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Abstract
Trading networks are an indispensable part of to-
day’s economy, but to compete successfully with
others, they must be efficient in maximizing the
value they provide to the external market. While
the prior work relies on truthful disclosure of pri-
vate information to achieve efficiency, we study
the problem of designing mechanisms that result
in efficient trading networks by incentivizing firms
to truthfully reveal their private information to a
third party. Additional desirable properties of such
mechanisms are weak budget balance (WBB; the
third party needs not invest) and individual ratio-
nality (IR; firms get non-negative utility). Unlike
combinatorial auctions, there may not exist mech-
anisms that simultaneously satisfy these properties
ex post for trading networks. We propose an ap-
proach for computing or learning truthful and effi-
cient mechanisms for given networks in a Bayesian
setting, where WBB and IR, respectively, are re-
laxed to ex ante and interim for a given distribution
over the private information. We incorporate tech-
niques to reduce computational and sample com-
plexity. We empirically demonstrate that the pro-
posed approach successfully finds the mechanisms
with the relaxed properties for trading networks
where achieving ex post properties is impossible.

1 Introduction
Trading networks [Hatfield et al., 2013] are becoming in-
creasingly ubiquitous and essential in vital areas such as
transportation and supply chain. A trading network consists
of the firms who trade through bi-lateral contracts and aims
at benefiting those firms and the markets external to the net-
work. A major goal of a trading network is thus efficiency
in the sense of maximizing the value (social welfare) that the
trading network creates.

Prior work on trading networks primarily investigates so-
lution concepts such as stability and competitive equilibrium
[Hatfield et al., 2013; Candogan et al., 2021], which result
in efficiency. To compute these solutions for a given trading
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network, however, existing algorithm require the information
about how the firms value trades (which we define as the types
of the firms), private information which therefore needs to be
truthfully revealed by the firms. As we will show, however,
the firms typically have incentive to be untruthful.

We thus seek to provide a mechanism for a given trading
network such that the firms have the incentive to be truthful,
which in turn leads to efficiency. To this end, we allow the
firms to make (possibly negative) payment to an Independent
Party (IP). In this setting, we desire mechanisms that satisfies
weak budget balance (WBB; non-negative utility of IP) and
individual rationality (IR; non-negative utility of firms) in ad-
dition to efficiency and dominant-strategy incentive compat-
ibility (DSIC; promotion of truthfulness). These four prop-
erties are standard in mechanism design [Parkes, 2001]. In
particular, for combinatorial auctions, the VCG mechanism
with the Clarke pivot rule is known to satisfy all of the four
properties ex post, i.e. surely for any types, [Nisan, 2007].

However, trading networks are fundamentally more com-
plex than combinatorial auctions. In particular, a trade trans-
fers a good from a seller to a buyer, and the seller who has
negative valuation on the trade is compensated by the pay-
ment from the buyer. Therefore, as we describe in the sequel,
it is impossible to simultaneously satisfy the four properties
ex post for a broad class of trading networks, making the de-
sign of mechanisms for such networks non-trivial, in contrast
to combinatorial auctions.

We thus relax the WBB and IR properties, and restrict our-
selves to a Bayesian setting, in which there is a (prior) discrete
distribution over the types. In this setting, we seek to compute
a mechanism that satisfies WBB and IR ex ante and interim
respectively (i.e., in expectation with respect to the distribu-
tion of types). To ensure DSIC and efficiency, we utilize the
class of Groves mechanisms and show how to compute the
pivot rule of the Groves mechanism via a linear program (LP)
that encodes WBB and IR as constraints.

While this LP successfully computes a mechanism with the
four desirable properties, it involves two shortcomings. First,
the LP needs the exact knowledge of the distribution of types.
Second, the LP becomes intractable as the number of trades,
players, or types increases. To mitigate these shortcomings,
we provide a mechanism learning approach, which only re-
quires a sample of types instead of their exact distribution.
We further propose several techniques to reduce the computa-
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tional and sample complexity of the mechanism learning. In
particular, we manually design special Groves mechanisms,
which achieve some but not all of the four properties ex post,
and demonstrate how the dimension of the feature vector of
the types can be reduced based on the knowledge of those
special mechanisms.

Our contribution is an automated mechanism design
(AMD; [Conitzer and Sandholm, 2002]) approach for com-
puting or learning desirable mechanisms for trading networks
(Section 4-5). This consists of a) formulating an LP whose
solution gives a Groves mechanism that satisfies all of the
four desirable properties for a trading network with a given
distribution of types, b) integrating machine learning tech-
niques into the LP to extend the cases where such mecha-
nisms can be designed, and c) reducing the number of vari-
ables in LP or the dimension of the feature vectors in the
corresponding learning approach based on special Groves
mechanisms. Furthermore, we provide empirical analysis
to support the effectiveness of our AMD approaches (Sec-
tion 6). For reproducibility, the source code is open-sourced
at https://github.com/IBM/mechanism-learning.

1.1 Related Work
Trading networks and their efficiency have been extensively
studied [Hatfield et al., 2013; Candogan et al., 2021; Os-
trovsky, 2008; Hatfield and Kominers, 2012; Hatfield et
al., 2015]), but no approaches are known to simultaneously
achieve the four properties in trading networks. In fact, there
are few studies on incentive compatibility in trading networks
with an exception of [Schlegel, 2022], who establishes incen-
tive compatibility but only for those firms who are buyers (or
sellers) in all trades.

From methodological perspectives, the prior work most re-
lated to ours is some of the AMD approaches for combi-
natorial auctions, where constrained optimization problems
are formulated and approximated with the sample from the
distribution of types. However, in [Duetting et al., 2019;
Rahme et al., 2021], DSIC is encoded as a constraint of the
optimization problem and is not necessarily guaranteed due
to the sample approximation unless the dataset covers the full
support of the distribution, while we always ensure DSIC via
the Groves mechanism (hence, we do not require the knowl-
edge of the support, which is a fundamental advantage over
[Duetting et al., 2019; Rahme et al., 2021]). On the other
hand, [Manisha et al., 2018; Tacchetti et al., 2022] learn the
mechanism (specifically, the rule of redistributing payment
from IP to players) that minimizes the expected revenue of IP,
while ensuring the four properties via the VCG mechanism.
In trading networks, however, it is possible to guarantee only
two properties via the Groves mechanism, and we encode the
other two properties as constraints of our LP.

[Alon et al., 2021] also study an approach of computing
(no learning) a mechanism for a principal-agent model as a
solution to LP, while ensuring some of the properties via the
VCG mechanism. Earlier work along this line of computing a
mechanism within a restricted class of mechanisms includes
[Likhodedov and Sandholm, 2004], who maximize expected
revenue in combinatorial auctions. Sample approximation of
this method is studied by [Likhodedov and Sandholm, 2005].

2 Trading Networks
Following [Hatfield et al., 2013], we model a trading network
by a tuple (N ,Ω, v), where N is a set of players (or firms),
Ω is a set of bi-lateral trades, and v ≡ (vi)i∈N , where each
vi : 2Ω → R is the type (valuation) of player i. That is,
vi(Φ) represents the (possibly negative) value of Φ ⊆ Ω for
the player with type vi (i.e., a player’s valuation is allowed to
depend on the trades between other players). For notational
convenience, we denote a trading network (N ,Ω, v) as T (v)
when specific N and Ω are unimportant or clear from the
context. Without loss of generality, we assume that the value
of no trade is zero for any player (i.e., vi(∅) = 0, ∀i ∈ N ).
Each trade is associated with a seller and a buyer in N , and
the buyer makes non-negative payment to the seller. Let p(ω)
be the payment associated with ω ∈ Ω. We refer to a pair
(ω, p(ω)) as a contract. A pair of Φ and p determines a set of
contracts, {(ω, p(ω)) : ω ∈ Φ}.

One’s goal with a trading network is to determine a set
of trades Φ ⊆ Ω to be conducted together with the pay-
ment associated with each trade in a way that certain prop-
erties are satisfied. A particularly important metric is the to-
tal valuations associated with the trades to be conducted (i.e.,∑

i∈N vi(Φ)), since it is the value that the trading network
produces to the external markets. The total valuations may be
considered as net payment from the external markets to the
trading network, who buys raw materials and sells final prod-
ucts. Therefore, we say that the set of trades Φ⋆ is efficient
for a trading network T (v) if∑

i∈N
vi(Φ

⋆) ≥
∑
i∈N

vi(Φ), ∀Φ ∈ 2Ω. (1)

The efficiency may also be represented in terms of the utili-
ties of players. Specifically, by conducting the set of contracts
{(ω, p(ω)) : ω ∈ Φ}, the player i ∈ N gets the following
(quasi-linear) utility:

ũi((Φ, p); T (v)) = vi(Φ) +
∑

ω∈Φi→

p(ω)−
∑

ω∈Φ→i

p(ω),

where Φi→ is the subset of Φ where i is the seller, and Φ→i

is the one where i is the buyer. Since the total payment from
sellers equals the total payment to buyers, we can show (see
(26)-(29) in [Osogami et al., 2022]) that, for any p, (1) is
equivalent to∑

i∈N
ũi((Φ

⋆, p); T (v)) ≥
∑
i∈N

ũi((Φ, p); T (v)), ∀Φ ∈ 2Ω.

(2)

The prior work has developed algorithms for finding the
set of contracts that have the properties stronger than ef-
ficiency (e.g., competitive equilibrium and stability) under
certain conditions (e.g., full substitutability [Hatfield et al.,
2019]). However, they all rely on the knowledge of the types.

In practice, however, the types are private information and
need to be revealed by the players. Then, the players can
have the incentive to be untruthful, which in turn leads to in-
efficiency, as the following example shows:
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Example 1. Consider a trading network with a single poten-
tial trade, Ω = {ω}, between two players, N = {S,B}. With
ω, the seller (S) incurs a production cost CS, and the buyer
(B) gets a profit 1−CB (retail price minus handling cost): i.e.,
vS(Φ) = −CS I{Φ = Ω} and vB(Φ) = (1−CB) I{Φ = Ω},
where I{·} is the indicator function. Consider the payment,
p(ω) = 1+CS−CB

2 , that equally shares the net profit. Given
the types (i.e., CS and CB), we can achieve efficiency by let-
ting Φ = Ω if CS + CB < 1 and Φ = ∅ otherwise. When
CS + CB < 1, the utility of each player is 1−CS−CB

2 . How-
ever, then each player i has the incentive to untruthfully de-
clare higher cost Ci + ε to get higher utility 1−CS−CB+ε

2 .
If the declared cost is too high, the trade is not conducted.
Since 1−CS −CB = vS(Ω)+ vB(Ω) > vS(∅) + vB(∅) = 0,
untruthfulness indeed leads to inefficiency.

3 Mechanisms for Trading Networks
We consider the trading networks where the types are private
information of the respective players and study the mecha-
nisms that promote truthfulness, leading to efficiency. To fa-
cilitate truthfulness, we allow the mechanism to require each
player i to make (possibly negative) payment τi ∈ R to an in-
dependent party (IP). A trading network with IP is denoted by
T +(v) = (N+,Ω, v), where N+ ≡ N∪{IP} denotes the set
of all players and IP. Also, let Vi be the discrete space of types
for each i ∈ N and let V ≡ ×i∈NVi be the product space.
Moreover, let T +(V) ≡ (N ,Ω,V) ≡ {T +(v) : v ∈ V} be
the set of trading networks with IP under V . We will simply
refer to T +(v) or T +(V) as a trading network.

We study the Bayesian setting where there exists a (prior)
distribution q over V such that the players have types v with
probability q(v). Throughout, we assume that the true type vi
of each player i ∈ N is known by that player. However, we
we make varying assumptions on other knowledge about the
types, which are made explicit in each result in the following.

3.1 Direct Mechanisms and Desirable Properties
We study direct mechanisms, where players and IP act ac-
cording to the following protocol:

1. Each player i declares a possibly untruthful type v̂i

2. IP determines the set of contracts, {(ω, π(ω; v̂)) : ω ∈
ϕ(v̂)}, and (possibly negative) payment, τi(v̂), from
each player i to IP

A direct mechanism of a trading network T (V) is specified by
an outcome rule (ϕ, τ, π), where ϕ : V → 2Ω is the allocation
rule that maps declared types, v̂ ≡ (v̂i)i∈N , to a set of trades
ϕ(v̂) to be conducted; τ determines the rule of payment to IP,
τi ∈ V → R, for each i ∈ N ; π : 2Ω×V → R is the payment
rule that determines the payment associated with each trade,
depending on the declared types. In the following, we refer
to a direct mechanism simply as a mechanism.

When v̂ is declared by the players in the trading network
T +(v), each player i ∈ N gets the following utility under the
mechanism (ϕ, τ, π):
ui(v̂; (ϕ, τ, π), T +(v)) (3)

= vi(ϕ(v̂)) +
∑

ω∈ϕ(v̂)i→

π(ω; v̂)−
∑

ω∈ϕ(v̂)→i

π(ω; v̂)− τi(v̂).

We denote the net-payment to IP (or utility of IP) by

uIP(v̂; (ϕ, τ, π), T +(v)) =
∑
i∈N

τi(v̂). (4)

We consider the four desirable properties of a mecha-
nism that is standard in mechanism design [Parkes, 2001]:
Dominant Strategy Incentive Compatibility (DSIC), Effi-
ciency, Weak Budget Balance (WBB), and Individual Ratio-
nality (IR). These properties are known to be simultaneously
achievable in combinatorial auctions, but we will see that
such positive results do not carry over to trading networks.
We formally define each property in the following, but note
that, under the Bayesian setting, we can discuss both ex post
properties (which hold surely for any v ∈ V) and ex ante or
interim properties (which hold in expectation with respect to
the distribution q over V).

DSIC is an ex post property and ensures that the best strat-
egy of each player is truthfully revealing its type regardless of
the strategies of the other players. This gives a clear course
of action for each player. Formally, we say that a mechanism
(ϕ, τ, π) for a trading network T +(V) is DSIC if the profile
of truthful strategies form a dominant-strategy equilibrium:

ui((vi, v−i); (ϕ, τ, π), T +(v))

≥ ui((v
′
i, v−i); (ϕ, τ, π), T +(v)), ∀(v, v′i) ∈ V × Vi (5)

where v−i is the strategy profile of players except i. We will
discuss the corresponding ex ante property of Bayesian Nash
Incentive-Compatibility (BNIC) only in relation to the prior
work, but BNIC only ensures that a truthful player can max-
imize its expected utility under the additional condition that
other players are truthful.

Efficiency is also an ex post property and ensures that the
trades are allocated in a way that they maximize total value.
Following the definition without IP in (1), we say that a mech-
anism (ϕ, τ, π) for T +(V) is Efficient if∑

i∈N
vi(ϕ(v)) ≥

∑
i∈N

vi(Φ), ∀(v,Φ) ∈ V × 2Ω. (6)

We will not discuss the corresponding ex ante property.
WBB ensures non-negative utility of IP. We say that a

mechanism (ϕ, τ, π) for T +(V) is ex post WBB if

uIP(v; (ϕ, τ, π), T +(v)) ≥ 0, ∀v ∈ V (7)

and ex ante WBB if

E
[
uIP(v; (ϕ, τ, π), T +(v))

]
≥ 0, (8)

where the expectation is with respect to the distribution of v.
That is, if the players are truthful (which is guaranteed with
DSIC), the utility of IP is non-negative surely under ex post
WBB and in expectation under ex ante WBB.

IR ensures that every player gets non-negative utility. IR
can also be ex post or ex ante. However, when players know
their own types, each player should require non-negative ex-
pected utility given its own type, and such a property is called
interim IR. Formally, we say that a mechanism (ϕ, τ, π) for
T +(V) is ex post IR if

ui(v; (ϕ, τ, π), T +(v)) ≥ 0, ∀v ∈ V (9)
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for each i ∈ N and interim IR if

E
[
ui(v; (ϕ, τ, π), T +(v)) | vi

]
≥ 0, ∀vi ∈ Vi (10)

for each i ∈ N . That is, if the players are truthful (guaranteed
with DSIC), a truthful player gets non-negative utility surely
under ex post IR and in expectation under interim IR.

Note that ex post properties are more desirable than the cor-
responding ex ante properties. For example, maximizing ex-
pected utility may not be the objective of risk-sensitive play-
ers. Also, the optimality of the truthful strategy under BNIC
relies on the truthfulness of the other players, which is not
required under DSIC.

3.2 No Payment Between Players
As far as the utilities of the forms in (3)-(4) are concerned, we
do not lose generality by ignoring the payment among players
(i.e., π(ω; v̂) = 0, ∀(ω, v̂)). Intuitively, if there is a payment
p(ω) from a buyer to a seller, we can let the buyer pay p(ω)
to IP and let IP pay p(ω) to the seller without changing the
net-payment of the two players and IP. Formally, we prove
the following theorem in [Osogami et al., 2022].

Theorem 1. For any mechanism (ϕ, τ, π) and a payment rule
π′ for T +(V) = (N+,Ω,V), there exists a rule of payment
to IP τ ′ such that each of DSIC, Efficiency, WBB (either ex
ante or ex post), and IR (either ex ante or interim) is satisfied
with (ϕ, τ, π) iff it is satisfied with (ϕ, τ ′, π′).

Theorem 1 simplifies our analysis, since it implies that we
only need to consider mechanisms with no payment between
players (i.e., let π′ = π0, where π0 allocates zero payment
to any trade) as long as the desirable properties are the ones
that depend only on the utility. Namely, for any set of proper-
ties that depend on the utility, there exists a mechanism with
no payment between players that achieves those properties if
and only if there exists a mechanism (with an arbitrary pay-
ment rule) that achieves those properties. Hence, we will only
consider designing a mechanism (ϕ, τ, π0) without payment
between players and denote such a mechanism by (ϕ, τ).

3.3 Impossibility
We show that, for a discrete set of valuations, no mechanism
(ϕ, τ) can achieve all of the four properties ex post for trad-
ing networks with a single potential trade except for trivial
cases. Theorem 1 then implies that no mechanisms (ϕ, τ, π),
with any payment rule π, can simultaneously achieve those
properties except for trivial cases. Formally,

Definition 1. We say that a trading network (N+, {ω},V)
with a single trade between two players, |N | = 2, has non-
trivial V if it satisfies both of the following conditions: i) there
exists v ∈ V such that

∑
j∈N vj({ω}) < 0, and ii) for any

vi ∈ Vi, there exists v−i ∈ V−i such that
∑

j∈N vj({ω}) >
0, where {i,−i} ∈ N .

In other words, V is said to be trivial if at least one of
the two conditions in Definition 1 are violated. When condi-
tion i) is violated, the trade should always be conducted (i.e.,
ϕ(v̂) = {ω}, ∀v̂ ∈ V) for Efficiency to hold, and all of the
four properties are trivially satisfied with a constant payment

rule (see [Osogami et al., 2022]). When condition ii) is vio-
lated, there exists a player i who has the type vi that makes it
impossible to make the social welfare, vi({ω}) + v−i({ω}),
positive no matter what types v−i that the other player has.
Such player i should not participate in the trading network
from the perspective of social welfare, even if all of the four
properties may be achieved with some mechanisms.

For other non-trivial cases, we have impossibility:
Theorem 2. For any trading network (N+, {ω},V) with a
single trade between two players having non-trivial V , no
mechanisms can achieve all of DSIC, Efficiency, ex post WBB,
and ex post IR.

Proof. We outline a proof here (see [Osogami et al., 2022]
for a complete proof). For each player, consider the two types
that respectively give the lowest and highest valuation on ω.
We prove that no mechanisms can achieve the four properties
by showing that we cannot satisfy all of the necessary condi-
tions associated with the players of those two types.

[Myerson and Satterthwaite, 1983] show similar impos-
sibility but assumes that the distribution over V has abso-
lutely continuous density, which does not hold e.g. for dis-
crete V [Othman and Sandholm, 2009]. Our impossibility
theorem does not require such an assumption, but ours is
with DSIC and hence weaker in that respect than Myerson-
Satterthwaite’s, which establishes impossibility with BNIC.
In Section 6, we will experiment with instances of trading
networks where satisfying the four properties ex post is im-
possible due to Theorem 2.

4 Computing Mechanisms
The impossibility suggested by Theorem 2, together with the
incentives for players to untruthfully report their valuations,
motivates us to study the mechanisms that achieve weaker
properties of ex ante WBB and interim IR in addition to DSIC
and Efficiency. These weaker properties are still meaningful
in practice and are sufficient for risk-neutral players.

To guarantee DSIC and Efficiency, we rely on the Groves
mechanism. For any trading network (N+,Ω,V), a mecha-
nism (ϕ, τ ′) is called a Groves mechanism if it can be rep-
resented by the use of a pivot rule, h ≡ (hi)i∈N where
hi : V−i → R, as follows:

ϕ(v) = ϕ⋆(v) ∈ argmax
Φ⊆Ω

∑
i∈N

vi(Φ) (11)

τ ′i(v) = hi(v−i)−
∑
j ̸=i

vj(ϕ
⋆(v)) (12)

for any v ∈ V . Here, the pivot rule hi determines the pay-
ment, in addition to the second term of the right-hand side of
(12), in a way that it depends only on the types of other play-
ers (and not the type of player i). The Groves mechanism is
guaranteed to satisfy Efficiency and DSIC, and we may arbi-
trarily choose h to achieve other properties. We refer to h as
a Groves mechanism when it does not cause confusion.

There may or may not exist an h that satisfies both ex ante
WBB and interim IR. When it does not exist, one could seek
to find the h that minimizes the violation of these conditions.
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However, here we focus on studying whether such an h exists
and finding one if it does. Also, when there are multiple h
that satisfy both ex ante WBB and interim IR, we prefer the
one with stronger budget balance (i.e., the total payment to IP
should be as close to zero as possible).

Therefore, we proposed to find h as the solution to the fol-
lowing optimization problem:

min
h

∑
i∈N

E [hi(v−i)] (13)

s.t.
∑
i∈N

E [hi(v−i)] ≥ (|N | − 1)
∑
i∈N

E [vi(ϕ
⋆(v))] (14)

E [hi(v−i) | vi] ≤
∑
j∈N

E [vj(ϕ
⋆(v)) | vi] ,

∀vi ∈ Vi, ∀i ∈ N (15)

where E is the expectation with respect to the distribution of
types. The constraint (14) is on ex ante WBB (see (55)-(57)
in [Osogami et al., 2022] for the derivation). The constraint
(15) is on interim IR (see (58)-(60) in [Osogami et al., 2022]).
For a given trading network (N+,Ω,V), the right-hand sides
of (14)-(15) are constants that can be computed by the use of
the allocation rule ϕ⋆ and the distribution of types. When N
and V are finite, the optimization problem (13)-(15) is a linear
program (LP). The LP has nmn−1 variables (i.e., hi(v−i) for
v−i ∈ V , i ∈ N ) and nm + 1 constraints, when there are
n = |N | players, and each player i has m = |Vi| types.

Example 2. Consider the trading network in Example 1, but
we now assume that each player has one of two types: the
production cost of the seller of type X is CX

S for X ∈ {L,H},
and the handling cost of the buyer of type Y is CY

B for
Y ∈ {L,H}. Let CL

i < CH
i for i ∈ {S,B}. By Theorem 2,

there is no mechanism that simultaneously achieves the four
properties ex post when cHS + cHB > 1 and cXS + cYB < 1 for
(X,Y ) ∈ {(H,L), (L,H), (L,L)}. Under the Groves mech-
anism, the amount of payment to IP from S of type X and B
of type Y is respectively given by

τ ′S(X,Y ) = hS(Y )− (1− CY
B ) q⋆(X,Y ) (16)

τ ′B(X,Y ) = hB(X) + CX
S q⋆(X,Y ), (17)

where q⋆(X,Y ) ≡ I{ϕ⋆(X,Y ) = Ω} is the number of
goods to be traded when the types of S and B are X and
Y respectively. Note that the pivot rule of each player de-
pends on the type of the other player and can be determined
by solving the LP (13)-(15), which involves four variables
h ≡ (hS(L), hS(H), hB(L), hB(H)) and four constraints (see
(66)-(69) in [Osogami et al., 2022]).

Although the solution to the LP (13)-(15) gives non-trivial
Groves mechanisms that are of practical interest, it is in-
tractable except for small trading networks. For example, i)
there can be infinitely many possible types vi, resulting in in-
finitely many variables in the LP. Also, ii) one may not know
the exact distribution of types, which we need to compute the
expectation in (13)-(15). In addition, iii) it may be hard to
compute the efficient allocation ϕ⋆(v) for a given v ∈ V .

5 Learning Mechanisms
Among these three challenges, i) and ii) are fundamental,
since one cannot even represent the optimization problem
with infinitely many variables or without knowing the dis-
tribution of types. Here, we propose learning techniques to
overcome these challenges. For the computational complex-
ity of ϕ⋆, efficient algorithms are known under some condi-
tions on V [Candogan et al., 2021; Iwata et al., 2005].

5.1 Learning Pivot Rules
We now address a less restricted setting where the mecha-
nism designer (IP) has the sample D of types from the dis-
tribution q, rather than the exact knowledge on q. The ex-
pectation in (13)-(15) can then be replaced with sample av-
erage, resolving Challenge ii). IP may collect such D by
running a Groves mechanism that is not necessarily ex ante
WBB (hence, IP needs investment). Since players act truth-
fully under the Groves mechanism, the collected D follows
q. IP may also keep collecting sample while learning mecha-
nisms repeatedly (see [Osogami et al., 2022]).

Recall that the variables in (13)-(15) correspond to the out-
put values of the pivot rule, hi(v−i) for v−i ∈ V−i and i ∈ N ,
which constitute the codomain of the functions h = (hi)i∈N .
To deal with infinitely many variables that stem from the
functions with infinite codomain, we approximate those func-
tions with machine learning models, hθ ≡ (hθi

i )i∈N where
hθi
i : V−i → R with parameter θi for each i.
Although such machine learning has been successfully ap-

plied in the prior work of AMD, in our case, it is not sufficient
to replace the expectation with sample average and h with hθ.
In particular, the sample average in (15) is unreliable or can-
not be obtained, since the set {ṽ ∈ D | ṽi = vi} is often small
and can be empty for some vi. We solve this by learning, for
each i ∈ N , a regressor ĝi (e.g., Gaussian process regressor)
that maps vi ∈ Vi to

∑
j∈N E[vj(ϕ⋆(v)) | vi], where the

training data is D̂i ≡ {(ṽi,
∑

j∈N ṽj(ϕ
⋆(ṽ)))}ṽ∈D.

We can now reduce (13)-(15) to the following constrained
non-linear optimization and learn a locally optimal θ with the
augmented Lagrangian method:

min
θ

∑
ṽ∈D

∑
i∈N

hθi
i (ṽ−i) (18)

s.t.
∑
ṽ∈D

∑
i∈N

hθi
i (ṽ−i) ≥ (|N | − 1)

∑
ṽ∈D

∑
i∈N

ṽi(ϕ
⋆(ṽ)) (19)

1

|{v ∈ D | vi = ṽi}|
∑

v∈D|vi=ṽi

hθi
i (ṽ−i) ≤ ĝi(ṽi),

∀ṽi ∈ Di, ∀i ∈ N (20)

where Di ≡ {vi ∈ Vi | ∃ṽ ∈ D s.t. ṽi = vi} is the set
of the types of player i that appear in D. More precisely,
we use a lower confidence bound for ĝ(ṽi) in (20) and an
upper confidence bound for the right-hand side of (19). The
learning problem (18)-(20) matches the optimization problem
(13)-(15) in the limit of |D| → ∞ when the law of large
numbers applies to the sample averages (e.g., ṽi(ϕ⋆(ṽ)) has
finite variance), the regressors are asymptotically consistent
(i.e., ĝi(vi) → E[vj(ϕ⋆(v)) | vi]), the optimal h is in the
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class of hθ (i.e., realizable), the support of the distribution q
covers the whole V , and V is finite.

While the use of hθ alleviates Challenge i), the issue of
computational complexity still remains. Namely, each hθi

i

takes types v−i as its input, but each type, vj : 2Ω → R, is a
function. A question is how to represent those functions. One
may for example assume that the types are in a certain para-
metric family of functions (e.g., neural networks) and give
their parameters as the input to h

θ−i

i
[Faccio et al., 2021].

We take an alternative approach of representing a func-
tion with its output values [Harb et al., 2020]. Observe that
vi : 2Ω → R is fully characterized by a 2|Ω|-dimensional
valuation-vector, (vi(Φ))Φ⊆Ω, that represents the output val-
ues for all of the possible inputs. Each hi : V−i → R is then
a function that maps |N |−1 vectors, each having 2|Ω| dimen-
sions, to a real number; namely, hi : R2|Ω| (|N |−1) → R (see
Figure 3(a) in [Osogami et al., 2022]).

5.2 Variable Reduction
The valuation-vector has exponentially many dimensions and
does not fully resolve Challenge i). We now show, based
on game theoretic analysis, that some of the features of the
valuation-vector are particularly important to achieve some
of the desirable properties. We will then form a low dimen-
sional valuation-vector with these important features to better
address Challenge i).

To this end, we have designed special Groves mechanisms:

hWBB
i (v) ≡ max

Φ⊆Ω

∑
j ̸=i

vj(Φ), ∀i ∈ N (21)

hIR
i (v) ≡ max

Φ⊆Ω−i

∑
j ̸=i

vj(Φ), ∀i ∈ N , (22)

where Ω−i ≡ Ω \ (Ωi→ ∪ Ω→i) is the set of trades where
player i is neither the seller nor the buyer. We will utilize
these mechanisms, because it can be shown that hWBB is al-
ways ex post WBB, and hIR is ex post IR when no players
reduce the social welfare, where a player reducing the social
welfare is defined as follows:
Definition 2. In a trading network (N+,Ω,V), a player i ∈
N with type vi ∈ Vi is called a negative player if there exists
v−i ∈ V−i such that

max
Φ⊆Ω−i

∑
j ̸=i

vj(Φ) > max
Φ⊆Ω

∑
j∈N

vj(Φ). (23)

Formally,
Theorem 3. For any trading network (N+,Ω,V), the Groves
mechanism with hWBB in (21) satisfies DSIC, Efficiency, and
ex post WBB, and the Groves mechanism with hIR in (22)
satisfies DSIC, Efficiency, and ex post IR if (N+,Ω,V) has
no negative players.

Proof. We outline a proof here (see [Osogami et al., 2022] for
a complete proof). Since DSIC and Efficiency are guaranteed
with the Groves mechanism, we show that the payment to IP
is non-negative for each player, which implies ex post WBB,
and that the utility of each player is non-negative, which im-
plies ex post IR, when there are no negative players.
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(b) Reduced variables

Figure 1: The expected utility of each player (S-L is the seller of low
cost; B-H is the buyer of high costs; S-H and B-L are defined analo-
gously), plotted in ascending order, under the mechanisms computed
by our approach with (a) full or (b) reduced variables.

Since hWBB
i and hIR

i , respectively, achieve ex post WBB
and interim IR, we combine them with the expectation to si-
multaneously achieve the weaker properties of ex ante WBB
and interim IR. Observe that an arbitrary combination of two
functions can be represented by a function that takes the input
of the two functions. Since

hWBB
i (v) =

∑
j ̸=i

vj(Φ
⋆), where Φ⋆ ∈ argmax

Φ⊆Ω

∑
j ̸=i

vj(Φ)

hIR
i (v) =

∑
j ̸=i

vj(Φ
⋆,i), where Φ⋆,i ∈ argmax

Φ⊆Ω−i

∑
j ̸=i

vj(Φ),

we see that (vj(Φ⋆))j ̸=i and (vj(Φ
⋆,i))j ̸=i are the input of

hWBB
i and hIR

i , respectively, and hence are the important fea-
tures of the valuation-vector. We thus seek to find the op-
timal function within the class of functions that take those
important features as input (see Figure 3(b) in [Osogami et
al., 2022]). We may also consider a larger class of functions
by allowing additional (e.g., random) elements of the original
valuation-vector as input, trading off the quality of approxi-
mation against computational complexity.

6 Experiments
To show the relevance of the proposed approaches, we con-
duct experiments on a large number of trading networks
where it is impossible to achieve all of the four desirable prop-
erties ex post. Specifically, we generate 1,642 non-trivial in-
stances of trading networks uniformly at random in the setting
of Example 2, which involves a single potential trade between
a seller and a buyer (see [Osogami et al., 2022] for details of
how those instances are generated). By Theorem 2, there exist
no mechanisms that satisfy all of the four desirable properties
ex post for those non-trivial instances. We apply the proposed
approaches to these trading networks and study whether they
find the mechanisms that satisfy the four properties if WBB
is ex ante and IR is interim. We run all experiments on a
workstation having 64 GB memory and 4.0 GHz CPU.

We first validate our computational approach by applying it
to each of the randomly generated instances. Here, we solve
the optimization problem in (13)-(15) via CPLEX 22.1.

Figure 1(a) shows the expected utility of each player for the
1,642 instances plotted in ascending order. Observe that, for
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Figure 2: The performance of the mechanisms learned by our approach against the number of the samples from the distribution. Panel (a)
shows the fraction of the instances for which the learning problem has feasible solutions. For those feasible instances, panel (b) shows the
expected budget balance of IP, and panel (c)-(d) shows expected utility of each player. The solid line is the average expected utility, and the
shaded area is the [15.9%, 84.1%]-quantile.

all instances, every player (supplier or buyer of any type) ex-
pects non-negative utility. The corresponding expected bud-
get balance (utility) of IP is essentially zero for all instances
and only shown in Figure 4(a) in [Osogami et al., 2022].
Therefore, the proposed approach finds the mechanism that
achieves both ex ante WBB and interim IR (in addition to
DSIC and Efficiency) for every randomly generated instance
where achieving the four properties ex post is impossible.

This however does not mean that one can always achieve
ex ante WBB and interim IR. There indeed exist instances for
which ex ante WBB or interim IR cannot be achieved. Em-
pirically, however, such infeasible instances appear to have
zero Lebesgue measure and are not generated in our random
process. A caveat is that, when an instance is close to an in-
feasible instance, our approach tends to find the mechanism
that requires a large amount of payment to or from IP (see
Figure 5 in [Osogami et al., 2022]).

Next, we validate the effectiveness of our learning ap-
proach with a focus on the impact of sample approximation.
Here, for each of the 1,642 instances, we take varying number
of samples from the distribution of types to solve the learning
problem (18)-(20). We use the lower confidence bound of a
Gaussian process regressor to evaluate the right-hand side of
(20) and add the sample standard deviation to the right-hand
side of (19) to form an upper confidence bound. We seek to
find an exact h without functional approximation hθ.

Figure 2 shows (a) the fraction of the instances for which
the learning problem has feasible solutions as well as the ex-
pected utility of (b) IP, (c) the supplier, and (d) the buyer,
under the mechanisms learned with our approach. In (b)-(d),
the solid lines show the average over the feasible instances,
and the shaded area represents the [15.9%, 84.1%]-quantile,
which coincide with the confidence intervals set in (19)-(20).

Figure 2(a) shows that the learning problems do not nec-
essarily have feasible solutions (while the corresponding op-
timization problems are all feasible). With sufficient amount
of data (≥ 512 in this case), however, all of the learning prob-
lems become feasible. For those feasible learning problems,
our approach learns the mechanisms that satisfy ex ante WBB
and interim IR with high probability (Figure 2(b)-(d)). Al-
though these properties are sometimes violated, they become
more frequently satisfied as the sample size increases.

Finally, we study the effectiveness of variable reduction in

the settings of the previous experiments. See [Osogami et al.,
2022] for how the variables are reduced in these settings.

Figure 1(b) shows the expected utility of each player under
the mechanisms computed with variable reduction (see Fig-
ure 7 in [Osogami et al., 2022] for details). By comparing
against the corresponding results in Figure 1(a) without vari-
able reduction, we find different mechanisms depending on
whether the variables are reduced or not, as is suggested by
the different expected utilities of the players. However, the
mechanisms computed with reduced variables still achieve ex
ante WBB and interim IR for all of the random instances.

Figure 8 in [Osogami et al., 2022] shows the performance
of the mechanisms learned with variance reduction. Similar
to Figure 2 (no variable reduction), ex ante WBB and interim
IR are achieved with high probability as long as the learning
problems are feasible. Variable reduction, however, reduces
the solution space, and the instances that are feasible without
variable reduction can become infeasible. Nevertheless, the
fraction of feasible instances increases with the sample size
(and essentially all of the instances become feasible with the
exact distribution, as with the computational approach).

7 Conclusion
We have shown that, by computing or learning appropriate
mechanisms, it can be made possible to achieve DSIC, Ef-
ficiency, ex ante WBB, and interim IR in trading networks
where achieving these four properties ex post is impossible.
Since this paper proposes the first AMD approach for trad-
ing networks, we have discussed and formalized the problem
of mechanism design for trading networks, including funda-
mental characteristics such as Theorem 1 and Theorem 2.

There are some directions of future work that can be built
upon these foundations. For example, while we learn mech-
anisms from previously collected (offline) data, the prior
work has investigated the approaches of learning mechanisms
while collecting data in an online manner (see [Osogami et
al., 2022]). Such online methods involves the additional chal-
lenge of the tradeoff between exploration and exploitation,
and it is interesting to study such online methods for trading
networks. It is also interesting to study sample complexity of
learning mechanisms for trading networks (see [Osogami et
al., 2022] for such prior work on combinatorial auctions).
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