
Participatory Budgeting with Multiple Degrees of Projects and Ranged Approval
Votes

Gogulapati Sreedurga
Indian Institute of Science

gogulapatis@iisc.ac.in

Abstract

In an indivisible participatory budgeting (PB)
framework, we have a limited budget that is to be
distributed among a set of projects, by aggregat-
ing the preferences of voters for the projects. All
the prior work on indivisible PB assumes that each
project has only one possible cost. In this work, we
let each project have a set of permissible costs, each
reflecting a possible degree of sophistication of the
project. Each voter approves a range of costs for
each project, by giving an upper and lower bound
on the cost that she thinks the project deserves. The
outcome of a PB rule selects a subset of projects
and also specifies their corresponding costs. We
study different utility notions and prove that the ex-
isting positive results when every project has ex-
actly one permissible cost can also be extended to
our framework where a project has several permis-
sible costs. We also analyze the fixed parameter
tractability of the problem. Finally, we propose
some important and intuitive axioms and analyze
their satisfiability by different PB rules. We con-
clude by making some crucial remarks.

1 Introduction
Participatory budgeting (PB) is a democratic voting paradigm
that aggregates the opinions of citizens while deciding on
how to fund the public projects [Cabannes, 2004; Shah, 2007;
Sintomer et al., 2008; Wampler, 2010; Röcke, 2014].

Divisible PB assumes that the costs of the projects are to-
tally flexible and any amount can be allocated to each of them
[Airiau et al., 2019; Sreedurga et al., 2022b]. The existing
work on indivisible PB, on the other hand, assumes that every
project has a fixed cost that is to be allocated to the project if it
is selected. However, many times in real-world, each project
can be implemented upto different levels of sophistication.
For example, a building can be built with wood or stone, de-
pending on the amount allocated to it. That is, each project
has a set of possible and permissible costs. Each cost in this
set corresponds to a degree of sophistication of the project. In
addition to choosing the set of projects that are to be funded,
the mechanism designer must also choose a permissible cost

for each of the selected projects. This idea of having mul-
tiple permissible costs for each project was first proposed in
a survey by Aziz and Shah [Aziz and Shah, 2021], in which
the authors called each of these costs a degree of completion.
However, the idea still remained to be studied and our paper
bridges this gap.

Preference elicitation methods typically studied in any vot-
ing framework include approval votes, ordinal votes, and car-
dinal votes. These methods also continue to be the most stud-
ied preference elicitation approaches in PB [Aziz et al., 2018;
Talmon and Faliszewski, 2019; Rey et al., 2020; Jain et al.,
2020; Fairstein et al., 2022; Sreedurga et al., 2022a; Benade
et al., 2021; Shapiro and Talmon, 2017; Aziz and Lee, 2021;
Sreedurga and Narahari, 2022; Peters et al., 2020]. However,
PB is a setting with several attributes like costs attached to the
projects. The preferences and utilities of the voters are thus
much more complex. This propels the need to devise prefer-
ence models specific to PB, as pointed out by Aziz and Shah
[Aziz and Shah, 2021]. One step in this direction is the intro-
duction of a special case of approval votes, called knapsack
votes, by Goel et al. [Goel et al., 2019], where each voter
reports her most favorite budget division. This idea however
is criticised for its assumption that any project not in this di-
vision yields no utility to the voter.

Our paper is another step in the direction of preference
modeling for PB. We introduce the approach of ranged ap-
proval votes, which strictly generalizes the approval votes.
Each voter reports a lower bound and an upper bound on the
cost that she thinks each project deserves. All the bounds are
initially set to 0 by default. Voting proceeds in two steps. In
the first step, the voter starts by approving the projects she
likes. For these approved projects, only the upper bounds
will automatically change to the highest permissible cost. In
the second step, the voter may optionally change bounds for
some of these approved projects, if she wishes to have a say
on the amount they deserve. Note that this is cognitively not
much more demanding than the approval votes since we do
not force the voters to report the bounds. Notably, all our
computational results can also be extended to more general
utility functions with minor tweaks. Nevertheless, we present
the results for ranged approval votes due to their cognitive
simplicity and natural relevance in the model.

It needs to be mentioned that a work by Goel et al. [2019]
views divisible PB as a model of indivisible PB where every

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2870

PROPERTIES\RULES R|S| Rc(S) R
ĉ(S)

R∥ ∥

Degree-efficient × × ✓ ×
Shrink-resitant ✓ ✓ ✓ ✓
Discount-proof ✓ × × ×
Range-abiding ✓ × × ✓
Range-converging ✓ ✓ ✓ ✓
Range-unanimous ✓ × × ✓
Upper bound-sensitive ✓ ✓ × ✓
Lower bound-sensitive × × × ✓

Table 1: Results for budgeting axioms in Section 4

unit of money in the cost corresponds to one possible degree
of sophistication, and proposes a greedy algorithm. Their
work however imposes knapsack constraint on each vote as
well as assumes all lower bounds to be zero. Their model
hence forms a very restricted special case of ours.
Our contributions. The primary goal of this paper is to
systematically study the PB model where each project has
a set of permissible costs. Such a study has been conducted
by Talmon and Faliszewski [Talmon and Faliszewski, 2019]
for approval-based PB, which is a special case of our model
with every project having only one permissible cost. We gen-
eralize the PB rules and all the positive results in [Talmon
and Faliszewski, 2019] to our model. Namely, we propose
polynomial-time, pseudo-polynomial time, and PTAS algo-
rithms. Followed by this, we present some results on parame-
ter tractability using a recently introduced parameter scalable
limit [Sreedurga et al., 2022a] and another novel parameter
we introduce in the further sections. It needs to be highlighted
that, as a part of our study, we also introduce and investigate
some novel utility notions that are specific to our model and
are not extensions of the literature. Finally, we propose some
budgeting axioms for our model and examine their satisfiabil-
ity with respect to our PB rules. All the axiomatic results are
summarized in Table 1. We conclude by discussing the im-
pact of our computational and axiomatic results and pointing
out future directions.
Organization of the paper. We start by introducing the
mathematical model in Section 2. We define different utility
notions (some extended from the existing ones in the litera-
ture and some new) and the corresponding PB rules in Sec-
tion 2.1. In Section 3, we analyze the computational com-
plexity of our PB rules and suggest ways to cope up with
intractabilities. In Section 4, we define budgeting axioms for
our model and examine their satisfiability.

2 Model
In our model, a budget b is given. We denote the set of n
voters by N = {1, . . . , n} and the set of m projects by P .
Each project j ∈ P has tj possible degrees of sophistication
captured by the set D(Pj) = {P 0

j , P
1
j , . . . , P

tj
j }. The cost of

each degree P t
j is indicated by ctj . We assume that c0j is zero

for all j ∈ P and it corresponds to not funding the project j.
Each voter i ∈ N reports for every project j, a lower bound

li(j) and an upper bound hi(j) such that li(j), hi(j) ∈
{c0j , . . . , c

tj
j } and li(j) ≤ hi(j). Let L and H respectively

denote the collection all the lower bounds and upper bounds
reported by all the voters.

Let D denote the set of all the possible degrees of all
projects, or in other words, D =

⋃
j∈P D(Pj). We denote

the cost of a set S ⊆ D,
∑

P t
j∈S ctj , by c(S) . Given a sub-

set S ⊆ D, we use S(j) to denote the chosen degree(s) of
project j in S. In other words, S(j) = S ∩ D(Pj). We use
the shorthand notation cS(j) to denote c(S(j)) . We say a
subset S ⊆ D is valid if c(S) ≤ b and |S(j)| = 1 for every
j ∈ P . Let V denote the collection of all the valid subsets.

A PB instance with multiple degrees of sophistication is
denoted by I = ⟨N,D, c, b,L,H⟩. Given an instance, the
objective of a PB rule R is to output a valid subset S ∈ V .

2.1 The PB Rules
The PB rules we study are utilitarian rules. This implies that,
given a function u that measures utility a voter derives from a
subset of projects, the corresponding PB rule outputs a valid
set of projects that maximizes the sum of utilities of all the
voters, i.e., it outputs some S ∈ V such that

∑
i∈N ui (S) is

maximized. We say a subset S of projects is selected under
a PB rule R if it maximizes the total utility of the voters. We
say a project P t

j ∈ D wins under a PB rule R if it belongs
to some set that can be selected under R. Let R (I) be the
collection of all the projects that win under the PB rule R,
given an instance I .

Now, we only need to define different utility functions.
Given the lower and upper bounds reported by the voters,
we define the utility of a voter from a valid set S ∈ V in
four ways. For each of these utility functions, we also give a
shorthand notation for the utilitarian PB rule associated to it.

1. Cardinal utility (R|S| rule): Each voter i derives a util-
ity of 1 from a project j if the cost of the chosen de-
gree falls within the bounds specified by the voter. Thus,
ui (S) = |j ∈ P : li(j) ≤ cS(j) ≤ hi(j)|, cS(j) ̸= 0.

2. Cost utility (Rc(S) rule): A voter i derives a utility of
cS(j) from a project j if its value falls within the bounds
specified by the voter.

ui (S) =
∑

j:li(j)≤cS(j)≤hi(j)

cS(j).

3. Cost capped utility (R
ĉ(S)

rule): Each voter i derives a

utility of cS(j) from a project j if the value falls within
the bounds reported by her, a utility of hi(j) if cS(j) >
hi(j), and a utility of 0 if cS(j) < li(j). That is,
with slight abuse of notation, ui (S) =

∑
j∈P ui (S, j),

where ui (S, j) is defined as:

ui (S, j)=

0 cS(j) < li(j)

cS(j) li(j) ≤ cS(j) ≤ hi(j)

hi(j) otherwise

4. Distance disutility (R∥ ∥ rule): From every project j,
each voter derives a disutility of 0 if the value falls within
the bounds reported by her, a disutility of cS(j)− hi(j)
if cS(j) > hi(j), and a disutility of li(j) − cS(j) if
cS(j) < li(j). That is, with slight abuse of notation,
di (S) =

∑
j∈P di (S, j), where di (S, j) is defined as

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2871

follows:

di (S, j)=

li(j)− cS(j) cS(j) < li(j)

0 li(j) ≤ cS(j) ≤ hi(j)

cS(j)− hi(j) otherwise

The corresponding PB rule R∥ ∥ minimizes the total
disutility.

The first two notions of utilities are the natural extensions of
the notions considered in [Talmon and Faliszewski, 2019].
The former reflects that the voter is happy as long as the cost
allocated to the project is acceptable to her, whereas the latter
reflects that as the project gets more money, the voter gets
happier if the cost is acceptable to her.

The second utility notion clearly assumes that if the project
gets more money than what the voter thinks it deserves, voter
derives zero utility. However, this need not always be the
case in real-world. For example, say a voter will be happy
to have an entertainment park in the neighborhood but feels
that the park deserves any amount between 1000 and 5000
units. Now, if the park project is allocated 7000 units, the
voter could still be happy that there is a park in the neighbor-
hood but derive no more utility than 5000 (since it is the max-
imum value she thinks the park deserves). The third utility
notion tackles such scenarios by modifying the second utility
notion to cap the utility at hi(j) instead of dropping it to 0.

The first three utility notions assume that allocating any
cost outside the range reported by the voter yields the same
utility to her. However, in many situations, closer the cost of
the project is to the acceptable range of the voter, higher is the
satisfaction voter derives from it. For example, say a voter
feels that a certain project is worth at least 1000 units. An
outcome that allocates 900 units to it is likely to be more pre-
ferred by the voter over something that allocates 50 units to
it. The fourth rule handles such situations by considering the
distance between the cost allocated and the closest acceptable
cost as the disutility. Farther the cost is from the acceptable
range, higher is the amount misspent.

3 Computational Complexity
Here, we analyze the computational complexity of our PB
rules. We strengthen the existing positive results in the liter-
ature [Talmon and Faliszewski, 2019] and also present a few
new results on fixed parameter tractability. All the exact algo-
rithms we present are based on dynamic programming. The
approximation schemes we present depend on both dynamic
programming as well as a clever rounding scheme.

3.1 The Rule R|S|
Recall that R|S| outputs a valid set that maximizes the sum
of the utilities of voters, where the utility of a voter is defined
as ui (S) = |j ∈ P : li(j) ≤ cS(j) ≤ hi(j)|. Talmon and
Faliszewski [2019] prove that for the case with only one per-
missible cost for each project, a subset maximizing the utility
can be computed in polynomial time. We strengthen this re-
sult and prove that even when there are multiple permissible
costs for each project, a subset maximizing the total utility
can be computed in polynomial time.
Theorem 1. For any instance I , a subset S ∈ V that is se-
lected under R|S| can be computed in polynomial time.

Proof. We present an algorithm that uses dynamic program-
ming. Let s

(
P t
j

)
denote the number of voters i such that

li(j) ≤ ctj ≤ hi(j). Construct a dynamic programming table
such that A(x, y) corresponds to the cost of cheapest valid
subset of

⋃x
j=1 D(Pj) such that the total score of projects in

the set is exactly y.
Let F (y) ⊆ D(P1) such that s(P t

1) = y for every
P t
1 ∈ D(P1). We compute the first row as: A(1, y) =

min(ctj : P t
j ∈ F (y)). All the remaining rows are

computed recursively as follows: A(x, y) = min
(
A
(
x −

1, y
)
, mintxt=1

(
A
(
x− 1, y − s(P t

x)
)
+ ctx

))
. In addition to

computing this table, we store the sets corresponding to each
entry in A in a separate table B as follows: if A(x, y) achieves
the minimum value at A(x − 1, y), we copy B(x − 1, y) to
B(x, y) and append P 0

j . If A(x, y) achieves the minimum
value at A(x− 1, y− s(P t

x))+ ctx for some t ∈ [1, tx], we set
B(x, y) = B(x − 1, y) ∪ {P t

x}. Finally, we output the set at
B(x, y) such that A(x, y) ≤ b and y is maximized.
Correctness. Recurrence ensures that for any entry in B,
we select at most one project from D(Pj) for every j. While
selecting the outcome from B, we ensured that its cost is
within the budget. Hence, the output of the algorithm will be
a valid subset. Optimality follows from the way A is defined.
Running time. Each row in A corresponds to making a de-
cision about one project from P , and hence the number of
rows is m. Each column corresponds to a possible total score.
Since we select only one project from each D(Pj) and max-
imum score of any degree of a project is n by definition,
maximum total score is mn. Thus, we have mn columns.
Computing each entry in row x takes O(tx) time. Thus, the
running time is O(m2nt∗), where t∗ = maxj∈P tj .

3.2 The Rule Rc(S)

Recall that Rc(S) outputs a valid set that maximizes the sum
of the utilities of voters, where the utility of a voter is:

ui (S) =
∑

j:li(j)≤cS(j)≤hi(j)

cS(j).

Talmon and Faliszewski [2019] prove that for the case where
each project has only one permissible cost, it is NP-hard to
determine if there exists a feasible subset that guarantees a
total utility of at least a given value. Since their model can be
modeled as a special case of ours, the hardness easily follows.
Proposition 1. For an instance I and a value s, it is NP-hard
to check if Rc(S) outputs a set with at least a total utility s.

Proof. Given a PB instance with approval votes (each project
j has some cost c(j) and every voter reports a subset Ai of
projects that she likes), we construct an instance for Rc(S) as
follows: For every project j ∈ P , create exactly two degrees
such that c0j = 0 and c1j = c(j). For each voter i, set li(j) = 0

for every project j and set hi(j) = c1j if and only if j ∈
Ai. Clearly, both the instances are equivalent and we skip the
proof of correctness.

To cope up with the intractability, Talmon and Faliszewski
[2019] prove that if every project has only one permissible

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2872

cost, the problem has a pseudo-polynomial time algorithm
and FPTAS. We extend both these results to our model with
multiple permissible costs.
Proposition 2. For any instance I , a subset S ∈ V selected
under Rc(S) can be computed in pseudo-polynomial time.

Proof. We multiply every s(P t
j) in the proof of Thm. 1 with

ctj . DP tables are also constructed as explained in Thm. 1.
The maximum score achievable by each P t

j is nctj . The to-
tal score is upper bounded by nc(S) since at most a single
project from each D is chosen into each B(x, y). This is
bounded by nb since S ∈ V . Thus, the table size is O(mnb)
and the time is O(mnt∗b), where t∗ = maxj∈P tj .

Theorem 2. There is an FPTAS for Rc(S).

Proof. The idea is inspired from one of the existing FPTAS
algorithms of the knapsack problem [Ibarra and Kim, 1975].
We round the scores of all the projects and use the DP table
explained in Thm. 1 on the modified instance.

Given an instance I , let M be the maximum score of a
degree of project, i.e., M = maxj∈P,t∈[1,tj] s

(
P t
j

)
. We can

easily ensure that M ≤ OPT by eliminating all the project
degrees that cannot be part of any set with cost within b. Take
any ϵ ∈ (0, 1). Now, create new scores of all the projects

as follows: α
(
P t
j

)
=

⌊
s(P t

j)m

ϵM

⌋
. We construct the DP tables

similar to those in Thm. 1, considering new scores. By the
definition of α

(
P t
j

)
, for every j ∈ P and t ∈ [1, tj]:

α
(
P t
j

)
≤

s
(
P t
j

)
m

ϵM
(1)

s
(
P t
j

)
≤

ϵM(α
(
P t
j

)
+ 1)

m
(2)

Let S be the outcome of this DP algorithm. Say O denotes the
optimal solution for I under Rc(S). Please note that the DP
ensures that S is a valid set. Since S is the optimal solution
for the modified scores,

m∑
j=1

α
(
P

O(j)
j

)
≤

m∑
j=1

α
(
P

S(j)
j

)
(3)

Now, we prove that the approximation factor of (1− ϵ) holds.

OPT =
m∑
j=1

s
(
P

O(j)
j

)
≤

m∑
j=1

ϵM(α
(
P

O(j)
j

)
+ 1)

m

(From (2))

≤
m∑
j=1

ϵMα
(
P

S(j)
j

)
m

+ ϵM

(From (3))

≤ ϵM

m

m∑
j=1

s
(
P

S(j)
j

)
m

ϵM
+ ϵM

(From (1))
m∑
j=1

s
(
P

S(j)
j

)
≥ (1− ϵ)OPT (∵ M ≤ OPT)

Running Time: The table has m rows. The modified score

of each degree of project is upper bounded by
s(P t

j)m

ϵM , which
is further bounded by m

ϵ due to the definition of M . Since
the output is a valid set, it has at most m projects and the
maximum possible total score is upper bounded by m2

ϵ , which
is the number of columns. Computing each entry in row x

takes O(tx) time. Thus, the running time is O(m3t∗

ϵ
), where

t∗ = maxj∈P tj .

Fixed Parameter Tractability
Recently, Sreedurga et al. [2022a] introduced a new parame-
ter called scalable limit for PB. The authors observed that this
value is often small in PB elections in real life (e.g., datasets
at https://pbstanford.org/ where budget and all the costs are
multiples of some really high value). Motivated by this, we
prove that Rc(S) is in FPT w.r.t. scalable limit. Before that,
we define the scalable limit in our model as follows:

Definition 1. For any instance I , we refer to
maxPt

j
∈D ctj

GCD(c11,...,c
tm
m ,b)

as the scalable limit (δ) of the instance.
Intuitively, we scale down all the costs and budget as much

as possible, while ensuring that all these values continue to
be integers. The scalable limit then refers to the cost of the
costliest degree in D in this scaled down instance.
Proposition 3. For any instance I , computing a subset S ∈ V
that is selected under Rc(S) is in FPT w.r.t. scalable limit δ.

Proof. We again prove this by constructing a DP table. Let
k = 1

GCD(c11,...,c
tm
m ,b)

. First, we get a new instance I ′ by scal-

ing down all the costs and budget as follows: c
′t
j = kctj and

b′ = kb. Then, construct the DP table similar to Theorem 1.
Running Time: The table has m rows. The modified cost

of each degree of project is upper bounded by δ and hence
the maximum score possible from each degree of a project is
upperbounded by nδ. Since the output is a valid set, there can
be at most m projects in it and hence the maximum possible
total score is upper bounded by mnδ, which is the number of
columns. Computing each entry in row x takes O(tx) time
and the running time is O(m2nδt∗).

Proposition 4. For any instance I , computing a subset S ∈ V
that is selected under Rc(S) is in FPT w.r.t. m.

The above proposition follows from the fact the total num-
ber of valid subsets is exponential in m (upper bounded by
(t∗)m, where t∗ = maxj∈P tj) and computing the total util-
ity of any set under Rc(S) can be done in polynomial time.

3.3 The Rule R
ĉ(S)

This rule is similar to the previous rule Rc(S), with the
only difference being the way a voter is assumed to view
the projects allocated higher cost than the approved limit.
The utility is defined as ui (S) =

∑
j∈P ui (S, j), where

ui (S, j) is taken as defined in Section 2.1. The proof of
the following result is deferred to the appendix [Sreedurga,
2023].
Proposition 5. Given an instance I , the following statements
hold:

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2873

1. For any value s, it is NP-hard to determine if R
ĉ(S)

out-
puts a set that has a total utility of at least s.

2. A subset S ∈ V that is selected under R
ĉ(S)

can be com-
puted in pseudo-polynomial time.

3. There is an FPTAS for R
ĉ(S)

.
4. Computing a subset S ∈ V that is selected under R

ĉ(S)

is in FPT w.r.t. scalable limit δ.
5. Computing a subset S ∈ V that is selected under Rc(S)

is in FPT w.r.t. m.

3.4 The Rule R∥ ∥
Recall that R∥ ∥ outputs the feasible set that minimizes
di (S) =

∑
j∈P di (S, j), where di (S, j) is defined as in

Section 2.1. It is worth bearing in mind that the results from
Section 3.2 and Section 3.3 cannot be transferred since we
have a minimization problem and the fact that we cannot up-
per bound the disutilities by b. We start the section by proving
that this rule too is NP-hard, using a slightly different but sim-
ple reduction from the same problem (used in Proposition 1)
solved by Talmon and Faliszewski [2019]. Then, we give a
parameterized approximation algorithm, more specifically a
parameterized FPTAS, which guarantees the approximation
ratio when the parameter is small [Feldmann et al., 2020].
Proposition 6. For an instance I and a value s, it is NP-hard
to determine if R∥ ∥ outputs a set that has a total disutility of
at most s.

Proof. For a PB instance with approval votes (each project
j has some cost c(j) and every voter reports a subset Ai of
projects that she likes) and a positive value x, we construct an
instance for Rc(S) as follows: For every project j ∈ P , create
exactly two degrees such that c0j = 0 and c1j = c(j). For each
voter i, set hi(j) = c(j) for every project j and set li(j) = c1j
if and only if j ∈ Ai. Let Z =

∑
i∈N c(Ai). Set s = Z − x.

Correctness. To prove the forward direction, say the
approval-based PB instance is a YES instance. That implies,
there exists a set S of projects such that

∑
i∈N c(S ∩Ai) ≥

x. Now calculate the disutility of S under R∥ ∥. Then,
di (S, j) = c(j) for every j ∈ Ai \S and 0 otherwise. There-
fore, di (S) = −c(Ai) − c(Ai ∩ S). Then, total utility from
S = Z −

∑
i∈N c(Ai ∩ S). Since the former is at least x, this

total disutility is at most Z-x. The backward direction can be
argued similarly.

Parameterized Approximation Algorithm (FPTAS)
The very high disutilities that are hard to be bound motivate
us to propose a parameterized FPTAS, which has been of a
great interest recently [Feldmann et al., 2020]. We consider
a parameter that we call variance coefficient, γ, which, on
being given an instance I , intuitively shows how divergent
the disutilities of different degrees of projects in the instance
are. It is captured by measuring the highest disutility a single
project can have, relative to sum of the least possible disutili-
ties from all the projects. We explain this formally below.

Given an instance I , for each degree of a project P t
j ∈ D,

we use qtj to denote the disutility the project will contribute to
any set that contains it. We call this disutility contribution of

P t
j . Suppose for example, P t

j ∈ S. That implies, cS(j) = ctj
(∵ S is valid). Therefore,

qtj =
∑

i:ctj<li(j)

(li(j)− ctj) +
∑

i:hi(j)<ctj

(ctj − hi(j)).

It can be observed that,
∑

i∈N di (S) =
∑

P t
j∈S qtj .

Let qm = maxP t
j∈D qtj . That is, qm is the maximum of

disutility contributions of all the degrees of all the projects.
We use qσ to denote the sum of minimum disutility contribu-
tions from each D(Pj) , i.e., qσ =

∑
j∈P mint∈D(Pj) q

t
j . Our

parameter γ is the ratio qm/qσ . Intuitively, this parameter
means that we want the disutility contribution from a single
project not to be extremely higher than the sum of the least
disutility contributions from all the m projects.
Theorem 3. For any instance I and ϵ ∈ [0, 1], a subset S ∈
V such that

∑
i∈N di (S) ≤ (1 + ϵ)OPT can be computed

in O(m
3γt∗

ϵ) time, where OPT is the optimal possible total
disutility under R∥ ∥, γ is the variance coefficient, and t∗ =
maxj∈P tj .

Proof. The idea is similar to that in Thm. 2. We define new
disutilities for each project by rounding their disutility contri-
butions. We then construct a DP table using which we select
a set. For each project P t

j , we define α
(
P t
j

)
as follows:

α
(
P t
j

)
=

⌊
qtjm/ϵqσ

⌋
.

We construct the DP tables A and B similar to those in
Thm. 1, with a slight change the each column now represents
the total disutility, and s

(
P t
j

)
is replaced by α

(
P t
j

)
de-

fined in the above para. We output the set at B(x, y) such that
A(x, y) ≤ b and y is minimized. Let S be the resultant out-
come. Say O denotes the optimal solution for I under R∥ ∥.
Please note that the DP ensures that S is a valid set. Since S
is the optimal solution w.r.t. new disutilities (i.e., w.r.t. α’s),

m∑
j=1

α
(
P

S(j)
j

)
≤

m∑
j=1

α
(
P

O(j)
j

)
(4)

By the definition of α, we have

qtj ≥
ϵqσα

(
P t
j

)
m

(5)

α
(
P t
j

)
≥

qtjm

ϵqσ
− 1 (6)

Now, we prove that the approximation factor of (1+ ϵ) holds.

OPT =

m∑
j=1

q
O(j)
j ≥

m∑
j=1

ϵqσα
(
P

O(j)
j

)
m

(From (5))

≥
m∑
j=1

ϵqσα
(
P

S(j)
j

)
m

(From (4))

≥

ϵqσ
m

m∑
j=1

mq
S(j)
j

ϵqσ

− ϵqσ

(From (6))
m∑
j=1

q
S(j)
j ≤ OPT + ϵqσ (7)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2874

qσ is the sum of minimum possible disutility contribution
from each D(Pj) . Any valid set should have one degree
(degree 0 corresponds to not funding the project) from each
D(Pj) . Since the optimal solution has to be a valid set, the
optimal disutility must be at least qσ , i.e., OPT ≥ qσ . Ap-
plying this in Eqn. 7, results in

∑m
j=1 q

S(j)
j ≤ (1 + ϵ)OPT .

Running time. Now, we need to check the running time of
constructing the DP table. The table has m rows. The disu-
tilities calculated for each degree of project is upper bounded

by
qtjm

ϵqσ
, which is further bounded by mγ

ϵ (by the definition of
γ, ∵ qtj ≤ qm). Since the output is a valid set, there can be at
most m projects in the output and hence the maximum pos-
sible total disutility is upper bounded by m2γ

ϵ , which is the
number of columns. Computing each entry in row x takes
O(tx) time. Thus, the running time is O(m3γt∗

ϵ
), where

t∗ = maxj∈P tj .

Fixed parameter tractability. Here, we prove that R∥ ∥ is
also in FPT with respect to the parameters δ or m.

Proposition 7. For any instance I , computing a subset S ∈ V
that is selected under R∥ ∥ is in FPT w.r.t. scalable limit δ.

The proof of the above proposition is similar to the proof
of Proposition 3. We scale down the costs of the projects
and the budget as explained in that proof. Followed by this,
the DP table and the output will be computed as explained in
Proposition 7. The running time analysis is exactly the same
as explained in Proposition 3

Proposition 8. For any instance I , computing a subset S ∈ V
that is selected under R∥ ∥ is in FPT w.r.t. m.

The above result follows from the fact that when m is con-
stant, we can exhaustively search all the valid sets for the set
with optimal disutility.

4 Budgeting Axioms
An enormous amount of work has been done on the axiomatic
study of PB with approval votes [Aziz et al., 2018; Aziz and
Lee, 2019; Talmon and Faliszewski, 2019; Rey et al., 2020;
Baumeister et al., 2020; Sreedurga et al., 2022a]. However,
our PB model in which each project has a set of permissi-
ble costs is unique technically as well as realistically. This
uniqueness demands the development of novel axioms ap-
plicable explicitly in such a setting. We introduce different
axioms and investigate which of the PB rules introduced in
Section 2.1 satisfy our axioms and which do not. We defer
some proofs in this section to appendix [Sreedurga, 2023].

The first axiom implies that if the voters are narrowing
down their interval towards a degree that was winning, then
the degree still continues to win.

Definition 2 (Shrink-resistant). A PB rule R is said to be
shrink-resistant if for any instance I , a voter i, any j ∈ P , it
holds that a set S selected under R continues to be selected
even if li(j) and hi(j) are shifted closer to cS(j) .

Proposition 9. All the four rules R|S|, Rc(S), R
ĉ(S)

, and
R∥ ∥ are shrink-resistant.

Given an instance I , for each project j ∈ P , we define
τj = {ctj : P t

j ∈ D, ∀i ∈ N li(j) ≤ ctj ≤ hi(j)}. Let τj =
max (τj) and τj = min (τj). The second axiom requires that
if some range of costs is found to be acceptable unanimously
by all the voters, then the cost allocated to the project must
not go beyond this range.

Definition 3 (Range-abiding). A PB rule R is said to be
range-abiding if for any instance I , a project j ∈ P , and
a set S selected under R, it holds that

τj ̸= ∅ =⇒ cS(j) ≤ τj .

Proposition 10. The rules R|S| and R∥ ∥ are range-abiding,
whereas Rc(S) and R

ĉ(S)
are not.

Proof. First, we prove that Rc(S) and R
ĉ(S)

are not range-
abiding. Recall that b denotes the budget. Say we have a
single project j with exactly two permissible costs, respec-
tively equal to

⌊
b−1
n

⌋
and b. Say all the voters set li(j) = c1j .

One voter i sets hi(j) = c2j , whereas all the remaining voters
report c1j as the upper bound. Clearly, in a set S containing
P 1
j , the utility from project j is at most b− 1. Whereas, if S

selects P 2
j , the utility from j is equal to b (but all due to the

utility of a single voter). Thus P 2
j is selected. Note that, in

this example, τj =
⌊
b−1
n

⌋
and clearly c2j > τj .

Now, assume that R|S| and R∥ ∥ are not range-abiding.
That is, in a set S selected under the rule, cS(j) > τj .
Consider the set S′ = S \ {S(j)} ∪ {P t

j : τj = ctj}.
Clearly, S′ is valid since cS(j) > τj and S is valid. Also,
ui (S

′, j) > ui (S, j) since the degree chosen in S′ is within
the bounds reported by every voter (it gives the optimal utility
of n for R|S| and the optimal disutility of 0 for R∥ ∥). Thus,
S′ is a strictly better set and S must not be selected. This
forms a contradiction.

The next axiom requires that increasing the budget should
result in the winning degree of some project moving closer to
the range of costs for it found to be acceptable unanimously
by all the voters.

Definition 4 (Range-converging). A PB rule R is said to be
range-converging if for any instance I , a set S selected for I
under R, and a set S′ ̸= S selected under R on increasing
the budget, it holds that whenever there is at least one project
k with τk ̸= ∅, there also exists some project j ∈ P such that:

cS(j) /∈ τj =⇒ |cS(j)− τj | > |cS
′
(j)− τj |.

Proposition 11. All the four rules R|S|, Rc(S), Rĉ(S)
, and

R∥ ∥ are range-converging.

The next axiom requires that if some range of costs is found
to be acceptable unanimously by all the voters, the project
must be allocated the maximum amount in this range.

Definition 5 (Range-unanimous). A PB rule R is said to be
range-unanimous if for any instance I , whenever

∑
j∈P τj ≤

b, the set {P t
j : j ∈ P, ctj = τj} is selected under R.

Note that the above holds by default if τj is not defined
for some j. Range-unanimity and range-abidingness do not

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2875

imply each other, though they seem closely related. For ex-
ample, take the rule that picks for each project j, degree with
minimum cost in τj (whenever this set costs lesser than b).
This is range-abiding but not range-unanimous. In an in-
stance where the maximum costs in τj together cost more
than the budget, range-unanimity is satisfied by default by
any rule. However, a rule that selects a degree for project
j whose cost is greater than maximum cost in τj , does not
satisfy range-abidingness. Thus, range-unanimity does not
imply range-abidingness.
Proposition 12. The rules R|S| and R∥ ∥ are range-
unanimous, whereas Rc(S) and R

ĉ(S)
are not.

The following axiom essentially implies that if two valid
sets differ only on the degree of one project, then the set with
higher degree needs to be preferred.
Definition 6 (Degree-efficient). A PB rule R is said to be
degree-efficient if for any instance I , any project j ∈ P , any
set S selected under R, and the degree x ∈ S(j), it holds that

k > x =⇒ c(S)− cS(j) + ckj > b.

Proposition 13. The R
ĉ(S)

is degree-efficient, whereas R|S|,
Rc(S), and R∥ ∥ are not.

Proof. Let R be R|S|, Rc(S), or R∥ ∥. Consider the example
with single project j such that for every i: (i) c

tj
j < b and

hi(j)<c
tj
j (ii) there exists t<tj such that li(j)≤ctj≤hi(j). The

set {P t
j : ctj = τj} is selected under R since we know that

τj ̸= ∅ and τj < b. Assume that the axiom is satisfied. Then,
by the definiton of tj , ctjj > b contradicting (i). The proof
for R

ĉ(S)
is deferred to appendix [Sreedurga, 2023].

The next two axioms insist that the valid set closer to the
bounds reported by all the voters must be preferred over a
valid set farther from them.
Definition 7 (Lower bound-sensitive). A PB rule R is said
to be lower bound-sensitive if for any instance I , any project
j ∈ P , and any two valid set S, S′ such that for every voter i
we have cS(j)<cS

′
(j)<li(j), S is not selected under R.

Proposition 14. The R∥ ∥ is lower bound-sensitive, whereas
R|S|, Rc(S), and R

ĉ(S)
are not.

Proof. The proof for R∥ ∥ is deferred to appendix [Sree-
durga, 2023]. Let R be R|S|, Rc(S), or R

ĉ(S)
. For lower-

bound sensitivity, consider a counter example as follows: (i)
there are two projects with D(P1) = {P 0

1 , P
1
1 , P

2
1 , P

3
1 } and

D(P2) = {P 0
2 , P

1
2 } (ii) c11 = 1, c21 = 2, c31 = b − 3, and

c12 = b − 2 (iii) for every voter i ∈ N , li(1) = hi(1) = c31
and li(2) = hi(2) = c12. Clearly, S = {P 1

1 , P
1
2 } is a set that

is selected under R. Set S′ = {P 2
1 , P

1
2 } and j = 1.

Definition 8 (Upper bound-sensitive). A PB rule R is said
to be upper bound-sensitive if for any instance I , any project
j ∈ P , and any two valid set S, S′ such that for every voter i
we have cS(j)>cS

′
(j)>hi(j), S is not selected under R.

Proposition 15. The rules R|S|,Rc(S), and R∥ ∥ are upper
bound-sensitive, whereas R

ĉ(S)
is not.

Next, we extend discount montonicity [Talmon and Fal-
iszewski, 2019] to ensure that a winning degree of project
shouldn’t be omitted if it becomes less expensive.

Definition 9 (Discount-proof). A PB rule R is said to be
discount-proof if for any instance I , any project j ∈ P , and
a set S that is selected under R, S continues to be selected if
cS(j) is decreased by 1.

Proposition 16. The R|S| is discount-proof, whereas Rc(S),
R

ĉ(S)
, and R∥ ∥ are not.

5 Summary
Many times, there are multiple ways of executing a public
project and hence several, but limited number of, choices for
the amount to be allocated to this project. Unfortunately, the
existing preference elicitation methods and aggregation rules
for participatory budgeting do not take this factor into ac-
count. Our work is an attempt to bridge this gap. We general-
ized two utility notions defined for PB with approval votes to
our model. We also proposed two other utility notions unique
to our model. We analyzed all the corresponding utilitarian
PB rules computationally and axiomatically.

Our computational part strengthens all the existing posi-
tive results, and also introduces several new parameterized
tractability results (FPT, parameterized FPTAS) taking into
account the parameters recently introduced in the PB litera-
ture. It is worth highlighting that all our computational results
in Section 3 can be generalized by replacing the utilities with
cardinal utility for every degree of each project. However, we
present all the results for ranged approval votes due to their
practical relevance, simplicity, and deep association with ax-
iomatic analysis.

Followed by this, we introduce several axioms for our
model with ranged approval votes and investigate which of
these are satisfied by our PB rules. Note that, though none
of the proposed PB rules satisfies all the axioms, every rule
satisfies some axioms. Axiomatic analysis reflects the proper-
ties of each rule, using which the PB organizer can pick a rule
based on the context. Also, it is worth bearing in mind that the
novel disutility notion and PB rule R∥ ∥ we proposed for our
model satisfies as many axioms as any simple approval-based
PB rule satisfies. One of the key takeaways of this paper is
hence a conclusion that R∥ ∥ is a very good choice when each
voter approves a range of costs.

Acknowledgements
Sreedurga gratefully acknowledges the support of prime min-
ister research fellowship (PMRF) by Government of India,
and also thanks Prof. Ulle Endriss, Simon Rey, and Dr. Jan
Maly for their helpful feedback.

References
[Airiau et al., 2019] Stéphane Airiau, Haris Aziz, Ioannis

Caragiannis, Justin Kruger, Jérôme Lang, and Dominik
Peters. Portioning using ordinal preferences: Fairness and
efficiency. In IJCAI, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2876

[Aziz and Lee, 2019] Haris Aziz and Barton E Lee. Propor-
tionally representative participatory budgeting with ordi-
nal preferences. arXiv preprint arXiv:1911.00864, 2019.

[Aziz and Lee, 2021] Haris Aziz and Barton E Lee. Propor-
tionally representative participatory budgeting with ordi-
nal preferences. In AAAI, volume 35, pages 5110–5118,
2021.

[Aziz and Shah, 2021] Haris Aziz and Nisarg Shah. Partici-
patory budgeting: Models and approaches. In Pathways
Between Social Science and Computational Social Sci-
ence, pages 215–236. Springer, 2021.

[Aziz et al., 2018] Haris Aziz, Barton E Lee, and Nimrod
Talmon. Proportionally representative participatory bud-
geting: Axioms and algorithms. In AAMAS, pages 23–31,
2018.

[Baumeister et al., 2020] Dorothea Baumeister, Linus Boes,
and Tessa Seeger. Irresolute approval-based budgeting. In
AAMAS, pages 1774–1776, 2020.

[Benade et al., 2021] Gerdus Benade, Swaprava Nath,
Ariel D Procaccia, and Nisarg Shah. Preference elicita-
tion for participatory budgeting. Management Science,
67(5):2813–2827, 2021.

[Cabannes, 2004] Yves Cabannes. Participatory budgeting:
a significant contribution to participatory democracy. En-
vironment and urbanization, 16(1):27–46, 2004.

[Fairstein et al., 2022] Roy Fairstein, Meir Reshef, Dan Vi-
lenchik, and Kobi Gal. Welfare vs. representation in par-
ticipatory budgeting. arXiv preprint arXiv:2201.07546,
2022.

[Feldmann et al., 2020] Andreas Emil Feldmann, Euiwoong
Lee, and Pasin Manurangsi. A survey on approximation in
parameterized complexity: Hardness and algorithms. Al-
gorithms, 13(6):146, 2020.

[Goel et al., 2019] Ashish Goel, Anilesh K Krishnaswamy,
Sukolsak Sakshuwong, and Tanja Aitamurto. Knapsack
voting for participatory budgeting. ACM TEAC, 7(2):1–
27, 2019.

[Ibarra and Kim, 1975] Oscar H Ibarra and Chul E Kim. Fast
approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM (JACM), 22(4):463–
468, 1975.

[Jain et al., 2020] Pallavi Jain, Krzysztof Sornat, and Nim-
rod Talmon. Participatory budgeting with project interac-
tions. In IJCAI, pages 386–392, 2020.

[Peters et al., 2020] Dominik Peters, Grzegorz Pierczyński,
and Piotr Skowron. Proportional participatory budgeting
with cardinal utilities. arXiv preprint arXiv:2008.13276,
2020.

[Rey et al., 2020] Simon Rey, Ulle Endriss, and Ronald
de Haan. Designing participatory budgeting mechanisms
grounded in judgment aggregation. In KR, volume 17,
pages 692–702, 2020.

[Röcke, 2014] Anja Röcke. Framing citizen participation:
participatory budgeting in France, Germany and the
United Kingdom. Springer, 2014.

[Shah, 2007] Anwar Shah. Participatory budgeting. World
Bank Publications, 2007.

[Shapiro and Talmon, 2017] Ehud Shapiro and Nimrod Tal-
mon. A participatory democratic budgeting algorithm.
arXiv preprint arXiv:1709.05839, 2017.

[Sintomer et al., 2008] Yves Sintomer, Carsten Herzberg,
and Anja Röcke. Participatory budgeting in europe: Po-
tentials and challenges. International journal of urban and
regional research, 32(1):164–178, 2008.

[Sreedurga and Narahari, 2022] Gogulapati Sreedurga and
Yadati Narahari. Indivisible participatory budgeting under
weak rankings. arXiv preprint arXiv:2207.07981, 2022.

[Sreedurga et al., 2022a] Gogulapati Sreedurga,
Mayank Ratan Bhardwaj, and Y Narahari. Maxmin par-
ticipatory budgeting. arXiv preprint arXiv:2204.13923,
2022.

[Sreedurga et al., 2022b] Gogulapati Sreedurga, Soumyarup
Sadhukhan, Souvik Roy, and Yadati Narahari. Charac-
terization of group-fair social choice rules under single-
peaked preferences. arXiv preprint arXiv:2207.07984,
2022.

[Sreedurga, 2023] Gogulapati Sreedurga. Participatory bud-
geting with multiple degrees of projects and ranged ap-
proval votes. arXiv preprint arXiv:2305.10972, 2023.

[Talmon and Faliszewski, 2019] Nimrod Talmon and Piotr
Faliszewski. A framework for approval-based budgeting
methods. In AAAI, volume 33, pages 2181–2188, 2019.

[Wampler, 2010] Brian Wampler. Participatory budgeting
in Brazil: Contestation, cooperation, and accountability.
Penn State Press, 2010.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2877

	Introduction
	Model
	The PB Rules

	Computational Complexity
	The Rule R|S|
	The Rule Rc (S)
	Fixed Parameter Tractability

	The Rule Rc (S)"0362c (S)
	The Rule R
	Parameterized Approximation Algorithm (FPTAS)

	Budgeting Axioms
	Summary

