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Abstract

Selecting influentials in networks against strategic
manipulations has attracted many researchers’ at-
tention and it also has many practical applications.
Here, we aim to select one or two influentials in
terms of progeny (the influential power) and pre-
vent agents from manipulating their edges (incen-
tive compatibility). The existing studies mostly fo-
cused on selecting a single influential for this set-
ting. Zhang et al. [2021] studied the problem of
selecting one agent and proved an upper bound
of 1/(1 + ln 2) to approximate the optimal se-
lection. In this paper, we first design a mecha-
nism to actually reach the bound. Then, we move
this forward to choosing two agents and propose
a mechanism to achieve an approximation ratio of
(3 + ln 2)/(4(1 + ln 2)) (≈ 0.54).

1 Introduction
Consider the scenario where we want to select influential
agents in a network constructed by referral relationships (e.g.,
the following relationships in Twitter, the citations between
academic papers, etc.). The selected agents may be rewarded
with prizes or benefits (e.g., job opportunities [Kotturi et al.,
2020]). Hence, agents have the incentive to manipulate their
relationships to make themselves selected. Therefore, selec-
tion mechanisms that can prevent agents from strategic ma-
nipulations (which is referred to as the property of incentive
compatibility) are highly demanded [Alon et al., 2011].

Many studies have investigated incentive-compatible se-
lection mechanisms on different influence measurements for
different purposes (see [Olckers and Walsh, 2022] for a com-
plete survey). In this paper, we focus on the setting where
an agent’s influential power is measured by her progeny (the
number of all agents who directly or indirectly follow her).
For this setting, two studies have been conducted before.
Babichenko et al. [2020b] proposed the first single agent se-
lection mechanism for progeny maximization that can prevent
agents from adding or hiding their out-edges. Their mecha-
nism reaches an approximation ratio of about 1/3 (i.e., the
expected progeny of the chosen agent is about 1/3 of the
largest). However, their mechanism only works in forests.

Therefore, Zhang et al. [2021] further studied the same prob-
lem in directed acyclic graphs (DAGs) with restricting ma-
nipulations in the scope of hiding edges (agents cannot add
new edges). Their proposed mechanism achieves an approx-
imation ratio of 1/2. Moreover, they proved an upper bound
1/(1 + ln 2) of the approximation ratio for any incentive-
compatible and fair selection mechanism in the DAG setting.

In this paper, we follow the DAG setting of [Zhang et al.,
2021] and make the following contributions:

• For selecting one agent, we close the gap between the
known approximation ratio of 1/2 and the upper bound
of 1/(1+ ln 2). We propose a mechanism to achieve the
exact upper bound.

• For selecting two agents, we show that, for the class
of mechanisms that only select agents from the 1-
influential set1 (most of the existing mechanisms belong
to this class), the approximation ratio cannot exceed 1/2
if the target is to select at most two agents. Moreover,
we provide a deterministic mechanism in this class that
exactly reaches the approximation ratio of 1/2.

• We then propose a new incentive-compatible mechanism
based on a 2-influential set for selecting two agents. The
new mechanism achieves a higher approximation ratio
of (3 + ln 2)/(4(1 + ln 2)) (≈ 0.54). We also pro-
vide a general upper bound (23/27) of any incentive-
compatible mechanism for selecting two agents.

1.1 Other Related Work
Many studies on incentive-compatible selection mechanisms
use in-degrees to measure agents’ influential power, which
is also referred to as peer selection. For the in-degree mea-
surement, Alon et al. [2011] firstly proposed an incentive-
compatible peer selection mechanism by a randomized par-
tition method, which divides agents into two groups and
chooses the agents according to their in-degrees from the
other group. Following this work, there are two major di-
rections. One is to characterize incentive-compatible peer se-
lection mechanisms with axioms, which is initiated by Holz-
man and Moulin [2013]. Mackenzie [2015] continued this

11-influential set contains all agents each of whom has the largest
progeny by hiding her out-edges.
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study by adding symmetric axiomizations. The other di-
rection is to improve the approximation ratios of the exist-
ing incentive-compatible peer selection mechanisms. Fischer
and Klimm [2014] extended the idea of the partition mech-
anism to a permutation mechanism, which achieves the opti-
mal approximation ratio (1/2) for selecting one agent with in-
degree. Then, Bousquet et al. [2014] characterized a class of
networks where the permutation mechanism selects an agent
close to the optimal. Bjelde et al. [2017] generalized the
permutation mechanism for selecting multiple agents, and
gave both lower and upper bounds of the approximation ra-
tio. Recent studies also started to consider an alternative eval-
uation called additive approximation, which focuses on the
expected difference from the optimal rather than the worst-
case ratio [Caragiannis et al., 2021; Caragiannis et al., 2022;
Cembrano et al., 2022]. There are also extensions on the net-
works, including a weighted network, where the influential
power is a weighted in-degree [Kurokawa et al., 2015; Wang
et al., 2018; Babichenko et al., 2020a], and rank aggregation,
where each agent assigns a rank to others [Kahng et al., 2018;
Mattei et al., 2020].

There is also a rich body of work focusing on different
measurements of influential power. Ghalme et al. [2018] de-
signed a naturally strategy-proof score function to measure
the popularity of agents, thereby simplifying the selection. In
contrast, Babichenko et al. [2018] targeted a PageRank-like
centrality [Page et al., 1999] and offered a two-path mech-
anism which achieves a good approximation ratio of 2/3.
Moreover, Babichenko et al. [2020b] focused on the progeny
of the selected agent and proposed a mechanism with an ap-
proximation ratio of 1/(4 ln 2) in forests. Zhang et al. [2021]
then proposed a geometric mechanism with an approximation
ratio of 1/2 in DAGs, which is what we follow here.

2 Preliminaries
Let Gn be the set of all directed acyclic graphs (DAGs) with
n nodes and G =

⋃
n∈N+ Gn be the set of all DAGs. Consider

a network represented by a graph G = (N,E) ∈ G, where
N = {1, 2, . . . , n} is the node set and E is the edge set. Each
node i ∈ N represents an agent, and each edge (i, j) ∈ E
represents that agent i follows (votes for, or quotes) agent j.
Let Ei = {(i, j) | (i, j) ∈ E, j ∈ N} be the set of all edges
from i. We say an agent j is influenced by the agent i if there
exists a path from j to i in G. Let P (i, G)2 be the set of agents
who are influenced by agent i (including i herself), which is
referred to as the progeny of agent i.

Our goal is to select a group of agents in the network as del-
egates with larger progeny. Let Sk = {S | S ⊆ N, |S| = k}
be the set of all subsets with k agents, and S≤k =

⋃k
t=0 St. A

k-selection mechanism decides how to choose up to k agents
as delegates.

Definition 1. A k-selection mechanism for G is a family of
functions f : Gn → [0, 1]S≤k for all n ∈ N+, that maps each
graph to a probability distribution on all subsets with no more
than k agents.

2or simply P (i) if no ambiguity. Additionally, for the sake of
tidiness, the notation of the set also indicates its size if no ambiguity.

For a given graph G ∈ G and a k-selection mechanism f ,
denote xS(G) = (f(G))S as the probability of the subset S ∈
S≤k being selected, and xi(G) =

∑
S∈S≤k and i∈S xS(G) as

the probability of the agent i being selected.
For an agent i ∈ N , she wants her probability to be selected

(xi) as large as possible, while for the owner of the mech-
anism, we want the influential power of the selected group
(the sum of the progeny) as large as possible. Unfortunately,
if we simply choose an optimal subset with k agents, i.e.,
S∗
k ∈ argmaxS∈Sk

∑
i∈S |P (i, G)|, then agents will have

incentives to hide their edges to increase their ranks to be se-
lected. We want to avoid such a manipulation, which requires
the mechanism to be incentive-compatible.
Definition 2. A k-selection mechanism for G is incentive-
compatible (IC) if for every n ∈ N+, and every two graphs
G = (N,E), G′ = (N,E′) ∈ Gn, such that E \Ei = E′\E′

i
and Ei ⊇ E′

i for i ∈ N , we have xi(G) ≥ xi(G
′).

Intuitively, incentive compatibility implies that no matter
how other agents follow each other, it is an undominated
strategy for any agent not to hide her out-edges. Since an
incentive-compatible k-selection mechanism cannot always
choose a group with the highest influential power, we seek
the approximation of the optimum, which guarantees a worst-
case ratio between the expected progeny of the selected group
and an optimal group for all DAGs.
Definition 3. An incentive-compatible k-selection mecha-
nism is α-optimal if

inf
G∈G

ES∼xS(G)[
∑

i∈S P (i, G)]∑
i∈S∗

k
P (i, G)

≥ α.

For convenience, we can characterize an optimal group by
defining a strict order of agents as follows.
Definition 4. For a graph G = (N,E) ∈ G, and agents i,
j ∈ N , i ̸= j, we say i ≻ j if either P (i, G) > P (j,G) or
P (i, G) = P (j,G) with i > j.

Let i∗t be the agent with rank t such that |{j | j ≻ i∗t }| =
t − 1, which must be unique since the order is strict. Then,
we can order all the agents as the ranking sequence i∗1 ≻
i∗2 ≻ · · · ≻ i∗n. Apparently, {i∗1, · · · , i∗k} is an optimal set
for selecting k agents. Hence, for our strategic setting, we
will pay attention to agents who can pretend to be the first k
agents in the ranking sequence by hiding their out-edges.
Definition 5. For a graph G = (N,E), an agent i belongs
to the k-influential set S inf.

k (G) if |{j | j ≻ i}| < k holds in
the graph G′ = (N,E \ Ei).

In this paper, we mainly focus on the cases for k ∈
{1, 2}. Hence, we use some observations about S inf.

1 (G) and
S inf.
2 (G). To make it easy to follow, we present the obser-

vations about S inf.
1 (G) below as preparation and present the

observations of S inf.
2 (G) in Section 4.2.

Observation 1 ([Zhang et al., 2021]). For any graph G, the
set S inf.

1 (G) can be written as {i1, i2, · · · , im}, where m ≥ 1,
i1 = i∗1, and it+1 ∈ P (it) \ {it} for all t < m.

Intuitively, the agent i∗1 who ranks the first is naturally in
the 1-influential set. Furthermore, if there are more than one
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agent in the set, the agent who has a lower rank must be in the
progeny of those who have higher ranks; otherwise, she will
still have a lower rank when deleting her out-edges. Hence,
in other words, we can find a path in G that passes through
all agents in the set with the order of their ranks.

Observation 2 ([Zhang et al., 2021]). For any graph G, if
the set S inf.

1 (G) = {i1, i2, · · · , im} has more than one agent,
i.e., m > 1, then for any 1 < t ≤ m, 2P (it) ≥ P (i1).

Inferred from Observation 1, if there is another agent ex-
cept for i∗1 is in the 1-influential set, she should hold at least
half of i∗1’s progeny to make herself rank the first after remov-
ing her out-edges.

3 Select One Agent
In this section, we present our result for only selecting k =
1 agent. Not only does it help us understand the proposed
methods in the following section for k = 2, but also fills the
gap between the existing mechanisms and the upper bound of
approximation ratios for IC 1-selection mechanisms, which is
1/(1 + ln 2) confirmed by Zhang et al. [2021].

Formally, our method can be viewed as a general variant of
the modified Babichenko’s mechanism [2020b].

β-logarithmic Mechanism (β-LM)

1. Given a network G = (N,E), find the 1-influential
set S inf.

1 (G) = {i1, . . . , im}, where it ≻ it+1 for
all 1 ≤ t < m.

2. Assign the probability of each agent to be selected
as follows:

xj =


β, j = im

(1− β) log2
P (it)

P (it+1)
, j = it, t ̸= m

0, j /∈ S inf.
1 (G).

The total probability of selecting one agent in β-LM is at
most β + (1− β) log2(P (i1)/P (im)) ≤ 1 by the fact in Ob-
servation 2. Hence, the probabilities assigned by the mech-
anism are valid as long as 0 ≤ β ≤ 1. Then, we show the
mechanism is IC when β ≥ 1/2.

Theorem 1. A β-logarithmic mechanism is IC if β ≥ 1/2.

Proof. For any graph G ∈ G, let S inf.
1 (G) = {i1, . . . , im}.

Then, we consider three different types of agents.

1. For an agent i /∈ S inf.
1 (G), by definition, she can never

pretend to be the agent with rank 1 by hiding her out-
edges. Hence, she will always not belong to the 1-
influential set and will have 0 probability to be chosen.

2. For an agent it ∈ S inf.
1 (G) such that t < m, no mat-

ter how she hides her out-edges, it+1 will always belong
to the 1-influential set because it+1 ∈ P (it) (Observa-
tion 1) and her progeny cannot be decreased. Hence, the
probability of it to be chosen will not change.

3. For the agent im ∈ S inf.
1 (G), if she hides some of her

out-edges, there may happen two cases. (i) If there is
no agent in P (im) occurs in the new 1-influential set,
the probability of im to be chosen will remain β. (ii)
If there exists at least one agent in P (im) that occurs
in the new 1-influential set, let i′1 be the first agent in
the new set. Let im+1 be the one with the highest rank
after im in the new set. Then, the probability of im to be
chosen will become (1 − β) log2(P (im)/P (im+1)) ≤
(1 − β) log2(P (i′1)/P (im+1)) ≤ (1 − β) ≤ β by the
fact of β ≥ 1/2 and Observation 2.

Taking all the above together, no agent can increase her prob-
ability to be chosen by hiding her out-edges.

Now we can compute the approximation ratios of IC β-
LMs, from which we can find that the optimal β-LM is also
an optimal IC selection mechanism for k = 1.
Theorem 2. An IC β-logarithmic mechanism (1/2 ≤ β ≤ 1)

is
(
min

{
1
2

(
β + 1−β

ln 2

)
, β

})
-optimal.

Proof. For any graph G ∈ G, let S inf.
1 (G) = {i1, . . . , im}. If

m = 1, then we have
Ei∼xi

[P (i)]/P (i∗1) = xi1P (i1)/P (i1) = β.

If m > 1, then we have
Ei∼xi [P (i)]/P (i∗1)

=
1− β

P (i∗1)

m−1∑
t=1

P (it) log2
P (it)

P (it+1)
+ β

P (im)

P (i∗1)

=
1− β

ln 2 · P (i∗1)

m−1∑
t=1

P (it)

∫ P (it)

P (it+1)

dz

z
+ β

P (im)

P (i∗1)

≥ 1− β

ln 2 · P (i∗1)

m−1∑
t=1

∫ P (it)

P (it+1)

dz + β
P (im)

P (i∗1)

=
1− β

ln 2 · P (i1)

m−1∑
t=1

(P (it)− P (it+1)) + β
P (im)

P (i1)

=
1− β

ln 2
+

(
β − 1− β

ln 2

)
P (im)

P (i1)

≥ 1

2

(
β +

1− β

ln 2

)
.

Therefore, the mechanism is
(
min

{
1
2

(
β + 1−β

ln 2

)
, β

})
-

optimal.

It is not hard to find out that when β = 1/(1 + ln 2), the
value min

{
1
2

(
β + 1−β

ln 2

)
, β

}
takes it maximum as 1/(1 +

ln 2), i.e., the optimal β-LM is (1/(1 + ln 2))-LM, which is
(1/(1 + ln 2))-optimal. Recall that Zhang et al. [2021] has
proved that no IC and fair3 selection mechanism can be α-
optimal with α > 1/(1 + ln 2). Hence, we can infer the
optimality of (1/(1 + ln 2))-LM.

3Fairness is a quite weak property for single agent selection that
only requires i∗1 has the same probability to be chosen if the 1-
influential set and the structure formed by P (i∗1) remain the same.
It is clear to see that β-LM satisfies this fairness.
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Corollary 1. There is no other IC and fair selection mecha-
nism for k = 1 that can have a higher approximation ratio
than (1/(1 + ln 2))-LM.

At the end of this section, we give a running example of
(1/(1 + ln 2))-LM.

Example 1. Consider the network depicted in Figure 1,
where S inf.

1 (G) = {i1, i2, i3, i4}. For the last agent i4 in the
set, her selection probability xi4 is 1/(1 + ln 2) ≈ 0.59. For
the agents i3, i2 and i1, their selection probabilities are

xi3 =
ln 2

1 + ln 2
log2

P (i3)

P (i4)
=

ln 2

1 + ln 2
log2

5

4
≈ 0.13;

xi2 =
ln 2

1 + ln 2
log2

P (i2)

P (i3)
=

ln 2

1 + ln 2
log2

6

5
≈ 0.11;

xi1 =
ln 2

1 + ln 2
log2

P (i1)

P (i2)
=

ln 2

1 + ln 2
log2

7

6
≈ 0.09.

𝑖ଶ𝑖ଷ𝑖ସ𝑗 𝑖ଵ

𝑆ଵ
୧୬୤.(𝐺)

Figure 1: An example of the network, where the marked agents have
the relationship as i1 ≻ i2 ≻ i3 ≻ i4 ≻ j. The 1-influential set is
represented by a dashed border.

4 Select Two Agents
We start to consider selecting up to k = 2 agents as delegates.
To select agents with larger progeny, one possible approach is
to find the second delegate from the 1-influential set as well.
However, this limits the performance of IC mechanisms.

4.1 Limitation of the 1-influential Set
The limitation of selecting agents from the 1-influential set
for k = 2 mainly comes from the fact that there may be only
a single agent in the set.

Theorem 3. If an IC 2-selection mechanism only selects
agents in the 1-influential set, then it cannot be α-optimal
with α > 1/2.

Proof. Consider a two-star graph shown in Figure 2. Suppose
P (i1) = P (j) = y and i1 > j. Then the 1-influential set of
this graph S inf.

1 (G) only contains i1. Therefore, even if the
mechanism can always select agent i1 with probability 1, the
approximation ratio in this graph is only (1·y)/(y+y) = 1/2.
Hence, if only selecting agents in the 1-influential set, an IC
2-selection mechanism cannot achieve an approximation ratio
of more than 1/2.

We can also show that the limitation described in Theo-
rem 3 is tight by providing the following mechanism.

…

𝑖ଵ

…

𝑗𝑆ଵ
୧୬୤.(𝐺)

Figure 2: A two-star network where the hubs satisfy i1 ≻ j. Thus,
the 1-influential set only contains i1.

Least Deterministic Mechanism (LDM)

1. Given a network G = (N,E), find the 1-influential
set S inf.

1 (G) = {i1, . . . , im}, where it ≻ it+1 for
all 1 ≤ t < m.

2. Assign the probability of each agent to be selected
as follows:

xj =

{
1, j = im, or j = im−1

0, j = it, t < m− 1, or j /∈ S inf.
1 (G).

Intuitively, LDM deterministically selects the last two
agents in the 1-influential set or it selects the only agent in
the set if |S inf.

1 (G)| = 1.

Example 2. We take the networks shown in Figure 1 and
Figure 2 as running examples. In Figure 1, there are four
agents, i1, i2, i3, and i4, in the 1-influential set. Hence, LDM
deterministically selects the last two agents i4 and i3, i.e.,
xi4 = xi3 = 1. In Figure 2, there is a single agent i1 in the
1-influential set. Hence, LDM deterministically selects the
agent i1 only.

Now we prove that LDM is incentive-compatible and 1/2-
optimal as follows.

Theorem 4. LDM is an IC 2-selection mechanism.

Proof. For any graph G ∈ G, suppose that S inf.
1 (G) =

{i1, . . . , im}. Then we consider the following cases.

1. For an agent i /∈ S inf.
1 (G), same as the first point in the

proof of Theorem 1, she always has no chance to be cho-
sen by hiding her out-edges.

2. If m ≤ 2, the agents in S inf.
1 (G) will be deterministically

selected. Hence, they have no incentive to hide their out-
edges.

3. If m > 2, first, for agents im and im−1 who will be de-
terministically selected, they have no incentive to hide
their out-edges. Then, for any agent it ∈ S inf.

1 (G) with
i < m − 1, no matter how she hides her out-edges, im
and im−1 will always belong to the 1-influential set be-
cause {im, im−1} ⊆ P (it) (Observation 1) and their
progeny cannot be decreased. Hence, the probability of
it to be chosen will remain to be 0.

Taking all the above together, no agent can increase her prob-
ability to be chosen by hiding her out-edges. Therefore, the
mechanism is IC.
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Theorem 5. LDM is 1/2-optimal.

Proof. For any graph G ∈ G, if |S inf.
1 (G)| = 1, then LDM

deterministically selects the agent i∗1. Therefore, in this case,
we have
ES [

∑
i∈S P (i)]∑

i∈S∗
2
P (i)

=
P (i∗1)

P (i∗1) + P (i∗2)
≥ P (i∗1)

P (i∗1) + P (i∗1)
=

1

2
.

If |S inf.
1 (G)| ≥ 2, then LDM deterministically selects the

agent im and im−1. By Observation 2, in this case, we have
ES [

∑
i∈S P (i)]∑

i∈S∗
2
P (i)

=
P (im) + P (im−1)

P (i∗1) + P (i∗2)

≥ P (im) + P (im−1)

2P (i1)

=
1

2

(
P (im)

P (i1)
+

P (im−1)

P (i1)

)
≥ 1

2

(
1

2
+

1

2

)
=

1

2
.

Therefore, LDM is 1/2-optimal.

If we consider general IC 2-selection mechanisms, we may
have a higher upper bound of the approximate ratio. This
suggests the limitation of only selecting agents from the 1-
influential set when we target up to two delegates.
Theorem 6. There is no IC 2-selection mechanism that can
be α-optimal with α > 23/27.

Proof. Consider three networks with four agents shown in
Figure 3. Applying a generic IC 2-selection mechanism on
these graphs, suppose the probabilities of each agent i being
chosen in the three graphs are x

(a)
i , x(b)

i and x
(c)
i . Notice

that network (b) can be obtained by agent 2 or 4 in network
(a) hiding their out-edges (corresponding to agent 2 or 1 in
network (b)), while network (c) can be obtained by agent 3
hiding her out-edge (corresponding to agent 1 or 3 in net-
work (c)). Since the selection mechanism is IC, we have the
following constraints:

x
(b)
2 ≤ x

(a)
2 , x

(b)
1 ≤ x

(a)
4 ; (1)

x
(c)
3 ≤ x

(a)
3 , x

(c)
1 ≤ x

(a)
3 . (2)

Moreover, the mechanism selects at most 2 agents. Hence,
4∑

i=1

x
(a)
i ≤ 2,

4∑
i=1

x
(b)
i ≤ 2,

4∑
i=1

x
(c)
i ≤ 2. (3)

The approximation ratio of the mechanism must be no
more than the least ratio in these three graphs, i.e.,

α ≤ min

{
4x

(a)
1 + 3x

(a)
2 + 2x

(a)
3 + x

(a)
4

7
,

x
(b)
1 + 3x

(b)
2 + 2x

(b)
3 + x

(b)
4

5
,

2x
(c)
1 + x

(c)
2 + 2x

(c)
3 + x

(c)
4

4

}

With constraints (1) - (3), we can calculate the highest
value of the minimum. Therefore, we have α ≤ 23/27 and
the equations holds when

x
(a)
1 = 2/3, x

(a)
2 = 17/27, x

(a)
3 = 19/27, x

(a)
4 = 0;

x
(b)
1 = 0, x

(b)
2 = 17/27, x

(b)
3 = 1, x

(b)
4 = 10/27;

x
(c)
1 = 19/27, x

(c)
2 = 16/27, x

(c)
3 = 19/27, x

(c)
4 = 0.

Figure 3: Three networks with four agents where (b) and (c) can
be obtained by one of the agents in (a) hiding her out-edge. The
probabilities of each agent being chosen by a generic IC 2-selection
mechanism are attached beside the node.

4.2 Utilizing the 2-influential Set
To break through the limitation of the 1-influential set, one
natural idea is to consider the 2-influential set. We first char-
acterize the set by following observations.

Observation 3. For any graph G, S inf.
1 (G) ⊆ S inf.

2 (G).

Observation 4. For any graph G, {i∗1, i∗2} ⊆ S inf.
2 (G).

According to Definition 5, agents who can pretend to be the
first in the ranking sequence are definitely in the 2-influential
set. The agents i∗1 and i∗2 who rank first and second are also
naturally in the 2-influential set. Based on the relationship be-
tween i∗1 and i∗2, the 2-influential set will have different forms.

Observation 5. For any graph G, if i∗2 ∈ P (i∗1), the set
S inf.
2 (G) can be written as {i1, i2, · · · , im}, where i1 = i∗1,

i2 = i∗2, and it+1 ∈ P (it) for all t < m.

Proof. When there is another agent i3, except for i∗1 and i∗2, is
in the 2-influential set, she must have the ability to decrease
i∗1 or i∗2’s progeny by hiding her out-edges, i.e., at least one of
i3 ∈ P (i∗1) and i3 ∈ P (i∗2) is satisfied. If i∗2 ∈ P (i∗1), we will
show i3 must belong to P (i∗2) by contradiction as follows.

If i3 /∈ P (i∗2), then she cannot decrease i∗2’s progeny by
hiding her out-edges. Since i∗2 /∈ P (i3), i∗2 ∈ P (i∗1) is always
satisfied no matter how i3 hides her out-edges. Hence, in
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order to rank first or second after hiding out-edges, i3 ≻ i∗2
must be satisfied, which contradicts that i∗2 is with rank 2.
Therefore, i3 ∈ P (i∗2).

Similarly, when there is another agent i4 ≺ i3 in the 2-
influential set, she must belong to P (i3), and this pattern ex-
tends to subsequent agents in the 2-influential set.

Observation 6. For any graph G, if i∗2 /∈ P (i∗1), the set
S inf.
2 (G) can be written as {i1, i2, · · · , im}, where i1 = i∗1,

i2 = i∗2, and for others, at least one of the below is true:

• i3 ∈ P (i1), it+1 ∈ P (it) for all 3 ≤ t < m;

• i3 ∈ P (i2), it+1 ∈ P (it) for all 3 ≤ t < m.

Proof. When there is another agent i3, except for i∗1 and i∗2,
is in the 2-influential set, at least one of i3 ∈ P (i∗1) and i3 ∈
P (i∗2) is satisfied.

We first assume i3 ∈ P (i∗1). Then, when there is an-
other agent i4 ≺ i3 in the 2-influential set, we show that
i4 ∈ P (i3) by contradiction as follows. If i4 /∈ P (i3), she
cannot decrease i3’s progeny by hiding her out-edges. Since
i3 /∈ P (i4), i3 ∈ P (i∗1) is always satisfied no matter how
i4 hides her out-edges. Hence, i4 ≻ i3 must be satisfied
to make i4 be in the 2-influential set, which makes a con-
tradiction. Therefore, i4 ∈ P (i3). Similarly, when there is
another agent i5 ≺ i4 in the 2-influential set, she must be-
long to P (i4), and this pattern extends to subsequent agents
in the 2-influential set. The same results can also be obtained
similarly if i3 ∈ P (i∗2).

From the above observations, we can see that the structure
of the 2-influential set is much more complex than that of the
1-influential set. Furthermore, the progeny of the last agent in
the 2-influential set might be much smaller than P (i∗1) since
P (i∗2) might be small. These are the main difficulties to uti-
lize the 2-influential set. Extending the idea of LDM and β-
LM, we propose the following mechanism.

Logarithm After Least Deterministic (LALD)

1. Given a network G = (N,E), find the 1-influential
set S inf.

1 (G) and the 2-influential set S inf.
2 (G).

2. If S inf.
2 (G) \ S inf.

1 (G) = ∅, then S inf.
1 (G) =

S inf.
2 (G) = {i1, i2 . . . , im}, where it ≻ it+1 for

all 1 ≤ t < m. Then, assign the probability of each
agent to be selected as follows:

xj =


1, j = im

1
1+ln 2 , j = im−1

ln 2
1+ln 2 log2

P (it)
P (it+1)

, j = it, t < m− 1

0, j /∈ S inf.
2 (G).

3. If S inf.
2 (G) \ S inf.

1 (G) ̸= ∅, suppose S inf.
2 (G) =

{i1, . . . , im} where it ≻ it+1 for all 1 ≤ t <
m. First, deterministically select the agent im, i.e.,
xim = 1. Then, select the second agent by applying
(1/(1 + ln 2))-LM on G.

Intuitively, LALD first deterministically selects the last
agent in the 2-influential set. Then, it uses the same probabil-
ity distribution as (1/(1 + ln 2))-LM to select another agent
among the remaining agents in the 1-influential set.

Example 3. We take the networks shown in Figure 1 and Fig-
ure 4 as running examples.

In Figure 1, suppose j < i2. Then, S inf.
2 (G) = S inf.

1 (G) =
{i1, i2, i3, i4}. Hence, LALD first deterministically selects
agent i4, i.e., xi4 = 1. For the remaining agents in S inf.

1 (G),
LALD assigns the probabilities as xi3 = 1/(1+ln 2) ≈ 0.59,
xi2 = ln 2/(1 + ln 2) log2(P (i2)/P (i3)) ≈ 0.11, and xi1 =
ln 2/(1 + ln 2) log2(P (i1)/P (i2)) ≈ 0.09.

In Figure 4, suppose i2 > i3 and i4 > j. Then, S inf.
1 (G) =

{i1} and S inf.
2 (G) = {i1, i2, i3, i4}. Hence, LALD first deter-

ministically selects agent i4, i.e., xi4 = 1. LALD then runs
(1/(1 + ln 2))-LM, which assigns the probabilities among
S inf.
1 (G). Here, it assigns that xi1 = 1/(1 + ln 2) ≈ 0.59.

𝑖ଶ𝑖ଵ𝑖ଷ𝑖ସ 𝑗

𝑆ଵ
୧୬୤.(𝐺)

𝑆ଶ
୧୬୤.(𝐺)\𝑆ଵ

୧୬୤.(𝐺)

Figure 4: An example of the network, where the marked agents have
the relationship as i1 ≻ i2 ≻ i3 ≻ i4 ≻ j. The 1-influential set and
the 2-influential set are represented by dashed borders.

Theorem 7. LALD is an IC 2-selection mechanism.

Proof. For any graph G ∈ G, We consider three different
types of agents.

1. For an agent i /∈ S inf.
2 (G), by definition, she can never

be in the set by hiding her out-edges. Hence, she will
always have 0 probability to be chosen.

2. For an agent i ∈ S inf.
2 (G) \ S inf.

1 (G) when S inf.
2 (G) \

S inf.
1 (G) ̸= ∅, there are two cases. (i) If i is the last

agent in the 2-influential set, her probability to be chosen
is 1. Hence, she has no incentive to manipulate. (ii) If
i is not the last agent, no matter how she hides her out-
edges, both the last agent and herself are still in the set
S inf.
2 (G) \ S inf.

1 (G). Hence, her probability to be chosen
remains 0.

3. For an agent i ∈ S inf.
1 (G), suppose S inf.

1 (G) =
{i1, . . . , iq} with it ≻ it+1 for all 1 ≤ t < q. There
are three cases. (i) If i is the last agent iq in the 1-
influential set, she has no incentive to manipulate when
S inf.
2 (G) \ S inf.

1 (G) = ∅ since xi = 1. When S inf.
2 (G) \

S inf.
1 (G) ̸= ∅, no matter how i hides her out-edges,

agents in the set S inf.
2 (G) \S inf.

1 (G) will still be in the 2-
influential set (even may be in the 1-influential set). Af-
ter i hides some out-edges, if S inf.

2 (G′) \ S inf.
1 (G′) ̸= ∅,

then i cannot have higher probability by Theorem 1;
if S inf.

2 (G′) \ S inf.
1 (G′) = ∅, then i can have at most

1/(1 + ln 2) probability since she will no longer be the
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last agent in S inf.
1 (G′), which equals to her original prob-

ability. (ii) If i = iq−1, she has no incentive to manipu-
late when S inf.

2 (G) \ S inf.
1 (G) = ∅. It is because iq will

always be in the 1-influential set no matter how i hides
her out-edges, which makes increasing her probability
to be chosen impossible. When S inf.

2 (G) \S inf.
1 (G) ̸= ∅,

it is almost the same condition as that for i = iq . Hence,
she cannot increase her probability by manipulation, ei-
ther. (iii) If i = it with t < q − 1, no matter how
she hides her out-edges, iq and iq−1 are always in the
1-influential set. Hence, i’s probability to be chosen will
not change.

Taking all the above together, we can conclude that the
mechanism is IC.

Theorem 8. LALD is 3+ln 2
4(1+ln 2) -optimal.

Proof. Suppose S inf.
2 (G) = {i1, i2, · · · , im} for any graph

G ∈ G,. There are two different cases that need consideration.
1. If S inf.

2 (G) \ S inf.
1 (G) = ∅, then according to Observa-

tion 1 and Theorem 2, we have

ES [
∑

i∈S P (i)]∑
i∈S∗

2
P (i)

≥
P (im) + 1

1+ln 2P (i∗1)

P (i∗1) + P (i∗2)

≥

(
1
2 + 1

1+ln 2

)
P (i1)

P (i1) + P (i2)

≥
1
2 + 1

1+ln 2

2
=

3 + ln 2

4(1 + ln 2)
.

2. If S inf.
2 (G) \ S inf.

1 (G) ̸= ∅, we first consider the progeny
P (im). When i∗2 ∈ P (i∗1), the structure of the 2-
influential set is characterized by Observation 5. Then
after deleting im’s out-edges, i1 ≻ i2 holds. Hence,
P (im) ≥ P (i2) − P (im) which implies 2P (im) ≥
P (i2). When i∗2 /∈ P (i∗1), the structure of the 2-
influential set is characterized by Observation 6. Hence,
at least one of 2P (im) ≥ P (i1) and 2P (im) ≥ P (i2) is
satisfied, which all imply that 2P (im) ≥ P (i2). There-
fore, let P (i2)/P (i1) = ρ and we have

ES [
∑

i∈S P (i)]∑
i∈S∗

2
P (i)

≥
P (im) + 1

1+ln 2P (i∗1)

P (i∗1) + P (i∗2)

≥
1
2P (i2) +

1
1+ln 2P (i1)

P (i1) + P (i2)

=
ρ/2 + 1/(1 + ln 2)

1 + ρ

=

1
2 (1 + ρ) + 1−ln 2

2(1+ln 2)

1 + ρ

=
1

2
+

1− ln 2

2(1 + ln 2)
· 1

1 + ρ

≥ 1

2
+

1− ln 2

4(1 + ln 2)
=

3 + ln 2

4(1 + ln 2)
.

Therefore, we can conclude that the mechanism is 3+ln 2
4(1+ln 2) -

optimal.

5 Discussion
In this paper, we investigate the incentive-compatible selec-
tion mechanisms for one or two influentials, where an agent’s
influential power is defined by her progeny. The goal is to
select agents with progeny as large as possible and to prevent
them from hiding their out-edges at the same time. Based on
the idea of assigning possibilities of being selected to those
agents who can pretend to be the one with the largest or sec-
ond largest progeny, we first propose the 1/(1 + ln 2)-LM
mechanism for selecting one agent, which is optimal among
all IC and fair single-agent selections. We then propose
the LALD mechanism for selecting up to two influentials,
which has an approximation ratio of (3 + ln 2)/(4(1 + ln 2))
(≈ 0.54). To the best of our knowledge, this is the first
work to select more than one agent for progeny maximiza-
tion. There are several interesting future directions worth in-
vestigating, and we provide some brief discussions here.

One direction is to narrow the gap between the current
lower bound (given by our proposed mechanism) and the cur-
rent upper bound (23/27 as we proved) of the approximation
ratio for an optimal IC 2-selection mechanism. For the side of
upper bounds, notice that our provided upper bound does not
require additional properties like fairness defined in [Zhang
et al., 2021]. This is because the fairness for selecting a sin-
gle agent does not apply in selecting multiple agents (e.g., in
LALD, the probability of choosing i∗1 may be also related to
the structure of the 2-influential set). If we extend the defini-
tion of fairness to k-fairness like
Definition 6 (sketch). i∗1 (or also with i∗2 to i∗k) has the same
probability to be chosen when the k-influential set and the
structure formed by P (i∗1) (or also with P (i∗2) to P (i∗k)) re-
main the same.
Then, we can observe that k-fairness will become weaker
when k becomes larger. Zhang et al. [2021] conjectured that
dropping (1-)fairness will not affect the upper bound they
characterized. If it can be proven to be true, then we can also
draw a corollary that introducing k-fairness will not affect
the upper bounds of approximation ratios for IC k-selection
mechanisms. For the side of improving lower bounds, one
may consider to utilize more agents in the 2-influential set but
not in the 1-influential set. The main difficulty here is these
agents may have too small progeny when P (i∗2) ≪ P (i∗1).

The other direction is to extend the mechanisms for select-
ing more agents (k ≥ 3). Similar to the case of selecting
two agents, only selecting agents in the k′-influential set with
k′ < k may limit the performance. A natural idea is to se-
lect k agents in the k-influential set. The main difficulty here
is that the structure of the k-influential set will become more
and more complex when k becomes larger. Intuitively, the
structure of the k-influential set depends on the relationships
among agents i∗1, . . . , i∗k. The number of different cases of
the structure will grow exponentially with k, which is roughly
2O(n2). A possible way to handle this challenge may be re-
cursively considering the influential set with lower k.

Finally, in terms of other applications, such as recruit-
ing agents to promote some advertisements, designing selec-
tion mechanisms to maximize the expected cardinality of the
union of progeny is also a promising future direction.
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