
ral networks. The previous two papers restrict their attention
to pure strategies.

Fichtl et al. [2022] computed distributional strategies [Mil-
grom and Weber, 1985] (a form of mixed strategies for
Bayesian game) on a discretized version of the game via
online convex optimization, specifically simultaneous online
dual averaging, and show that the equilibrium of the dis-
cretized game approximates an equilibrium in the continu-
ous game. That is, they discretize the type and action spaces
and implement gradient dynamics in the discretized version
of the game without using neural networks. In contrast, our
approach does not use discretization, which can work well for
small games but does not scale to high-dimensional observa-
tion and action spaces. In the appendix, we discuss additional
related research.

4 Proposed Method
We now describe our game-solving technique.

4.1 Gradient Estimation
Consider the problem of maximizing f : Rd → R with ac-
cess to its values but not derivatives. This setting is called
zeroth-order optimization. One approach to this problem is to
compute estimates of the gradient g(x) ≈ ∇f(x) and apply
gradient-based optimization. The gradient could be estimated
via finite differences as g(x)i = 1

σ (f(x + σei) − f(x)) for
all i ∈ [d], where ei is the ith standard basis vector and σ is a
small number. However, the number of queries needed scales
linearly with the number of dimensions d. Another approach
is to evaluate the function at randomly-sampled points and es-
timate the gradient as a sum of estimates of directional deriva-
tives along random directions [Duchi et al., 2015; Nesterov
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and Spokoiny, 2017; Shamir, 2017; Berahas et al., 2022].
These methods compute an unbiased estimator of the gradient
of a smoothed version of f induced by stochastically perturb-
ing the input under some distribution µ1 and taking the ex-
pectation [Duchi et al., 2012]. Specifically, for distributions
µ1 and µ2, ∇x Eu∼µ1

f(x + σu) = 1
σ Eu∼µ2

f(x + σu)u.
Gaussian smoothing uses µ1 = µ2 = N (0, Id). Ball smooth-
ing uses µ1 = U(

√
dBd), µ2 = U(

√
dSd), where Bd and Sd

are the d-dimensional unit ball and sphere. These yield in-
stances of a class of black box optimization algorithms called
evolution strategies [Rechenberg and Eigen, 1973; Schwe-
fel, 1977; Rechenberg, 1978], which maintain and evolve a
population of parameter vectors. Specifically, they yield in-
stances of natural evolution strategies [Wierstra et al., 2008;
Wierstra et al., 2014; Yi et al., 2009], which represent the
population as a distribution over parameters and maximize
its average objective value using the score function estima-
tor. For example, Gaussian smoothing has been applied to
single-agent reinforcement learning and obtains competitive
results on standard benchmarks [Salimans et al., 2017]. To
estimate the smoothed gradient, various stencils can be used.
These have the form 1

σN

∑N
i=1 aiui where ui ∼ µ2 inde-

pendently and ai is f(x + σui), f(x + σui) − f(x), and
1
2 (f(x + σui) − f(x − σui)) for the single-point, forward-
difference, and central-difference stencils, respectively. The
single-point stencil has a large variance that diverges to infin-
ity as σ approaches 0, so the latter two are typically used in
practice [Berahas et al., 2022].

4.2 Equilibrium-Finding Dynamics

Several gradient-based algorithms exist for finding equilib-
ria in continuous games, as described in the appendix. Their
convergence is analyzed in various works [Balduzzi et al.,
2018; Letcher et al., 2019; Mertikopoulos and Zhou, 2019;
Grnarova et al., 2019; Mazumdar et al., 2019; Hsieh et al.,
2021]. In the games we tested, simultaneous gradient as-
cent was sufficient to obtain convergence to equilibrium and
the other dynamics did not yield further improvements. Mer-
tikopoulos et al. [2019] analyze the conditions under which
simultaneous gradient ascent converges to Nash equilibria.
They prove that, if the game admits a pseudoconcave po-
tential or if it is monotone, the players’ actions converge to
Nash equilibrium, no matter the level of uncertainty affecting
the players’ feedback. Bichler et al. [2021] write that most
auctions in the literature assume symmetric bidders and sym-
metric equilibrium bid functions [Krishna, 2002]. This sym-
metry creates a potential game, and simultaneous gradient
dynamics provably converge to a pure local Nash equilibria
in finite-dimensional continuous potential games [Mazumdar
et al., 2020]. Thus in any symmetric and smooth auction
game, symmetric gradient ascent with appropriate (square-
summable but not summable) step sizes almost surely con-
verges to a local ex-ante approximate Bayes-Nash equilib-
rium [Bichler et al., 2021, Proposition 1]. These results ap-
ply to most of our experiments, except for the asymmetric-
information auction.

Algorithm 1 Distributed multiagent pseudogradient ascent

Input: I is the set of players, u is the utility function
initialize PRNG state with fixed seed
x← initial strategy profile
for i ∈ I do

Si ← init(xi) ▷ initial state of optimizer i
loop
J ← set of available workers
for j ∈ J do

aj ← player ∈ I ▷ can be set dynamically
εj ← scale ∈ R>0 ▷ can be set dynamically
zj ∼ N(0, Idimxi

) where i = aj
j ← own worker ID
δj ← u(xi+εjzj ,x−i)i−u(xi−εjzj ,x−i)i

2εj
where i = aj

send δj to coordinator, receive δ from coordinator
for i ∈ I do
K ← {j ∈ J | aj = i} ▷ workers assigned i
vi ← 1

|K|
∑

j∈K δjzj ▷ i’s pseudogradient
Si,xi ← step(Si,vi) ▷ step optimizer i

4.3 Distributed Training Algorithm
Our algorithm for training strategy profiles can also be effi-
ciently distributed, as we now describe. We present the pseu-
docode as Algorithm 1.

On any iteration, there is a set of available workersJ . Each
worker is assigned the task of computing a pseudogradient
for a particular player. The vector {aj}j∈J contains the as-
signment of a player for each worker. Each worker’s pseu-
dorandom number generator (PRNG) is initialized with the
same fixed seed. On any iteration, one of the workers is the
coordinator. Initially, or when the current coordinator goes
offline, the workers choose a coordinator by running a leader
election algorithm. On each iteration, each worker evaluates
the utility function (generally the most expensive operation
and bottleneck for training) twice to compute the finite dif-
ference required for the pseudogradient. It then sends this
computed finite difference (a single scalar) to the coordinator.
The coordinator then sends the vector of these scalars to every
worker, ensuring that all workers see each other’s scalars (an
“allgather” operation). Thus the information that needs to be
passed between workers is minimal. This greatly reduces the
required cross-worker bandwidth compared to schemes that
pass parameters or gradients between workers, which can be
prohibitively expensive for large models.

This massively parallelizes Algorithm 1 of Bichler et
al. [2021] (“NPGA using ES gradients”). Simultaneously, it
generalizes Algorithm 2 of Salimans et al. [2017] (“Paral-
lelized Evolution Strategies”), which also uses shared seeds,
to the multiplayer setting, with separate gradient evaluations
and optimizers for each player. Furthermore, it allows for
the possibility of setting the worker-player assignments aj
and perturbation noise scales εj dynamically over time, pro-
vided that this is done consistently across workers (for exam-
ple, based on their common state variables). Vanilla gradi-
ent descent, momentum gradient descent, optimistic gradient
descent, or other optimization algorithms can be used. The
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Figure 1: Structure of a randomized policy network.

appendix contains some examples of such algorithms.
The set of available workers can also change dynamically

over time. If a worker leaves or joins the pool, the coordina-
tor notifies all workers of its ID so they can remove it from,
or add it to, their J sets. The new worker is brought up to
speed by passing it the current PRNG state, strategy profile
parameters, and optimizer states (what state information is
needed depends on the algorithm used, for example, whether
momentum is used).

4.4 Policy Representation
Another key design choice is how the players’ strategies are
modeled. Bichler et al. [2021] model strategies using neu-
ral networks. Each player’s policy network takes as input
a player’s observation and outputs an action. These policy
networks were then trained using neural pseudogradient as-
cent, which uses Gaussian smoothing and applies simultane-
ous gradient ascent. As the authors note, their policy net-
works can only model pure strategies, since the output action
is deterministic with respect to the input observation.

We also model strategies using neural networks, with one
crucial difference: our policy network fθ takes as input the
player’s observation o together with noise z from some fixed
latent distribution, such as the standard multivariate Gaussian
distribution. Thus the output a = fθ(o, z) of the network
is random with respect to o. The network can then learn to
transform this randomness into a desired action distribution.
This lets us model mixed strategies, which is especially de-
sirable in games that lack pure-strategy equilibria. Some ap-
proaches in the literature use the output of a policy network
to parameterize some parametric distribution on the action
space, such as a Gaussian mixture model. However, taking
the randomness as input and letting the neural network re-
shape it as desired allows us to model arbitrary distributions
more flexibly.

Figure 1 illustrates the high-level structure of a random-
ized policy network. It takes as input an observation and
random noise, concatenates them, passes the result through
a feedforward neural network, and outputs an action. The di-
mensionality of noise fed into a randomized policy network
is an important hyperparameter. In the appendix, we review
the literature that studies the relation between input noise di-
mension and representational power in neural network-based
generative models.

5 Experiments
To initialize our networks, we use He initialization [He et al.,
2015], which is widely used for feedforward networks with

ReLU-like activation functions. It initializes bias vectors to
zero and weight matrices with normally-distributed entries
scaled by

√
2/n, where n is the layer’s input dimension. We

use the ELU activation function [Clevert et al., 2016] for hid-
den layers. Like Bichler et al. [2021], we use 2 hidden layers
with 10 neurons each.

We illustrate the performance of our method by plotting the
NashConv over 108 optimization steps. Each hyperparame-
ter setting is labeled in the legend and shown in a different
color. Each individual setting is run 20 times. Solid lines in-
dicate means across trials. Bands indicate a confidence inter-
val for this mean with a confidence level of 0.95. These con-
fidence intervals are computed using bootstrapping [Efron,
1979], specifically the bias-corrected and accelerated (BCa)
method [Efron, 1987].

For the gradient estimator, we use the Gaussian distribu-
tion with scale σ = 10−2, N = 1 samples, and the central-
difference stencil (2 evaluations per step). For the optimizer,
we use standard gradient descent with a learning rate of 10−6.
To estimate NashConv (see the end of §2), we use 100 ob-
servation samples and 300 state samples (given each observa-
tion). We use a 100-point discretization of the action space for
the auctions and visibility game. For Colonel Blotto games,
we use a 231-point discretization of the action space. It is
obtained by enumerating all partitions of the integer 20 into 3
parts and renormalizing them to sum to 1.

We now describe our benchmark games and experimental
results for each game. The appendix contains figures illustrat-
ing analytically-derived equilibria for these games, in cases
where they are known.

5.1 Colonel Blotto Games
The original Colonel Blotto game was introduced by Borel
et al. [1953]. It is a two-player zero-sum game in which
two players distribute resources over several battlefields. A
battlefield is won by whoever devotes the most resources to
it. A player’s payoff is the number of battlefields they win.
This game models many real-world situations of conflict or
competition that involve resource allocation, such as politi-
cal campaigns, research and development, national security,
and systems defense. Various variants have been studied in
the literature. More information about these can be found in
the appendix. We describe the general case with continuous
allocations, heterogeneous budgets, heterogeneous battlefield
values across both players and battlefields, and several play-
ers. Suppose there are J battlefields. Let bi be the budget
of player i. Let vij be the value to player i of battlefield j.
Player i’s action space is the standard J-simplex dilated by
their budget: Ai = {aij : R | aij ≥ 0,

∑
j aij = bi}. Player

i’s reward function is ri(a) =
∑

j vijwij(a) where wij is
the probability that i wins j. Ties are broken uniformly at
random.

Actions in the continuous Colonel Blotto game are points
on the standard simplex. Thus we use a softmax activation
function for the output layer of the randomized policy net-
work. Figure 2 illustrates the performance of our method on
the continuous Colonel Blotto game with 2 players and 3 bat-
tlefields. Since the game has no pure-strategy Nash equilib-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2847



Figure 2: Continuous Colonel Blotto game.

Figure 3: Colonel Blotto game strategies at epochs 0, 60, 120, and
180 (left to right). Each histogram uses 104 action samples.

rium, deterministic strategies perform badly, as expected. 1-
dimensional noise results in slightly better performance, but
does not let players randomize well enough to approximate
the equilibrium. On the other hand, noise of dimension 2 and
higher is sufficient for good performance. The very slight
increase in exploitability after 1e8 steps is most likely due
to fluctuations introduced by the many sources of stochastic-
ity in the training process, including the game and gradient
estimates, as well as the fact that we are training a multi-
layer neural network. Even in the supervised learning set-
ting, loss does not always decrease monotonically. Figure 3
illustrates the strategies at different stages of training for one
trial that uses 2-dimensional noise. Each scatter plot is made
by sampling 105 actions from each player’s strategy. Fig-
ure 4 also illustrates performances on the continuous Colonel
Blotto game with 2 players and 3 battlefields. This time, how-
ever, the budgets for each player are sampled from the stan-
dard uniform distribution and revealed to both players. Thus
each player must adjust their action distribution accordingly.
To our knowledge, prior approaches [Adam et al., 2021;
Kroupa and Votroubek, 2023; Ganzfried, 2021] do not learn
strategies that can generalize across different parameters (like
budgets and valuations), which requires the use of function
approximators such as neural networks.

5.2 Single-Item Auctions
An auction is a mechanism by which items are sold to bid-
ders. Auctions play a central role in the study of markets

Figure 4: Continuous Colonel Blotto game with random budgets.

and are used in a wide range of contexts. In a single-item
sealed bid auction, bidders simultaneously submit bids and
the highest bidder wins the item. Let wi(a) be the probability
i wins given action profile a, where ties are broken uniformly
at random. Let vi(ω) be the item’s value for the ith player
given state ω. In a kth-price winner-pay auction, the winner
pays the kth highest bid: ri(ω, a) = wi(a)(vi(ω) − a(k)),
where a(k) is the kth highest bid. In an all-pay auction, each
player always pays their bid: ri(ω, a) = wi(a)vi(ω) − ai.
This auction is widely used to model lobbying for rents in
regulated and trade protected industries, technological com-
petition and R&D races, political campaigns, job promotions,
and other contests [Baye et al., 1996]. The all-pay complete-
information auction lacks pure-strategy equilibria [Baye et
al., 1996]. The 2-player 1st-price winner-pay asymmetric-
information auction also lacks pure-strategy equilibria [Kr-
ishna, 2002, section 8.3]. In particular, the second player
must randomize. More details about each type of auction can
be found in the appendix.

To ensure the output is non-negative, we use a squaring
function in the output layer, rather than a ReLU function like
Bichler et al. [2021]. The reason is that, as we found in
our experiments, ReLU can easily cause degenerate initial-
izations: if the randomly-initialized neural network happens
to map all of the unit interval (the observation space) to nega-
tive bids, no gradient signal can be received and the network
is stuck. By default, auctions are 2-player, 1st-price, and
winner-pay unless otherwise noted. Figure 5 illustrates per-
formances for the asymmetric information auction. Figures 6
and 7 illustrate performances and strategies for the complete-
information all-pay auction. Recall that these auctions have
no pure-strategy equilibria. Thus, as expected, deterministic
strategies perform poorly. As with Colonel Blotto games, our
experiments in these auction settings show that the ability to
flexibly model mixed strategies is crucial for computing ap-
proximate Nash equilibria in certain auction settings.

5.3 Multi-Item Auctions
Multi-item auctions are of great importance in practice, for
example in strategic sourcing [Sandholm, 2013] and radio
spectrum allocation [Milgrom and Segal, 2014; Milgrom and
Segal, 2020]. However, deriving equilibrium bidding strate-
gies for multi-item auctions is notoriously elusive. A rare
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Figure 5: The asymmetric-information auction.

Figure 6: The all-pay complete-information auction.

notable instance where equilibrium strategies have been de-
rived is the chopstick auction [Szentes and Rosenthal, 2003b;
Szentes and Rosenthal, 2003a]. In this auction, 3 chopsticks
are sold simultaneously in separate first-price sealed-bid auc-
tions. There are 2 bidders, and it is common knowledge that
a pair of chopsticks is worth $1, a single chopstick is worth
nothing by itself, and 3 chopsticks are worth the same as 2.
Here, pure strategies are triples of non-negative real numbers
(bids). This game has an interesting equilibrium: let the tetra-
hedron T be defined as the convex hull of the four points
( 12 ,

1
2 , 0), (

1
2 , 0,

1
2 ), (0,

1
2 ,

1
2 ), and (0, 0, 0). Then the uniform

probability measure on the 2-dimensional surface of T gen-
erates a symmetric equilibrium. (Furthermore, all points in-
side the tetrahedron are pure best responses to this equilib-
rium mixture.) We benchmark on the chopstick auction since
it is a rare case of a multi-item auction with a known analytic
equilibrium, so we can compare our output to an exact equi-
librium. It is also a canonical case of simultaneous separate
auctions under combinatorial preferences.

Figures 8 and 9 illustrate performances and strategies for
the chopstick auction. The latter figure shows that, with more
epochs, the strategies better approximate a tetrahedron, which
is the analytic equilibrium (as discussed in the appendix).
Here we encounter an interesting phenomenon. Recall that
this game has a symmetric equilibrium generated by the uni-
form measure on the surface of a tetrahedron. Although
the tetrahedron itself is 3-dimensional, its surface is only 2-
dimensional. Thus one may wonder whether 2-dimensional
noise is sufficient, that is, whether the network can learn to

Figure 7: Complete-information auction strategies at epochs 0, 30,
60, and 90 (left to right). X and Y axes denote observation and bid,
respectively. Each histogram uses 104 action samples per observa-
tion.

Figure 8: The chopstick auction.

project this lower-dimensional manifold out into the third
dimension while “folding” it in the way required to obtain
the surface of the tetrahedron. Through our experiments, we
observe that 2-dimensional noise suffices to (approximately)
match the performance of higher-dimensional noise. Thus the
intrinsic dimension of the equilibrium action distribution (as
opposed to the extrinsic dimension of the ambient space in
which it is embedded) seems to be the decisive factor.

5.4 Visibility Game
Lotker et al. [2008] introduced the visibility game, a nonco-
operative, complete-information strategic game. In this game,
each player i chooses a point xi ∈ [0, 1]. Their payoff is the
distance to the next higher point, or to 1 if xi is the highest.
This game models a situation where players seek to maximize
their visibility time, and is a variant of the family of “timing
games” [Fudenberg and Tirole, 1991]. Lotker et al. [2008]
prove that the n-player visibility game has no pure equilib-
rium, but has a unique mixed equilibrium, which is symmet-
ric. In the 2-player case, up to a set of measure zero, there is
a unique equilibrium whose strategies have probability densi-
ties p(x) = 1/(1−x) when 0 ≤ x ≤ 1−1/e and 0 otherwise.
Each player’s expected payoff is 1/e.

Figures 10 illustrates performances on the 2-player visibil-
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Figure 9: Chopstick auction strategies, based on 105 action samples.
X, Y, and Z axes denote bid for each item. Left to right: Players 1
and 2. Top to bottom: Epochs 30, 60, and 90.

ity game. Figure 11 illustrates strategies during training for
a trial with 1-dimensional noise. The players’ distributions
converge to the expected distribution (there is a distinctive
cutoff at 1−1/e ≈ 0.632). As expected, 0-dimensional noise,
which yields deterministic strategies, performs very poorly.
More interestingly, there is a noticeable gap in performance
between 1-dimensional noise, which matches the dimension-
ality of the action space, and higher-dimensional noise. That
is, using noise of higher dimension than the action space ac-
celerates convergence in this game.

6 Conclusions and Future Research
We presented, to our knowledge, the first paper to solve gen-
eral continuous-action games with unrestricted mixed strate-
gies and without any gradient information. We accomplished
this using zeroth-order optimization techniques that combine
smoothed gradient estimators with equilibrium-finding gradi-
ent dynamics. We modeled players’ strategies using random-
ized policy networks that take noise as input and can flexibly
represent arbitrary observation-dependent, continuous-action
distributions. Being able to model such mixed strategies is
crucial for tackling continuous-action games that can lack
pure-strategy equilibria.

We evaluated our method on various games, including con-
tinuous Colonel Blotto games, single-item and multi-item
auctions, and a visibility game. The experiments showed that

Figure 10: Performance on the 2-player visibility game.

Figure 11: Visibility game strategies at epochs 0, 100, 200, and 300
(left to right). X and Y axes denote the action and probability den-
sity, respectively. Each histogram uses 105 action samples.

our method can quickly compute a high-quality approximate
equilibrium for these games. Furthermore, they showed that
the dimensionality of the input noise is crucial for represent-
ing and converging to equilibrium. In particular, noise of too
low dimension (or no noise, which yields a deterministic pol-
icy) results in failure to converge. Randomized policy net-
works flexibly model observation-dependent action distribu-
tions. Thus, in contrast to prior work, we can flexibly model
mixed strategies and directly optimize them in a “black-box”
game with access only to payoffs.

This work opens many directions for tackling even more
complex multiagent environments. In multi-step environ-
ments, the current observation might not contain all infor-
mation about past observations and actions that is relevant
to choosing an action. To give agents memory, one can use
recurrent networks. In that case, the policy network would
receive as input an observation, source of randomness, and
memory state and output an action and new memory state.
One can also consider games with more complex observation
and action spaces, including high-dimensional arrays like im-
ages. Convolutional networks can be used to process such in-
puts. Very complex environments, including real-time strat-
egy games like StarCraft II, may require more sophisticated
neural architectures.
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et ses applications, volume IV of Applications aux jeux
des hazard. Gauthier-Villars, Paris, 1938.
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