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Abstract

This paper introduces a local search method for im-
proving an existing program with respect to a mea-
surable objective. Program Optimization with Lo-
cally Improving Search (POLIS) exploits the struc-
ture of a program, defined by its lines. POLIS im-
proves a single line of the program while keep-
ing the remaining lines fixed, using existing brute-
force synthesis algorithms, and continues iterating
until it is unable to improve the program’s per-
formance. POLIS was evaluated with a 27-person
user study, where participants wrote programs at-
tempting to maximize the score of two single-agent
games: Lunar Lander and Highway. POLIS was
able to substantially improve the participants’ pro-
grams with respect to the game scores. A proof-of-
concept demonstration on existing Stack Overflow
code measures applicability in real-world prob-
lems. These results suggest that POLIS could be
used as a helpful programming assistant for pro-
gramming problems with measurable objectives.

1 Introduction
Recent advances in large language models and program syn-
thesis have enabled the development of powerful artificial in-
telligence assistants for computer programmers. For exam-
ple, Copilot [Friedman, 2021] can provide an initial solution
to a problem if the programmer is unsure of how to approach
the problem or auto-complete what the programmer writes to
speed up coding. Copilot and other assistants were designed
to interact with the programmer throughout the development
of the program. This paper considers a setting where the as-
sistant interacts with the programmer only after a working
version of the program is available. In this paper’s setting,
the assistant attempts to improve the programmer’s solution
with respect to a real-valued, measurable objective function,
something systems such as Copilot cannot perform.

We introduce Program Optimization with Locally Improv-
ing Search (POLIS), an intelligent assistant to improve exist-
ing programs. POLIS leverages the ability of existing synthe-
sizers to generate high-quality (short) programs by treating
each line of an existing program as an independent program

synthesis task. POLIS uses an enumeration algorithm for syn-
thesis, called bottom-up search [Albarghouthi et al., 2013;
Udupa et al., 2013], for each line of the program. Since
POLIS selects the best solution encountered in each bottom-
up search, it can be seen as a hill-climbing algorithm in the
program-line space. Despite not using any models for guid-
ing its search, POLIS can handle complex programs because it
divides the original problem into much smaller sub-problems
by considering the synthesis of one line at a time.

To evaluate POLIS, 27 programmers wrote programs for
playing Lunar Lander and Highway, two single-agent games
commonly used to evaluate reinforcement learning algo-
rithms. POLIS was able to improve the score of all programs
written by the participants, often by a large margin. Our re-
sults also show that often the modified programs retain most
of the structure of the original programs. As a result, the users
who wrote the programs are likely to understand POLIS’s
modifications to their implementations. We also present a
proof-of-concept demonstration of POLIS’s ability of fixing
bugs in 4 simple programs posted on Stack Overflow.

POLIS’s modified programs can be seen as the result of
the work done by an effective human-AI team. This is be-
cause bottom-up search would not be able to synthesize the
resulting programs from scratch, as the programs are long and
complex. However, bottom-up search is able to substantially
improve human-generated programs. As our results demon-
strate, human programmers are unable to write on their own
programs of the quality obtained with POLIS. These results
suggest that POLIS can be a helpful assistant to programmers
for problems with measurable objectives.

This paper makes two contributions. First, it defines a
problem setting for intelligent programming assistants where
the assistant attempts to improve existing programs with re-
spect to an objective function. Second, it introduces POLIS, a
system that employs a novel local search algorithm based on
a simple brute-force search algorithm.

2 Related Work

POLIS is related to intelligent programming assistants, pro-
gram synthesis, programmatically interpretable policies, and
program enhancement algorithms.
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2.1 Intelligent Programming Assistants

Intelligent assistants for programmers are getting popular and
have become a popular area of research lately. SnipPy [Fer-
dowsifard et al., 2020] is one such tool that allows the pro-
grammer to synthesize instructions by defining input-output
examples in the context of live programming. Similarly,
Blue-Pencil [Miltner et al., 2019] is a system that identifies
repetitive tasks that arise in programming and suggests trans-
formations for such tasks. reCode [Ni et al., 2021] observes
code transformation to identify other places of the code that
would require similar changes. Raychev et al. [2014] in-
troduced a statistical model for code completion and Guo et
al. [2022] introduced a model for code completion that leaves
“holes” where the model is uncertain.

POLIS differs from these works in how it assists the pro-
grammer. Instead of real-time interactions during the devel-
opment of the program, we consider the scenario where the
programmer provides a complete, compilable version of their
program. POLIS leverages human-defined code structure to
improve the user’s implementation with a simple synthesizer.

2.2 Program Synthesis

The task of synthesizing programs that satisfy a specifica-
tion is a long-standing problem [Waldinger and Lee, 1969;
Smith, 1976; Fraňová, 1985; Kodratoff et al., 1990] and it
has received much attention lately [Albarghouthi et al., 2013;
Balog et al., 2016; Devlin et al., 2017; Kalyan et al., 2018;
Shin et al., 2019; Ellis et al., 2020]. While previous works at-
tempt to improve the synthesis process and generate programs
which satisfy given specification, POLIS uses program syn-
thesis to optimize existing programs with respect to a given
objective function.

2.3 Programmatic Policies

One way to solve the problems considered in this work is
to synthesize programs encoding a policy for solving the
tasks. Neurally directed program search (NDPS) [Verma et
al., 2018a] synthesizes programs while imitating a neural ora-
cle. Viper [Bastani et al., 2018] also employs imitation learn-
ing to train decision trees encoding policies. In order to pro-
vide better search guidance for synthesis, Propel [Verma et
al., 2019] trains neural policies that are not “too different”
from the synthesized program. Sketch-SA [Medeiros et al.,
2022] is another such system that uses imitation learning to
synthesize a sketch of a policy; the policy is synthesized from
the sketch by evaluating it directly in the environment.

Oracle-free programmatically interpretable reinforcement
learning (π-PRL) [Qiu and Zhu, 2022] and Bilevel Synthesis
(Bi-S) [Aleixo and Lelis, 2023] bypass the need of an oracle
to guide the synthesis of programmatic policies. π-PRL uses
a differentiable language and trains the model using policy
gradient methods, while Bi-S uses the result of a search in a
feature space to guide the search in the programmatic space.

POLIS differs from these algorithms because they were de-
signed to synthesize programs from scratch, while POLIS fo-
cuses on leveraging the structure of existing programs.

2.4 Program Enhancement
Refactoring is a well-known program enhancement technique
used to improve a program’s quality without affecting its ex-
ternal behavior [Fowler, 2018; Aniche et al., 2020]. Another
way of enhancing a program is the Automated Program Re-
pair (APR) technique which refers to the process of fault lo-
calization in software and the development of patches using
search-based software engineering and logic rules [Sharma et
al., 2021; Goues et al., 2019; Nguyen et al., 2013]. For in-
stance, Le Goues et al. [2011] use genetic programming to
develop bug-fixing patches without affecting software func-
tionality. POLIS is different from these techniques because
a) POLIS improves programs with respect to an objective
function and its external behavior is likely to change; and b)
while POLIS fixes unintended programmer mistakes (similar
to APR), it is likely to also change sub-optimal parts of the
program, improving overall performance.

3 Problem Definition
Rather than using a general-purpose language like Python,
which defines a very large program space, we use a domain-
specific language (DSL) to define a more constrained space of
programs for solving a programming task. A DSL is defined
as a context-free grammar (V,Σ, R, S), where V is a finite
set of non-terminals, Σ is a finite set of terminals, and R is
the set of relations corresponding to the production rules of
grammar. S is the grammar’s start symbol. An example of
a DSL defined by a grammar G is shown below, where V =
{S,C,B}, Σ = {c1, c2, c3, b1, b2, if-then-else}, R are the
relations (e.g., C → c1), and S is the start symbol.

S → if(B) then S else S | C
C → c1 | c2 | c3 | CC (1)
B → b1 | b2

This DSL allows programs with a single instruction (c1, c2,
or c3), or multiple commands using nested if-then-else
blocks. Let JGK be the set of programs (possibly infinite) that
can be written with grammar G. Each program p ∈ JGK is de-
fined by a pair {T, L}, where T is a multiset of non-terminal
symbols and L defines a partition of symbols from T into
program lines, i.e., L defines how a programmer organizes
the symbols in T in a text editor. Note that two programs that
have identical functionality could have different partitions L.

POLIS takes as input a program p ∈ JGK, and an objec-
tive function F (real-valued evaluation of the program), and
outputs a program p′ ∈ JGK that is at least as good as p and
approximates a solution for argmaxp∈JGK F (p), assuming a
maximization problem.

4 POLIS: A Programming Assistant
The pseudocode in Algorithm 1 shows the local search algo-
rithm POLIS employs. It receives an existing program p and
two time limits, t and tl, for the overall running time of the
search and for the running time allowed to optimize each line
of code, respectively, and an evaluation function F . POLIS
returns a new program, p′, that is at least as good as p in
terms of F -value. While there is time available to improve
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Algorithm 1: POLIS
Data: Initial program p, overall time limit t, time

limit per line tl, evaluation function F
Result: Improved program p′

1 while Not-Timeout(t) do
2 p′ ← p
3 for i← 1 to Number-of-Lines(p) do
4 p← synthesizer(p, i, tl, F)

# search has reached a local minimum
5 if F(p) = F(p′) then
6 return p′

7 return p′

the input program, POLIS iterates through each line (the for
loop in line 3) and it attempts to synthesize a program that
replaces the code in the i-th line of p such that the objective
function F is improved. This is achieved with a call to the
synthesizer (line 4), which returns a version of p where the
i-th line of p is replaced by a program that optimizes F . The
synthesizer can return the program unchanged, if its original
i-th line returns the best F -value or it exceeds its time limit
before finding a better line. Lastly, POLIS returns the opti-
mized program (line 6) if the search reaches a local optimum,
i.e., the improved program p has the same F -value as p′.

Our system uses size-based bottom-up search (BUS) [Al-
barghouthi et al., 2013; Udupa et al., 2013] as the syn-
thesizer. BUS was shown to outperform other uninformed
enumeration-based synthesizers [Barke et al., 2020]. BUS
starts by enumerating the smallest possible programs of a
given language. It then uses the smallest programs with the
production rules of the DSL to generate larger programs. One
can use different metrics of “size” for defining BUS’s enu-
meration procedure. A commonly used metric, which we use
in our implementation, is the number of nodes in the abstract
syntax tree representing the synthesized programs. That is, in
BUS’s first iteration it generates all programs whose tree has
a single node, then all programs whose tree has two nodes,
and so on, until a solution is found. In its first iteration,
for the DSL shown in Equation 1, BUS generates programs
c1, c2, c3, b1, b2. Then, in its second iteration BUS generates
programs c1c1, c1c2, c1c3 c2c2, c2c1, c2c3, and so on. One
advantage of BUS is that, once it finds a solution program, the
program is provably the smallest one that solves the problem.
Another advantage is that all programs generated in search
are executable, which allows one to run them and perform an
observational equivalence check (i.e., the search only keeps
one of two programs that produce the same set of output val-
ues for a given set of input values of interest).

4.1 Domain-Dependent Implementation Details
We evaluate POLIS on programmatic policies for playing
games, which are written by human programmers. A pro-
grammatic policy is a program encoding a function (policy)
that receives a state of a game and returns the action the
agent should take at that state. In what follows, we describe
POLIS’s implementation details.

Input-Output Examples
For the task of writing programmatic policies for play-
ing games, we use the approach introduced by Verma et
al. [2018b] to define a set of input-output examples. That
is, we train a neural policy that generates a set of input-output
pairs: for a set of observations o (input), we store the neural
policy’s chosen action a (output). We use DQN [Mnih et al.,
2015] to train a neural policy π for 2000 episodes. We let the
agent follow π in the environment for 2000 steps and collect
all the observation-action pairs along with their Q-values.

Evaluation Function
We use two evaluation functions. The function F is given
by running the programmatic policy and computing its game
score. This evaluation function is computationally expensive,
since we need to play the game several times to evaluate a
program, due to the stochastic nature of the environments.
Instead of computing F for all programs generated in search,
we keep a list of the current k-best programs with respect
to an action-agreement metric: the number of observations
each program correctly maps to the action a neural policy π
selects for that observation. The action-agreement metric we
use is computed as

∑
o∈T 1[p(o)=π(o)]

|T | , where T is the set of
input-output examples, 1[·] is the indicator function, p(o) and
π(o) are the actions returned by the program p and policy π,
respectively, for observation o. We evaluate the value of F
only for the programs in the k-best set. Once the synthesizer
runs out of time, it returns the best program in the set of k best
with respect to F , not with respect to the action agreement
metric. We use k = 20 in our experiments.

Highlights
Highlights ranks a set of observations according to the largest
difference in Q-values for different actions available at a
given observation. We employ the idea of highlights to fur-
ther optimize the computational cost of our evaluation func-
tion by using a small number of input-output examples. In-
stead of collecting a large number of observation-action pairs
uniformly at random, we collect the 400 observations ranked
most important by Highlights [Amir and Amir, 2018].

Bayesian Optimization
The real numbers n in the DSL (Figure 2) are set using
Bayesian optimization [Snoek et al., 2012]. Bottom-up enu-
meration in the synthesizer generates programs with the sym-
bol n, later replaced with real values by the optimizer. The
optimizer chooses these values while attempting to optimize
for the action agreement metric.

Restarts
The initial program and the set of input-output pairs define the
optimization landscape POLIS traverses with its hill-climbing
algorithm. POLIS’s greedy approach to optimization could
lead to the algorithm returning locally optimal solutions. An
effective strategy for dealing with local optimum solutions is
to restart the search from a different starting location in the
optimization landscape once the search stops in a local op-
timum [Hoos and Stützle, 2004]. To restart the search and
allow for different initial starting conditions, we train a dif-
ferent DQN agent to generate a new set of input-output pairs
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Figure 1: Lunar lander (top) and Highway (bottom)

every time we restart the algorithm. A restart is triggered in
Algorithm 1 when line 6 is reached and POLIS still has time
available for synthesis.

5 User Study Evaluation
This section describes the experimental design of the study.1

5.1 Problem Domains
We use POLIS to improve programs written by users to play
two games: Lunar Lander and Highway (Figure 1). Both
games have a game score, which serves as a clear metric for
evaluating the quality of the programs.

Lunar Lander In this game the player controls three
thrusters of a spaceship trying to land on the moon. Each
thruster can be either on or off. The game score is maximized
if the player does not use the thrusters unnecessarily and gen-
tly reaches the landing pad. We use the LunarLander-v2 im-
plementation from OpenAI Gym [Brockman et al., 2016].

Highway In this game the player controls a car on a three-
lane highway. The game score is higher when the player
drives fast, avoids collisions, and spends more time in the
rightmost lane. The player can change lanes, increase, or re-
duce speed. We use the implementation of Leurent [2018].

5.2 User Study Design
We developed a web-based system based on HIPPO
Gym [Taylor et al., 2021] to conduct the user study and
advertised it in mailing lists of graduate and undergraduate
Computing Science students at our university.2 Each par-
ticipant first electronically signed a consent form, explain-
ing that they would write a program to play a computer
game. It also explained that their compensation would be
impacted by the game score of their final program; higher
game scores would result in higher monetary compensation.
The minimum compensation was $15. We used the following
formulae to compute the compensation of each participant:
15 + (100 + x)× (1/30) and 15 + x× (1/5) for Lunar Lan-
der and Highway, respectively. x represents the participants’

1Our POLIS implementation and the data collected in our user
study is available at https://github.com/FatemehAB/POLIS.

2The study was approved by the University of Alberta Research
Ethics Office (Pro00113586).

P ::= def heuristic(o): S return action
S ::= SS | if(C): S else: S | if(C): S elif(C): S else: S

| Vdef | Aassign

C ::= C B C | E
E ::= oi | Vname | n | E M E | pow(E, E) | sqrt(E)

| log(E) | -(E) | abs(E)
Vdef ::= Vname = E

Aassign ::= action = ai
B ::= and | or | < | <= | ! = | == | >= | >
M ::= + | − | ∗ | /

Figure 2: DSL used by POLIS for games domain; o is the set of
observations passed as input to the program and ai and oi refer to
one of the actions and observations of the game; n is a real number.
Vdef refers to the declaration of a variable with name Vname and Aassign
to the assignment of an action to the agent.

average game score over 100 and 25 episodes of Lunar Lan-
der and Highway, respectively (an episode is completed when
the player finishes landing the spaceship in Lunar Lander or
when the player crashes the car or a time limit is reached in
Highway). The maximum compensation was capped at $25.

After agreeing with the terms of the study, each participant
was randomly assigned to one of the two games. Then, they
read a tutorial about the assigned game. In the tutorial, we
explained the features in each observation passed as an in-
put parameter to the program as well as the actions available
to the player. Our tutorial had a few examples with screen-
shots of the game showing situations where different actions
were applied to different observations of the game. The tuto-
rial finished with a multiple-choice question about the game;
immediate feedback was provided to the participant showing
whether they chose the correct or wrong answer. If an answer
was incorrect, the participant would have as many attempts as
needed to answer it correctly.

Following the game tutorial, each participant read a tuto-
rial about our DSL. The tutorial presented the DSL (Figure 2)
and explained Boolean and algebraic expressions as well as
the programming structures our DSL supports. Similarly to
the game tutorial, we provided several examples of programs
that can be written in our DSL. The tutorial finished with a
multiple-choice question where the participant had to select,
among four options, the program that was accepted in our
DSL; the participant had as many attempts as needed to an-
swer the question correctly.

Before writing a program for playing the game, the partic-
ipant had the chance to play the game using their keyboard
for a maximum of 10 minutes. Our graphical user interface
showed, in real-time, the observation values and the game
score each participant obtained for each run of the game. The
participant could choose to stop playing the game at any time
(within the 10 minutes allowed by our system) and start writ-
ing their program. Our goal with this step of the study was
to allow the participant to develop a strategy for playing the
game, something they could try to encode in their programs.
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We provided the participants with a Python-like editor,
where the keywords of the DSL are highlighted. The edi-
tor also had an example of a simple program for playing the
game. For Highway, the initial program moves the car to the
right lane if the car is not already there; the player takes no
action otherwise. Our interface also allowed the participants
to go back to the tutorials while writing their program.

Our interface also showed the game so that participants
could execute their program and see its behavior. Similarly
to the interface where the participant played the game, we
showed the observation values and the game scores in real-
time. The participant could stop the simulation at any time
to inspect the values of the observations. We stored all pro-
grams the participants evaluated so that they could be used as
input for our evaluation. The total time allowed for the exper-
iment was 60 minutes. The participant could submit the final
version of their program at any time within the 60-minute
limit. We used the final program submitted to compute the
participant’s monetary compensation. The participant then
answered demographic questions before leaving.

6 User Study Results
In our results, we abbreviate standard deviation as SD and
interquartile range as IQR.

6.1 Demographics
40 people consented to participate and 26 completed the sur-
vey. The average age was 20.96 (SD of 4.13), with their ages
ranging from 18 to 40; 20 of the participants identified them-
selves as male, 5 as female, and 1 withheld gender informa-
tion. Most (20) had received or were pursuing undergraduate
education, 4 had completed high school, and 2 were pursuing
post-secondary training. Most (25) had not done any form
of game artificial intelligence (AI) research and about half of
them had not taken any AI courses. More than one-third of
the participants (10) rarely or never played computer games
and others occasionally or often played computer games.

We asked about the participants’ programming experience:
22 had more than one year of experience and 4 had less than
a year. We also asked about their knowledge of Python, how
hard it was to write a program in our DSL, and how hard it
was to write a program for solving the game. We used a 5-
point, Likert-like scale: 1 being “novice” in Python and “very
easy” for writing programs, to 5 being “expert” in Python
and “very hard” for writing programs. The median response
to these three questions were: 3 (IQR = 1), 2.5 (IQR = 2),
and 4 (IQR = 1), respectively. On average, the participants
had some experience in Python, and found it easy to use our
DSL, but found it hard to write a program to play the game.
To evaluate POLIS we considered the data from those who
submitted at least one working program (different from the
example program we provided), resulting in a total of 27 par-
ticipants (one of them did not complete the survey).

6.2 Computational Results
Tables 1 and 2 show the results for Lunar Lander and High-
way, respectively. Here, each participant is represented by
an ID. The game score of both the participants’ and POLIS’s

1 def heuristic(o):
2 action = 0
3 if (o[5] == o[1] and o[5]-o[1] >

200) or (o[9] == o[1] and o[9]-
o[1] > 200):

4 action = 4
5 elif (o[5] == o[1] and o[5]-o[1] <=

200) or (o[9] == o[1] and o
[9]-o[1] <= 200):

6 if o[1] == 4:
7 if o[9] < 4:
8 action = 2
9 else:

10 action = 0
11 else:
12 action = 0
13 else:
14 action = 3
15 return action

Figure 3: Example of a program written for the Highway domain by
a participant of the user study.

programs is an average of the score the program obtained in
100 of Lunar Lander and 25 episodes of Highway. The game
score shown for POLIS is the average over 10 independent
runs of the system. Each run of POLIS can result in differ-
ent game scores due to the random initialization of the neural
policy used to generate input-output pairs. We also present
the standard deviation, minimum, and maximum game scores
across these 10 independent runs. We performed 5 restarts
for each run of the system; the result of a run is the best pro-
gram encountered across the 5 restarts. The average score
we present for both participants and POLIS are for the pro-
gram that achieved the highest average score throughout the
study; the program the participant submits is not necessarily
the program with the highest score. The number of lines of
code (LoC) indicates how many lines the original program
has. In both tables, we sort the rows according to the par-
ticipant’s program game score, from lowest (top) to highest
(bottom). The number of edited lines (Edited LoC) refers to
the average number of lines that POLIS modifies in the restart
that resulted in the best program of a given run. We also show
the average number of car collisions in Highway (Hits).

POLIS’s average score is higher for all programs written in
our study. Even the minimum value across the 10 indepen-
dent runs is often much higher than the score of the program
the participants wrote. A Wilcoxon signed-rank test pointed
to a large effect size for the average results of both domains:
0.624 for Lunar Lander (p < 4.9×10−4) and 0.621 for High-
way (p < 3.1× 10−5).

For Lunar Lander, POLIS provided quite significant im-
provements to some of the participants’ scores (e.g., IDs 3
and 11), but for some others the improvements were minor
(e.g., IDs 4 and 5). The number of lines edited for the pro-
grams of participants 4 and 5 is much smaller than for the
other programs, which indicates that POLIS quickly reached
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a local minimum for these programs. Interestingly, for High-
way, POLIS improved the performance of all programs to an
average game score above 33 (the best program a participant
wrote achieved a score of 35.71). Moreover, POLIS substan-
tially reduced the number of collisions, in some cases from
more than 20 to less than 3 collisions. Since POLIS does not
change the overall structure of the program, we conjecture
that the participants identified the program structure needed
to play Highway, which makes the programs for that game
more amenable to POLIS’s improvements. The Lunar Lan-
der results might be pointing to a limitation of POLIS which
is its inability to improve programs that need simultaneous
changes to more than one line of code.

ID Original Program POLIS Program

Score LoC Score SD Min Max Edited
LoC

1 -449.72 8 -22.17 9.18 -35.03 -7.95 11.40
2 -221.98 34 151.40 24.24 112.12 190.45 27.30
3 -196.33 14 68.85 37.46 -22.09 105.62 13.90
4 -125.12 9 -123.96 3.45 -125.12 -113.61 1.10
5 -125.12 14 -122.68 7.30 -125.12 -100.79 1.10
6 -118.65 22 102.31 25.68 38.67 134.19 28.80
7 -110.72 29 0.44 35.71 -34.20 90.06 9.80
8 -87.42 16 56.19 21.45 23.15 96.78 17.70
9 -79.13 26 96.04 24.00 63.09 141.24 29.60

10 -70.13 10 65.05 17.06 38.68 101.32 5.90
11 -21.50 52 252.90 6.60 240.77 260.86 30.50
12 52.84 13 74.45 7.99 63.84 89.30 5.30

Table 1: Game score improvements for Lunar Lander

ID Original Program POLIS Program

Score LoC Hits Score SD Min Max Edited
LoC Hits

1 5.09 40 25 35.72 0.36 34.64 35.84 7.90 4.70
2 6.21 8 25 33.44 2.12 30.25 35.84 5.90 2.90
3 6.21 6 25 35.24 0.60 34.64 35.84 4.00 3.50
4 7.25 24 25 35.46 0.86 34.64 36.59 5.50 3.20
5 9.72 11 24 36.29 0.45 35.84 36.74 3.00 4.50
6 10.74 6 24 35.12 0.59 34.64 35.84 5.20 3.20
7 11.36 20 24 36.09 0.77 34.64 37.43 8.90 3.30
8 12.74 8 23 34.88 0.48 34.64 35.84 5.20 2.60
9 14.23 16 23 35.21 0.74 34.64 36.74 4.30 3.10

10 15.33 9 22 35.00 0.55 34.64 35.84 5.30 2.90
11 16.17 12 23 34.98 1.77 30.25 36.74 3.70 3.50
12 28.98 10 11 36.01 1.11 34.64 37.74 3.50 3.50
13 30.98 14 8 35.35 0.86 34.07 36.74 3.30 4.50
14 31.95 22 2 40.20 2.29 37.43 42.25 4.10 0.10
15 35.71 13 2 37.08 0.15 37.02 37.53 2.00 1.00

Table 2: Game score improvements for Highway

6.3 Representative Program
The program shown in Figure 3 is a representative program
written by one of the participants of our study for the High-
way domain; we refer to this program as p in this section.

This program obtains an average game score of 6.8 over 25
episodes. Figure 4 shows POLIS’s improved program for p,
which we will refer to as p′. We lightly edited p′ for readabil-
ity. POLIS’s p′ obtains an average game score of 39.0 over
25 episodes, a major improvement over the original program.
The participant of our study made a mistake while writing
the first if-statement of p as the Boolean condition checks
whether o[5] is equal to o[1] and if o[5] − o[1] > 200; the
two parts of the expression cannot be simultaneously true as
once o[5] is equal to o[1], we have that o[5] − o[1] is zero.
As a result, the player never slows down (action 4). The par-
ticipant’s intention with this if-statement was likely to slow
the car down if the player’s car was on the same lane as the
nearest car on the road (the condition “o[5] is equal to o[1]”
returns true if the cars are on the same lane).

POLIS not only fixed the problem with the Boolean con-
dition in the participant’s program, but also changed the
player’s strategy. Instead of slowing down if another car is
on the same lane, p′ only slows down when changing lanes;
o[3] is the car’s velocity on the y-axis, which is different from
zero when the car is changing lanes. Since the car is changing
lanes, o[1] cannot be zero, as o[1] is zero when the car is in
the leftmost lane. Unlike p, p′ changes lanes when there is
another car in the same lane. This is encoded in the elif struc-
ture of the program, which can be translated as if the nearest
car is on the same lane (o[5] is equal to o[1]) and the car is not
already in the rightmost lane (line 7), then move to the right
lane (action 2; line 8). The agent will move to the left lane if
already in the rightmost lane (action 0; line 10).

POLIS’s improved program prefers to drive in the right-
most lane if the car driving in the same lane is not the clos-
est (i.e., there is still time to change lanes). The program
maximizes its score by driving in the rightmost lane. Finally,
POLIS’s program does nothing (action 1) if it is not changing
lanes and there is no car in front of it. POLIS’s strategy is a
cautious one as the car slows as it changes lanes, but never
accelerates. This cautious strategy achieves a much higher
game score than the participant’s program.

1 def heuristic(o):
2 action = 0
3 if o[1] and o[3]:
4 action = 4
5 elif o[5] == o[1] or o[9] == o[1]:
6 if o[1] == o[5]:
7 if o[1] < 7.9317:
8 action = 2
9 else:

10 action = 0
11 else:
12 action = 2
13 else:
14 action = 1
15 return action

Figure 4: POLIS’s improved program for the program written by a
participant in user study (Figure 3).
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P ::= def optimized(*args) : S return ∗ args
S ::= SS | while(C) : S | if(C) : S

| if(C) : S else : S | if(C) : S elif (C) : S

| if(C) : S elif (C) : S else : S

| Vdef | Arrassign

C ::= C B C | E
E ::= Arr[E] | Vname | n | E M E

| pow(E, E) | sqrt(E) | log(E) | -(E) | abs(E)
Vdef ::= Vname = E

Arrassign ::= Arr[E] = E

B ::= and | or | < | <= | ! = | == | >= | >
M ::= + | − | ∗ | /

Figure 5: DSL used by POLIS for Stack Overflow problems.

7 Proof of Concept: Stack Overflow
To demonstrate that POLIS is general and can be applied to
problems other than games and also to languages with more
complex structures such as loops, we collected four programs
with implementation problems on Stack Overflow and trans-
lated them to our Python-like language so that POLIScould
fix them. Three of the four programs are sorting algorithms;
the last program attempts to compute the cumulative sum of
a set of numbers. Figure 5 shows the DSL used in this exper-
iment. The input parameter *args indicates that the program
optimized can accept and return a variable number of argu-
ments depending on the problem being solved. Compared to
the DSL used in the user study, this DSL accepts more data
types (arrays) and more complex structures (loops).

POLIS corrected all three sorting programs with the evalua-
tion function that simply counts the number of input examples
that are correctly mapped to the desired output. The problems
with the Stack Overflow sorting programs were simple (e.g.,
one of the programs used < instead of <= in the Boolean ex-
pression of a while loop) and POLIS was able to fix them by
changing a single line of the original programs.

The fourth program we collected on Stack Overflow at-
tempts to solve a “cumulative sum problem,” which is defined
as follows. Given an array of numbers, the goal is to replace
each element with index i in the array with the sum of all el-
ements with index j ≤ i. For example, the expected output
for array [4, 3, 6] is [4, 7, 13]. Figure 6 shows the incorrect
implementation of a program for solving the cumulative sum
problem (sum_wrong) and POLIS’s corrected version for the
problem (sum_fixed). The cumulative sum program had two
implementation errors: the Boolean expression of the while-
loop and the list used in the operation within the loop. POLIS
could not fix them by simply using the number of input ex-
amples correctly mapped to the desired outputs. Instead, we
used an F function that computed the sum of the absolute
differences between each element of the list the program pro-
duced as output and the desired list of numbers. Using this F
function, POLIS corrected the program, as shown in Figure 6.

In this proof-of-concept experiment, we manually gener-

1 def sum_wrong(array, n, sums):
2 i = 0
3 while i < n-1:
4 sums[i] = array[i] + array[i+1]
5 i = i+1
6 return sums
7
8 def sum_fixed(array, n, sums):
9 i = 0

10 while i < n:
11 sums[i] = array[i] + sums[i - 1]
12 i = i + 1
13 return sums

Figure 6: Example of an incorrect program posted on Stack Over-
flow, where

ated the input-output examples, similar to how a programmer
would come up with a set of test cases for their program. Such
a set could possibly be used to define POLIS’s F function, so
it can attempt to correct the implementation errors.

8 Conclusions
In this paper, we present POLIS, a system capable of im-
proving existing programs with respect to a measurable, real-
valued metric. POLIS employs a simple synthesizer within
the loop of its local search. POLIS divides the problem
of improving an existing implementation into smaller sub-
problems by considering each line of the program as an in-
dependent program synthesis task. This way, POLIS employs
a bottom-up search synthesizer that attempts to replace a sin-
gle line of the original program at a given time, while all the
other lines remain unchanged. We conducted a user study
where 27 participants wrote programs to play two games.
POLIS was able to improve the performance of the programs
of all participants, often by a large margin. Since POLIS
performs local changes with an enumerative synthesizer, its
modified program shares the same structure as the original
program. The similarity of the programs allowed us to un-
derstand how POLIS was able to improve the performance of
a representative program from our study. We also performed
a proof-of-concept experiment with four programs collected
from Stack Overflow to demonstrate that POLIS can also be
applied to other application domains and handle more com-
plex languages such as those with loops. POLIS was able
to correct all four programs. The results of our experiments
suggest that POLIS can be used as a programming assistant
in scenarios where one is interested in improving an existing
program with respect to a measurable, real-valued metric.
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