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Abstract
The real-world deployment of fair allocation algo-
rithms usually involves a heterogeneous population
of users, which makes it challenging for the users to
get complete knowledge of the allocation except for
their own bundles. Recently, a new fairness notion,
maximin-awareness (MMA) was proposed and it
guarantees that every agent is not the worst-off one,
no matter how the items that are not allocated to
this agent are distributed. We adapt and general-
ize this notion to the case of indivisible chores and
when the agents may have arbitrary weights. Due
to the inherent difficulty of MMA, we also consider
its up to one and up to any relaxations. A string of
results on the existence and computation of MMA
related fair allocations, and their connections to ex-
isting fairness concepts is given.

1 Introduction
Fairness is an important issue in many multi-agent systems,
where all participants should be treated equally [Steinhaus,
1949]. For example, network technology companies like
Amazon, Google and Meta use schedulers in the cloud to al-
locate resources (e.g., servers, memory, etc.) or tasks (e.g.,
development, maintenance, etc.) among a number of self-
interested agents who want to maximize the utility of their
own allocations. To ensure the sustainability of the Inter-
net economy, the schedulers want the allocations to be fair
[Moulin, 2003; Verma et al., 2015; Grandl et al., 2014].
[Steven J. Brams and Alan D. Taylor, 1996] presented the
real-life applications of fair allocation problems, and a recent
survey by [Amanatidis et al., 2022] reviewed the progress
from the perspective of computer science and economics.

Two of the most well-established fairness criteria are envy-
freeness (EF) [Varian, 1974] and proportionality (PROP)
[Steinhaus, 1949]. EF is an envy-based notion where every
agent compares her own bundle with every other agent’s and
wants to get the best bundle. PROP is a share-based notion
where every agent wants to ensure that the value of her bundle
is no worse than 1

n fraction of her value for all the items where
n is the number of agents. When the items are indivisible, EF
and PROP are hard to satisfy, and many relaxations have been
studied instead in the literature. Among these relaxations, the

“up to one” relaxation is one of the most popular ways, which
requires the fairness notions to be satisfied after the removal
of some item. The resulting notions are called EF or PROP
up to one item, abbreviated as EF1 [Lipton et al., 2004] and
PROP1 [Conitzer et al., 2017]. A stronger relaxation is “up
to any” which strengthens the qualifier of the removed item
to be arbitrary. Thus we get EF or PROP up to any item,
abbreviated as EFX [Caragiannis et al., 2019] and PROPX
[Moulin, 2019]. Besides these additive relaxations, maximin
share fairness (MMS) [Budish, 2011] is another popular no-
tion, which requires every agent’s value to be no worse than
her worst share in an optimal n-partition of all items. Formal
definitions of these fairness notions are deferred to Section 2.

1.1 Epistemic Fair Allocation
Motivated by the real-world applications where the agents do
not have complete knowledge of the allocation due to pri-
vacy concerns or a huge number of agents involved in the
system, an emerging line of research in fair resource allo-
cation studies the epistemic fairness leveraging the informa-
tion the agents have [Chen and Shah, 2017; Aziz et al., 2018;
Hosseini et al., 2020; Caragiannis et al., 2022]. For exam-
ple, epistemic EF was introduced by [Aziz et al., 2018] for
the setting when the agents are connected via a social net-
work and only know the bundles allocated to their neighbors.
Informally, an allocation is epistemic EF if there exists a dis-
tribution of the items allocated to her non-neighboring agents
such that the allocation is EF to her. Similar ideas have been
extended to EFX by [Caragiannis et al., 2022].

What all the aforementioned works have in common is that
they consider the epistemic variants of envy-based fairness
notions. This is partly due to the fact that most share-based
notions themselves do not require the knowledge of the allo-
cations to the other agents. In comparison, [Chan et al., 2019]
proposed another epistemic fairness notion named maximin-
aware (MMA), which combines envy-based and share-based
requirements. Informally, the intuition of MMA is to ensure
every agent does not obtain the worst bundle without know-
ing how the items that are not allocated to her are allocated
among the other agents. Since MMA is hard to satisfy, they
also proposed the up to one and up to any relaxations.

So far, most of the epistemic study of fair resource alloca-
tion has focused on the case of goods, when the agents want to
obtain items with high value. Following [Chan et al., 2019],
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Figure 1: Relationship between MMA and other notions. The dotted
arrow means the implication holds when the weights are the same.

we study MMA allocations and make the following exten-
sions. While [Chan et al., 2019] only considered allocating
goods among symmetric agents, we study the allocation of
indivisible chores (i.e., agents want to obtain items with low
value) and the general situation where the agents may have
different weights. We summarize our problem and the results
in the following section.

1.2 Our Problem and Main Contribution
We study the maximin-aware (MMA) allocation of indivisi-
ble chores among n agents whose cost functions are additive.
We use weights to represent the asymmetry of agents in the
system when the agents may have different obligations or re-
sponsibilities in a system. For example, a person in a leader-
ship position is naturally expected to undertake higher collab-
oration responsibilities. Weighted fairness has been justified
since the very early study of fair division in the context of
cake cutting problem [Robertson and Webb, 1998]. In our
problem, the agents know the number of agents, the weights
of agents and the set of items. Meanwhile, they are only
aware of their own bundles but do not know how the items
that are not allocated to them are allocated among the other
agents. An MMA allocation guarantees that for each agent,
there must exist some other agent whose bundle is no bet-
ter than hers. A bit more formally, an allocation is MMA if
the cost of every agent’s bundle is no greater than her n − 1
(weighted) maximin share of the items that are not allocated
to her, where weighted maximin share is defined in [Aziz et
al., 2019].

Since MMA is hard to satisfy, we also consider its “up
to one” and “up to any” relaxations, resulting in the no-
tions of MMA1 and MMAX. The relationships between
MMA1/MMAX and existing notions are shown in Figure 1.
We can see that general EF related notions are stronger than
MMA related ones, but PROP related notions and MMA re-
lated ones are not comparable. An exception is that MMS
implies MMA1 when the agents have the same weight, but
fails to ensure any approximation of MMA1 if the agents’
weights are arbitrary. Another one is that a PROP allocation is
also MMA; however, a PROP1 or PROPX allocation does not
have any guaranteed approximation of MMA1 or MMAX.

The advantage of MMA1 is its guaranteed existence for
agents with arbitrary weights. Regarding MMAX, we show
its existence when the agents have the same weight. When
the agents have different weights, MMAX allocations may
not exist for two agents, implied by [Hajiaghayi et al., 2023].
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Figure 2: The illustration of the approximation ratios for MMAX
when agents have arbitrary weights.

Accordingly, we design a (1 + λ)-approximation algorithm,
where λ =

√
5+1
2 if n = 2 and λ = 3−n+

√
n2+10n−7

4n−4 if
n ≥ 3. We plot the approximation ratios in Figure 2. As
we can see, since 1

n−1 < λ < 2
n−1 , the approximation ra-

tio becomes close to 1 when n becomes large. Designing
algorithms for envy-based notions (such as EFX) is arguably
harder than that for share-based ones (such as PROPX) since
it requires comparisons between every agent with every other
agent. For example, a PROPX allocation always exists when
the agents have arbitrary weights [Li et al., 2022]; however,
the best known approximation of EFX is O(n2) for agents
with the same weight [Zhou and Wu, 2022], and nothing is
known when the agents have different weights.

1.3 Other Related Work
Fair allocation of indivisible items for the case of goods
has been widely studied; see the survey of [Amanatidis et
al., 2022] for an overview. There is also a recent line
of work regarding the fair allocation of indivisible chores.
[Aziz et al., 2017] initiated the fair allocation of chores with
MMS notions and showed that there exists an instance where
MMS allocations do not exist. But approximate MMS al-
locations can be computed efficiently [Aziz et al., 2017;
Barman and Krishnamurthy, 2020; Huang and Lu, 2021;
Huang and Segal-Halevi, 2023]. When the agents are asym-
metric, [Aziz et al., 2019] and [Feige and Huang, 2022] ex-
plored the weighted MMS fairness and anyprice share (APS)
fairness. [Aziz et al., 2020] proposed a polynomial-time algo-
rithm to compute an allocation that satisfies Pareto optimal-
ity and PROP1 simultaneously for asymmetric agents when
the set of items include goods and chores. [Sun et al., 2021]
studied the connections among several fairness notions like
EFX, MMS, etc. in allocating chores. [Li et al., 2022] and
[Wu et al., 2023], respectively, showed that when agents are
asymmetric, PROPX and EF1 allocations exist and can be
computed in polynomial time. [Garg et al., 2022] presented a
polynomial-time algorithm to compute an allocation that sat-
isfies Pareto optimality and EF1 simultaneously when agents
have at most two values for chores, and [Wu et al., 2023] ex-
tended this result to asymmetric agents. [Hajiaghayi et al.,
2023] showed that EFX allocations do not always exist when
there are two or three agents with different weights.
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2 Preliminaries
We introduce our model and solution concepts in this sec-
tion. Let N = {1, . . . , n} be a set of n agents, and M =
{f1, . . . , fm} be a set of m indivisible chores. Each agent
i ∈ N has a cost function ci : 2N → R≥0. The cost
functions are assumed to be additive, i.e., for any S ⊆ M ,
ci(S) =

∑
f∈S ci({f}). For simplicity, we use ci(f) in-

stead of ci({f}) for f ∈ M . We study the weighted set-
ting, where each agent has a weight wi > 0, and the weights
add up to one, i.e.,

∑
i∈N wi = 1. Without loss of gener-

ality, we assume that ci(M) = 1 for all agents i ∈ N . A
chores allocation instance is denoted as I = ⟨M,N, c,w⟩,
where c = (c1, . . . , cn) and w = (w1, . . . , wn). An al-
location X = (X1, . . . , Xn), where Xi is the bundle allo-
cated to agent i, is an n-partition of M among n agents, i.e.,⋃

i∈N Xi = M and Xi ∩Xj = ∅ for any two agents i ̸= j.
Let Πn(M) denote the set of all n-partitions of M . Particu-
larly, we denote the set of items that are not allocated to agent
i as X−i =

⋃
j∈N\{i} Xj .

2.1 Fairness Concepts
We next introduce the most classic fairness notions, including
envy-freeness, proportionality and their relaxations.
Definition 1 (EF). For any α ∈ [1,+∞), an allocation X =
(X1, . . . , Xn) is α-approximate envy-free (α-EF), if for any
two agents i, j ∈ N , ci(Xi)

wi
≤ α · ci(Xj)

wj
. The allocation is

EF if α = 1.
Definition 2 (EF1 and EFX). For any α ∈ [1,+∞), an allo-
cation X = (X1, . . . , Xn) is α-approximate envy-free up to
one item (α-EF1), if for any two agents i, j ∈ N with Xi ̸= ∅,

ci(Xi \ {f})
wi

≤ α · ci(Xj)

wj
for some item f ∈ Xi. (1)

If the quantifier “some” in Inequality (1) is changed to
“any”, the allocation is α-approximate envy-free up to any
item (α-EFX). The allocation is EF1 or EFX if α = 1.
Definition 3 (PROP). For any α ∈ [1,+∞), an alloca-
tion X = (X1, . . . , Xn) is α-approximate proportional (α-
PROP), if for any agent i ∈ N , ci(Xi) ≤ α ·wi · ci(M). The
allocation is PROP if α = 1.
Definition 4 (PROP1 and PROPX). For any α ∈ [1,+∞),
an allocation X = (X1, . . . , Xn) is α-approximate propor-
tional up to one item (α-PROP1), if for any agent i ∈ N with
Xi ̸= ∅,

ci(Xi \ {f}) ≤ α · wi · ci(M) for some item f ∈ Xi. (2)

If the quantifier “some” in Inequality (2) is changed to
“any”, the allocation is α-approximate proportional up to
any item (α-PROPX). The allocation is PROP1 or PROPX if
α = 1.

Besides PROP1 and PROPX, maximin share fairness is an-
other popular relaxation of proportionality.

Given an instance I = ⟨M,N, c,w⟩, the maximin share
of agent i on M among n agents is defined as :

MMSi(M,n) = wi · min
Y∈Πn(M)

max
j∈N

ci(Yj)

wj
.

Different from the unweighted case, we can see that even
if two agents have the same cost function, they may still have
different MMS values.

Definition 5 (MMS). For any α ∈ [1,+∞), an allocation
X = (X1, . . . , Xn) is α-approximate maximin share fair (α-
MMS), if for any agent i ∈ N , ci(Xi) ≤ α · MMSi(M,n).
The allocation is MMS if α = 1.

2.2 Maximin-Aware and Its Relaxations
Next, we introduce our main solution concept, maximin-
aware fairness, which is a hybrid notion of EF and MMS.
Intuitively, a bundle Xi is maximin-aware (MMA) fair to
an agent i ∈ N if no matter how the items not allocated
to her are distributed among the other agents, there always
exists one agent whose bundle is no better than hers. In
other words, for an arbitrary (n − 1)-allocation (Yj)j ̸=i of
X−i, there exists j∗ ∈ N \ {i} such that ci(Xi)

wi
≤ ci(Yj∗ )

wj∗
.

Equivalently, a bundle Xi is MMA fair to an agent i ∈ N if
ci(Xi) ≤ MMSi(X−i, n− 1), where

MMSi(X−i, n− 1) = wi · min
Z∈Πn−1(X−i)

max
j∈N\{i}

ci(Zj)

wj
.

Definition 6 (MMA). For any α ∈ [1,+∞), an alloca-
tion X = (X1, . . . , Xn) is α-approximate maximin-aware
fair (α-MMA), if for any agent i ∈ N , ci(Xi) ≤ α ·
MMSi(X−i, n− 1). The allocation is MMA if α = 1.

Similar to EF and MMS, MMA allocations may not exist.
Suppose that there are two agents and one item with positive
costs for both agents. In any allocation, there always exists
one agent who cannot satisfy the condition of MMA. Thus,
we consider the relaxations of MMA.

Definition 7 (MMA1 and MMAX). For any α ∈ [1,+∞),
an allocation X = (X1, . . . , Xn) is α-approximate maximin-
aware up to one item (α-MMA1), if for any agent i ∈ N with
Xi ̸= ∅, there exists one item f ∈ Xi such that

ci(Xi \ {f}) ≤ α ·MMSi(X−i, n− 1). (3)

Similarly, the allocation is α-approximate maximin-aware up
to any item (α-MMAX) if Inequality (3) holds for any item
f ∈ Xi. The allocation is MMA1 or MMAX if α = 1.

By the definitions, it is straightforward that any α-MMA
allocation is α-MMAX, and any α-MMAX allocation is α-
MMA1. Next, we illustrate these definitions via an example.

Example 1. Consider an instance with three agents and five
items. Assume that their weights are w1 = 1

2 , w2 = 1
3 and

w3 = 1
6 respectively. For simplicity, assume that they have

the same cost function, as shown in Table 1.
Let us examine an allocation X = (X1, X2, X3) with

X1 = {f3}, X2 = {f1, f2} and X3 = {f4, f5}. It is not hard

fj f1 f2 f3 f4 f5

c(fj)
19
72

17
72

2
9

11
72

1
8

Table 1: An example of MMA related notions.
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to see that for agent 1, X1 is MMA to her since c(X1) =
2
9 <

MMS1(X−1, 2) = max{( 1772 + 11
72 + 1

8 )×
3
2 ,

19
72 × 3} = 19

24 ;
for agent 2, X2 is MMA1 but not MMAX to her since c(X2 \
{f1}) = 17

72 < MMS2(X−2, 2) = max{( 29 + 11
72 ) ×

2
3 ,

1
8 ×

2} = 1
4 and c(X2 \ {f2}) = 19

72 > MMS2(X−2, 2) = 1
4 ;

for agent 3, X3 is MMAX to her since c(X3 \ {f5}) = 11
72 =

MMS3(X−3, 2) = max{( 1672 + 17
72 )×

1
3 ,

19
72 × 1

2} = 11
72 and

c(X3 \ {f5}) > c(X3 \ {f4}).
Ordered instance. An instance I = ⟨M,N, c,w⟩ is called
ordered if all agents have the same ranking on all the items,
i.e., for every agent i ∈ N ,

ci(f1) ≥ ci(f2) ≥ · · · ≥ ci(fm).

Note that in an ordered instance, the agents can still have dif-
ferent cardinal values for the items. Intuitively, there are more
conflicts among agents in an ordered instance than in a gen-
eral one since agents desire the same item. In fact, [Bouveret
and Lemaı̂tre, 2016] and [Barman and Krishnamurthy, 2020]
formalized this intuition and showed that any algorithm that
ensures α-MMS allocations for ordered instances can be con-
verted to an algorithm for the general instances in polynomial
time with the same guarantee. We show that the same re-
sult holds for MMA1 and MMAX allocations even when the
agents have non-identical weights. For space limit, we omit
the proof. Therefore, in the following sections, we only focus
on ordered instances.

3 Connections between MMA and Other
Fairness Notions

In this section, we introduce the connections between MMA
related notions and the ones related to EF, PROP and MMS.
Due to space limit, some proofs in this section are omitted.

3.1 EF1 and EFX
We start with EF related notions. By the definitions, it is not
hard to verify that EF implies MMA, and the implication also
holds for up to one/any relaxations.
Lemma 1. For any α ∈ [1,+∞), any α-EF1 allocation is
also α-MMA1.

Proof. Let X = (X1, . . . , Xn) be an α-EF1 allocation. By
the definition of EF1 allocations, for any agent i ∈ N ,
we have wj · ci(Xi \ {f i

max}) ≤ α · wi · ci(Xj), where
f i
max = argmaxf∈Xi ci(f), for any agent j ∈ N\{i}. Then,

summing up respective inequalities for all j ∈ N \ {i}, we
get

(1− wi) · ci(Xi \ {f i
max}) ≤ α · wi · ci(X−i). (4)

Suppose, for the contradiction, that X is not an α-MMA1
allocation, i.e., there exists some agent i ∈ N such that
ci(Xi \ {f}) > α · MMSi(X−i, n − 1) holds for any item
f ∈ Xi. Let Y = (Yj)j ̸=i, where wi ·maxj∈N\{i}

ci(Yj)
wj

=

MMSi(X−i, n − 1), be an (n − 1)-allocation of X−i. So
we have wj · ci(Xi \ {f i

max}) > α · wi · ci(Yj) for any
j ∈ N \ {i}. Similarly, summing up respective inequalities
for all j ∈ N \ {i}, we have (1 − wi) · ci(Xi \ {f i

max}) >
α · wi · ci(X−i). which contradicts Inequality (4).

fj f1 f2 f3 f4

c1(fj)
1
2 − ϵ 1

2 − ϵ ϵ ϵ

Table 2: An example that a PROPX allocation with symmetric
agents fails to provide a bounded approximation ratio of MMA1 or
MMAX, where ϵ > 0 is arbitrarily small.

[Wu et al., 2023] showed that a (weighted) EF1 allocation
can be computed in polynomial time, and thus by Lemma 1,
we directly have the following corollary.

Corollary 1. MMA1 allocations exist and can be computed
in polynomial time.

The proof of the following lemma is identical to that of
Lemma 1. except that we use f i

min to replace f i
max where

f i
min = argminf∈Xi

ci(f).

Lemma 2. For any α ∈ [1,+∞), any α-EFX allocation is
also α-MMAX.

When agents have different weights, EFX allocations may
not exist for two or three agents [Hajiaghayi et al., 2023].
Especially, when there are two agents, EFX is equivalent to
MMAX. Thus, MMAX allocations may not exist for two
agents. However, when the agents have the same weight,
the Top-trading Envy Cycle Elimination algorithm [Li et al.,
2022; Bhaskar et al., 2021] can find EFX allocations for or-
dered instances in polynomial time. By Lemma 2, we have
the following corollary.

Corollary 2. When all agents have the same weight, MMAX
allocations exist and can be computed in polynomial time.

3.2 PROP, PROP1 and PROPX
Next, we discuss the connections between MMA and PROP
related notions. As we will see, in sharp contrast to EF, al-
though PROP still implies MMA, PROP1 and PROPX do
not guarantee any bounded approximation for MMA1 and
MMAX.

Lemma 3. Any EF or PROP allocation is also MMA.

Proposition 1. A PROPX allocation is not necessarily α-
MMA1 or α-MMAX for any α ∈ [1,+∞), even when the
agents have the same weight.

Proof. Consider an instance with two agents with the same
weight and four items. We focus on agent 1, and the cost of
each item, according to agent 1, is shown in Table 2.

Now consider an allocation X = (X1, X2) with X1 =
{f1, f2} and X2 = {f3, f4} and assume that this allocation is
PROPX to agent 2.1 For agent 1, this is a PROPX allocation,
and X1 is not better than ( 1

4ϵ−
1
2 )-MMA1 or ( 1

4ϵ−
1
2 )-MMAX

to her since c1(X1\{f})
MMS1(X−1,1)

=
1
2−ϵ

2ϵ for any item f ∈ X1. For
any given α ≥ 1, setting ϵ < 1

4α+2 , we have 1
4ϵ − 1

2 > α.
Thus, this allocation is not α-MMA1 or α-MMAX.

1For agent 2, it is easy to assign costs to the items to make allo-
cation X be PROPX to her. Therefore, we do not specify the cost of
each item from her perspective. The same applies to the subsequent
examples.
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fj f1 f2 f3

c1(fj)
2

3+ϵ
1

3+ϵ
ϵ

3+ϵ

Table 3: An example that an approximate MMS allocation with
symmetric agents fails to provide a bounded approximation ratio of
MMA1, where ϵ > 0 is arbitrarily small.

The above result directly implies the following corollary.
Corollary 3. A PROP1 allocation is not necessarily α-
MMA1 or α-MMAX for any α ∈ [1,+∞).

Similarly, we have the following counterpart results.
Proposition 2. An MMAX allocation may not be PROP1 or
PROPX, even when the agents have the same weight.

The above result directly implies the following corollary.
Corollary 4. An MMA1 allocation may not be PROP1 or
PROPX.

3.3 MMS
Finally, we discuss the relationship between MMS and MMA
related notions.
Proposition 3. When the agents have arbitrary weights, an
MMS allocation is not necessarily α-MMA1 or α-MMAX for
any α ∈ [1,+∞).
Proposition 4. When the agents have the same weight,

1. any MMS allocation is also MMA1;
2. there exists α ∈ (1,+∞) such that an α-MMS alloca-

tion is not necessarily β-MMA1 for any β ∈ [1,+∞);
3. an MMS allocation is not necessarily α-MMAX for any

α ∈ [1,+∞).

Proof. For the first statement, let X = (X1, . . . , Xn) be an
MMS allocation. Suppose, for the contradiction, that X is
not an MMA1 allocation, i.e., there exists some agent i ∈ N
such that ci(Xi \ {f}) > MMSi(X−i, n − 1) holds for any
item f ∈ Xi. Let Y = (Yj)j ̸=i, where maxj∈N\{i} ci(Yj) =
MMSi(X−i, n − 1), be an (n − 1)-allocation of X−i. In
allocation Y , we assume that bundle Yk satisfies ci(Yk) =
MMSi(X−i, n− 1). Next, if we choose one item f i

max from
Xi, where f i

max = argmaxf∈Xi ci(f), and put it in bundle
Yk, we obtain a new n-partition of M , i.e., Pnew = {Xi \
{f i

max}, Yk ∪{f i
max }}∪{Yj}j ̸=i,k. In Pnew, the cost of the

bundle with the maximum cost is strictly less than ci(Xi),
which contradicts the definition of MMSi(M,n).

Regarding the second statement, consider an instance with
two agents with the same weight and three items. We focus
on agent 1, and the cost of each item, according to agent 1, is
shown in Table 3.

Note that MMS1 = 2
3+ϵ . Now consider an allocation X =

(X1, X2) with X1 = {f1, f2} and X2 = {f3} and assume
that this allocation is MMS to agent 2. It is easy to see that,
for agent 1, this is a 3

2 -MMS allocation, and X1 is no better
than 1

ϵ -MMA1 to her since c1(X1\{f1})
MMS1(X−1,1)

= 1
ϵ . For any β ≥ 1,

setting ϵ < 1
β , we have 1

ϵ > β. Thus, this allocation is not
β-MMA1.

fj f1 f2 f3

c1(fj)
1

1+ϵ
ϵ

1+ϵ 0

Table 4: An example that an MMS allocation with symmetric agents
fails to provide a bounded approximation ratio of MMAX, where
ϵ > 0 is arbitrarily small.

fj f1 f2 f3 f4 f5

c(fj)
3

4+9ϵ
1

4+9ϵ
3ϵ

4+9ϵ
3ϵ

4+9ϵ
3ϵ

4+9ϵ

Table 5: An example that an approximate MMAX allocation is pre-
ferred, where ϵ > 0 is arbitrarily small.

For the last statement, suppose that we have two agents
with the same weight and three items. We focus on agent 1,
and the cost of each item, according to agent 1, is shown in
Table 4.

It is not hard to see that MMS1 = 1
1+ϵ . Next, consider

an allocation Y = (Y1, Y2) with Y1 = {f1, f3} and Y2 =
{f2} and assume that this allocation is MMS to agent 2. For
agent 1, this is an MMS allocation, and Y1 is no better than
1
ϵ -MMAX to her since c1(X1\{f3})

MMS1(X−1,1)
= 1

ϵ . Similarly, for any
α ≥ 1, setting ϵ < 1

α , we have 1
ϵ > α. Thus, this allocation

is not α-MMAX.

Proposition 5. An MMA allocation may not be MMS, even
when the agents have the same weight.

The above result directly implies the following corollary.
Corollary 5. An MMA1 or MMAX allocation may not be
MMS.

Before the end of this section, we use the following exam-
ple to illustrate that there are some scenarios where finding
approximate MMAX allocations is preferred over finding ap-
proximate MMS allocations. Consider an instance with three
agents whose weights are w1 = 1

2 and w2 = w3 = 1
4 , respec-

tively, and five items. Assume that they have the same cost
function shown in Table 5.

It can be verified that MMS1 = 3
4+9ϵ and MMS2 =

MMS3 = 3
8+18ϵ . Allocating X1 = {f1, f2} to agent 1 is

4
3 -MMS to her, which is not too bad regarding MMS fair-
ness but is severely unfair since almost all cost is on agent
1. Fortunately, any (bounded-approximate) MMAX alloca-
tion ensures that one agent can only get one of the items f1
and f2, since we have

MMS1({f3, f4, f5}, 2) =
12ϵ

4 + 9ϵ
≪ min{c(f1), c(f2)},

and similarly for i = 2, 3,

MMSi({f3, f4, f5}, 2) =
3ϵ

4 + 9ϵ
≪ min{c(f1), c(f2)}.

4 Computing Approximate MMAX
Allocations

As we have shown, an MMA1 allocation can be computed in
polynomial time, while an MMAX allocation may not exist
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Figure 3: The illustration of swap when n ≥ 3 and Xi satisfies the
condition in Step 10 of Algorithm 1.

when the agents have different weights. In this section, we
design efficient algorithms to compute approximate MMAX
allocations.

Computing MMAX allocations, which is a hybrid notion
that combines envy-based and share-based comparisons, is
arguably harder than that for PROPX allocations. By the
definition of MMAX, each agent i will compare ci(Xi \
{f}) for an item f ∈ Xi and MMSi(X−i, n − 1), where
MMSi(X−i, n − 1) depends on the allocation X instead of
a prefixed share. That is, an MMAX allocation, on the one
hand, requires that every agent has a low cost on her bun-
dle excluding any item (similar to PROPX), and on the other
hand, requires the existence of some agent whose bundle is
worse off than hers (similar to EFX) no matter how the items
that are not allocated to her are distributed. Proposition 1
shows that a PROPX allocation does not provide any guar-
antee for MMAX. However, we show that we can turn an
arbitrary PROPX allocation into an approximate MMAX al-
location with some modifications.

Consider the following instance, where we have three
agents such that w1 = 1

2 and w2 = w3 = 1
4 , and four items.

We focus on agent 1, and the cost of each item, according to
agent 1, is shown in Table 2. Consider a PROPX allocation
X = (X1, X2, X3) with X1 = {f1, f2}, X2 = {f3} and
X3 = {f4}. It is clear that X2 and X3 are PROPX to agents
2 and 3, and X1 = {f1, f2} is PROPX to agent 1. How-
ever, X1 is far from being MMAX to agent 1 since f3 and f4
have infinitesimally small costs compared to the weights of
the other two agents.

In this example, the PROPX allocation fails to provide a
good approximation of MMAX to an agent because the items
allocated to an agent are all very heavy compared to those
allocated to the other agents. Then our algorithm starts with
an arbitrary PROPX allocation, and if an agent only obtains
a single item, her bundle is trivially MMAX to her. The bad
situation is when an agent i gets at least two items where each
item has a cost larger than a fraction (a parameter determined
by n) of that of the items allocated to the other agents. Next
we exchange two arbitrary items in Xi with the two smallest
bundles among the other agents in agent i’s perspective. Note
that if n = 2, we can only exchange one item with one bundle.
We check if the bad situation happens for the agents one by
one and return the final allocation. The formal description of
the algorithm is shown in Algorithm 1.

Before showing the performance of the algorithm, we first
prove the following property for PROPX allocations.

Algorithm 1: Swap algorithm
Input: A PROPX allocation X = (X1, . . . , Xn)
Output: An approximate MMAX allocation X ∗

1 For every agent i ∈ N , let f i
min = argminf∈Xi

ci(f)

and f i
max = argmaxf∈Xi

ci(f);
2 % - - - - - - - - - - - - - - - - n = 2 - - - - - - - - - - - - - - - -
3 if n = 2 then
4 for i = 1 to n do
5 if |Xi| ≥ 2 and ci(f

i
min) > λ · ci(X−i) then

6 Xi = M \ {f i
min} and X−i = {f i

min};

7 % - - - - - - - - - - - - - - - - n ≥ 3 - - - - - - - - - - - - - - - -
8 if n ≥ 3 then
9 for i = 1 to n do

10 if |Xi| ≥ 2 and ci(f
i
min) > λ · ci(X−i) then

11 Choose two bundles Xj and Xk (j ̸= k)
that have the two smallest costs from X−i

according to agent i;
12 Xi = Xi ∪Xj ∪Xk \ {f i

min, f
i
max},

Xj = {f i
min} and Xk = {f i

max};

13 return X ∗

Lemma 4. Given any PROPX allocation X = (X1, . . . , Xn),
the following inequality holds for every agent i ∈ N ,

ci(Xi \ {f i
min})

wi
≤ ci(X−i) + ci(f

i
min)

1− wi
,

where f i
min = argminf∈Xi

ci(f).

Proof. By the definition of PROPX allocations, for any agent
i ∈ N , we have

ci(Xi \ {f i
min}) ≤ wi · ci(M). (5)

Next, we expand ci(M), i.e., ci(M) = ci(Xi \ {f i
min}) +

ci(X−i) + ci(f
i
min), and then Inequality (5) can be changed

into the desired form

ci(Xi \ {f i
min})

wi
≤ ci(X−i) + ci(f

i
min)

1− wi
,

which completes the proof of the lemma.

Theorem 1. Algorithm 1 computes a (1 + λ)-MMAX allo-
cation, where when n = 2, λ =

√
5+1
2 and when n ≥ 3,

λ = 3−n+
√
n2+10n−7

4n−4 ( 1
n−1 < λ < 2

n−1 ).

Proof. PROPX allocations exist and can be computed by the
Bid and Take algorithm [Li et al., 2022]. Therefore, the input
allocation of Algorithm 1 can be guaranteed.

Let X = (X1, . . . , Xn) be a PROPX allocation. Fix one
agent i ∈ N . If |Xi| = 1, Xi is trivially MMAX to agent i. If
|Xi| ≥ 2 and ci(f

i
min) ≤ λ · ci(X−i), by Lemma 4, we have

ci(Xi \ {f i
min})

wi
≤ ci(X−i) + ci(f

i
min)

1− wi

≤ (1 + λ) · ci(X−i)

1− wi
.
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Therefore, Xi is (1 + λ)-MMAX to agent i.
If |Xi| ≥ 2 and ci(f

i
min) > λ · ci(X−i), consider the

following two cases:
Case 1: n = 2. We pick f i

min from Xi, and swap it with
X−i. Let Xnew

i and Xnew
j denote the new bundles of agent i

and the other agent j ∈ N \ {i}, respectively, after the swap.
For these two new bundles, we have Xnew

i = M \ {f i
min} =

Xi ∪ X−i \ {f i
min} and Xnew

j = {f i
min}. For agent j, it is

trivial that Xnew
j is MMAX to her.

For agent i, we have

ci(X
new
i )

wi
=

ci(Xi \ {f i
min}) + ci(X−i)

wi

< (1 + λ−1) · ci(Xi \ {f i
min})

wi
, (6)

where the inequality follows from ci(Xi \ {f i
min}) ≥

ci(f
i
min) > λ · ci(X−i).

In addition to that, we have

ci(X−i) + ci(f
i
min)

1− wi
< (1 + λ−1) ·

ci(X
new
−i )

1− wi
, (7)

where ci(X
new
−i ) = ci(f

i
min).

Note that λ =
√
5+1
2 , which is the root to the quadratic

equation λ2−λ−1 = 0. Combining Inequalities (6) and (7),
and by Lemma 4, we get

ci(X
new
i )

wi
< (1+ λ−1)2 ·

ci(X
new
−i )

1− wi
= (1+ λ) ·

ci(X
new
−i )

1− wi
.

Case 2: n ≥ 3. We pick f i
min and f i

max from Xi, choose
two bundles Xj and Xk (j ̸= k), where these two bundles
have the two smallest costs from X−i in agent i’s perspective,
and then swap them. Let Xnew

i , Xnew
j and Xnew

k denote the
new bundles of agents i, j and k, respectively, after the swap.
For these three new bundles, we have Xnew

i = Xi ∪ Xj ∪
Xk \ {f i

min, f
i
max}, Xnew

j = {f i
min} and Xnew

k = {f i
max}.

It is easy to see that Xnew
j and Xnew

k are MMAX to agents j
and k, respectively.

For agent i, we have

ci(X
new
i )

wi
/
ci(Xi \ {f i

min})
wi

=
ci(Xi \ {f i

min}) + ci(Xj ∪Xk)− ci(f
i
max)

ci(Xi \ {f i
min})

<
ci(Xi \ {f i

min}) + ( 2
n−1 − λ) · ci(X−i)

ci(Xi \ {f i
min})

<
ci(Xi \ {f i

min}) + ( 2
(n−1)λ − 1) · ci(Xi \ {f i

min})
ci(Xi \ {f i

min})

=
2

(n− 1)λ
, (8)

where the first inequality follows from ci(Xj ∪Xk) ≤ 2
n−1 ·

ci(X−i) and ci(f
i
max) ≥ ci(f

i
min) > λ · ci(X−i), and the

second from 2
n−1 > λ, which is explained at the end of the

proof, and ci(Xi \ {f i
min}) ≥ ci(f

i
min) > λ · ci(X−i).

Besides that, we have
ci(X

new
−i )

1− wi
/
ci(X−i) + ci(f

i
min)

1− wi

=
ci(X−i)− ci(Xj ∪Xk) + ci(f

i
max) + ci(f

i
min)

ci(X−i) + ci(f i
min)

≥
n−3
n−1 · ci(X−i) + 2 · ci(f i

min)

ci(X−i) + ci(f i
min)

=
n− 3

n− 1
+

n+1
n−1 · ci(f i

min)

ci(X−i) + ci(f i
min)

>
n− 3

n− 1
+

n+1
n−1
1
λ + 1

=
(2n− 2)λ+ (n− 3)

(n− 1)(λ+ 1)
, (9)

where the first inequality follows from ci(Xj ∪Xk) ≤ 2
n−1 ·

ci(X−i) and ci(f
i
max) ≥ ci(f

i
min).

Note that λ = 3−n+
√
n2+10n−7

4n−4 , which is a root to the
quadratic equation (2n− 2)λ2 + (n − 3)λ− 2 = 0. Putting
Inequalities (8) and (9) together, and by Lemma 4, we have

ci(X
new
i )

wi
<

2

(n− 1)λ
· ci(Xi \ {f i

min})
wi

<
2

(n− 1)λ
· ci(X−i) + ci(f

i
min)

1− wi

<
2λ+ 2

(2n− 2)λ2 + (n− 3)λ
·
ci(X

new
−i )

1− wi

= (1 + λ) ·
ci(X

new
−i )

1− wi
.

Therefore, in the above two cases, Xnew
i is (1+λ)-MMAX

to agent i.
Regarding the range of λ, we have

λ− 2

n− 1
=

√
n2 + 10n− 7− n− 5

4n− 4
< 0;

λ− 1

n− 1
=

√
n2 + 10n− 7− n− 1

4n− 4
> 0.

Overall, the allocation X ∗ returned by Algorithm 1 is (1+
λ)-MMAX.

By [Hajiaghayi et al., 2023], the lower bound of EFX al-
locations for two agents with different weights is 1.272. The
lower bounds for the case when n ≥ 3 is unknown.

5 Conclusion
We study the MMA allocation of indivisible chores, when
the agents can be asymmetric. In general, MMA related no-
tions (including MMA1 and MMAX) are weaker than the
counterpart notions of EF but not comparable with those of
PROP. The positive message from this work includes the fol-
lowing. MMA1 allocations always exist for agents with ar-
bitrary weights. MMAX allocations exist when the agents
have the same weight, and admit good approximation when
the weights are arbitrary, where the approximation ratio gets
close to 1 when the number of agents is large. An interesting
future direction is to improve the upper and lower bounds for
the approximation ratio of MMAX allocations.
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