
TDG4Crowd:Test Data Generation for Evaluation of Aggregation Algorithms in
Crowdsourcing

Yili Fang , Chaojie Shen , Huamao Gu , Tao Han and Xinyi Ding∗

School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou 310018, China
{fangyl,ghmsjq,hantao,xding}@zjgsu.edu.cn, qacket@126.com

Abstract
In crowdsourcing, existing efforts mainly use
real datasets collected from crowdsourcing as
test datasets to evaluate the effectiveness of
aggregation algorithms. However, these work
ignore the fact that the datasets obtained by
crowdsourcing are usually sparse and imbalanced
due to limited budget. As a result, applying
the same aggregation algorithm on different
datasets often show contradicting conclusions.
For example, on the RTE dataset, Dawid and
Skene model performs significantly better than
Majority Voting, while on the LableMe dataset,
the experiments give the opposite conclusion. It is
challenging to obtain comprehensive and balanced
datasets at a low cost. To our best knowledge,
little effort have been made to the fair evaluation
of aggregation algorithms. To fill in this gap,
we propose a novel method named TDG4Crowd
that can automatically generate comprehensive
and balanced datasets. Using Kullback Leibler
divergence and Kolmogorov–Smirnov test, the
experiment results show the superior of our method
compared with others. Aggregation algorithms
also perform more consistently on the synthetic
datasets generated using our method.

1 Introduction
Crowdsourcing has been successfully applied in various fields
where tasks could not be automatically dealt with by comput-
ers, e.g. named image annotation [Russell et al., 2008] and
entity recognition [Wang et al., 2013]. Some known popular
crowdsourcing platforms include Amazon Mechanical Turk
(AMT), Appen (used name: Crowdflower), etc. Requesters
use these platforms to publish tasks and workers from Internet
get paid by completing them based on platform’s reward
policy. Due to the diverse background of workers, for tasks
like image annotation, in order to get more accurate labeling
results, one task is usually sent to different workers and an ag-
gregation algorithm will be applied to infer the ground truth.
Researchers have proposed many aggregation algorithms,

∗Corresponding author

such as Majority Voting(MV) [Jing et al., 2018], Dawid and
Skene (DS) [Dawid and Skene, 1979], GLAD [Whitehill et
al., 2009], etc. They all have achieved empirical success in
practice.

Existing work mainly evaluate different aggregation algo-
rithms on small scale datasets collected from crowdsourcing.
However, the performance of these aggregation algorithms
highly depend on the crowdsourced datasets, which makes
it difficult to fairly compare these algorithms. For example,
in [Imamura et al., 2018], MV and DS are used on datasets
RTE, BIRD, and DOG. The results show that the accuracy
of DS is significantly higher than that of MV. However,
in [Zhang et al., 2019], on datasets Leaves [Zhang et al.,
2016a], LableMe, and Music Genre [Long and Hua, 2016],
the experiments give the opposite conclusion that MV per-
forms better than DS. This is caused by the problems the
crowdsourced datasets have, which could manifest in two
aspects. On one hand, this could due to the imbalanced
distribution of data [Snow et al., 2008], including the fea-
ture distribution of annotators, the feature distribution of
instances, and the distribution of corresponding annotations.
On the other hand, research shows that aggregation accuracy
could change with task redundancy [Galal and El-Sharkawi,
2019]. We argue such comparisons of aggregation algorithms
may be invalid due to the issues crowdsourced datasets have.

Due to limited budget, requesters can either choose to
publish fewer tasks with high redundancy [Li and Yu, 2014;
Li et al., 2013], or more tasks with low redundancy [Wauthier
and Jordan, 2011; Liu et al., 2012]. Requesters with fewer
tasks and low redundancy sometimes get little or no data at
all [Zhang et al., 2016b]. In general, the resulting datasets are
not able to fully cover various situations, leading to unstable,
or even contradictory aggregation results [Imamura et al.,
2018; Zhang et al., 2019; Sinha et al., 2018]. We argue the
importance of comprehensive and balanced datasets for the
fair evaluation of aggregation algorithms. Collecting such
datasets through crowdsourcing platforms is difficult due to
the tedious process of collection and high cost. To our best
knowledge, in the context of crowdsourcing, currently there is
little research on generating data in an automated way. In this
paper1, we try to solve this problem by training a generative

1The apendices and souce code are available at https://github.
com/Qacket/TDG4Crowd

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2984

https://github.com/Qacket/TDG4Crowd
https://github.com/Qacket/TDG4Crowd

model that can automatically generate instances, annotators,
and corresponding annotations. Our main goal is to obtain a
dataset whose distribution follows closely to that of the real
one.

We propose a novel automatic test data generation method
for the evaluation of aggregation algorithms in crowdsourcing
named TDG4Crowd. Unlike many other work that only use
one latent variable to represent one worker’s ability or the dif-
ficult level of one task, we learn the latent vector distribution
of instances and annotators based on variational autoencoder
(VAE) [Mescheder et al., 2017] and train the annotation pro-
cess in a supervised manner. Using our method could provide
comprehensive and balanced synthetic datasets for the fair
evaluation of aggregation algorithms. The contributions of
this paper are summarized as follows:

• We propose a novel method TDG4Crowd that can auto-
matically generates synthetic datasets based on a small
number of real seed data points.

• We discuss real world scenarios that may result in im-
balanced datasets and design different strategies of gen-
erating synthetic data.

• We conduct comprehensive experiments and the results
show that the synthetic data generated using our method
follows more closely to the real distribution compared
with other baseline models. Besides, existing aggrega-
tion algorithms also perform more consistently on our
synthetic data.

2 Related Work
In crowdsourcing, requesters publish tasks redundantly on
platforms like AMT and workers from Internet get paid by
completing these tasks based on the platform’s reward pol-
icy. An aggregation algorithm will then be applied on these
noisy labels to infer the ground truth. Thus, the design of
aggregation algorithms becomes a core problem in crowd-
sourcing research. Many aggregation algorithms have been
proposed in recent years [Ho et al., 2013; Roy et al., 2015;
Yu et al., 2017]. Majority Voting [Sheng, 2011; Sheng
et al., 2008] is a simple yet effective method in which one
instance will be assigned the label that has the most votes.
Dawid Skene et al. [Dawid and Skene, 1979] proposed a
method to infer ground truth based on the EM algorithm, in
which a confusion matrix is used to describe the behavior of
annotators. GLAD [Whitehill et al., 2009] is a probablistic
model that considers the ability of workers and the difficult
level of tasks and could be used to infer the true label in
image annotation. Based on DS, Li et al. proposed the
Homogenous Dawid-Skene model (HDS) [Li and Yu, 2014] .
Albarqouni et al. extended on the work of DS, replacing the
logistic classifier with a deep neural network [Albarqouni
et al., 2016]. Rodrigues et al. also use neural network to
estimate one annotator’s ability, training the model in an end-
to-end manner [Rodrigues and Pereira, 2018]. A multiple
noisy label distribution propagation method is proposed to
exploit the intercorrelation among labels in [Zhang et al.,
2019]. All these work focus on how to better modeling tasks
and worker ability to improve the aggregation results and they
have all shown empirical success on different datasets.

To fairly evaluate the effectiveness of different aggregation
algorithms, current research mainly use test datasets or the-
oretical analysis. For the first approach, real crowdsourced
datasets are mainly used. However, due to limited budget,
the crowdsourced datasets are often sparse and imbalanced,
resulting in conflicting observations. For example, in work
[Sinha et al., 2018], when the SentimentPolarity (SP) dataset
is used to evaluate aggregation methods DS and FDS, DS per-
forms better than FDS. But for the AffectAnnotation dataset,
the experiments give the opposite results. In [Whitehill et
al., 2009], the accuracy of GLAD is higher than that of
MV, while in [Kawase et al., 2019], MV performs better
than GLAD. This indicates the results are unreliable when
evaluating aggregation algorithms on sparse or imbalanced
datasets. When it comes to theoretical analysis, current
research work mainly focus on the upper bound of error rate
and the cost complexity. For the upper bound of error rate,
Wang et al. study the annotation quality of MV theoretically
and the results show the error rate declines exponentially with
the increasing of the redundancy level of tasks [Wang and
Zhou, 2015]. [Gao et al., 2016] proposed the optimal error
rate for aggregating labels provided by a set of non-expert
workers. [Heinecke and Reyzin, 2019] utilize the PAC theory
to establish the relationship between error rate and worker
ability. Considering machine learning based on crowdsourc-
ing, [Pan et al., 2023] analyze the upper bound of minimally
sufficient number of crowd labels required for learning a
probably approximately correct (PAC) classification model
in crowdsourcing learning. For the cost complexity, [Fang
et al., 2018] provide a general theoretical method to model
the trade-off between costs and quality, which can be used
to theoretically analyze crowdsourcing algorithms based on
statistical learning. These theoretical results, although could
provide reliability guarantee in some degree, they often fail
in real environment. A real environment usually contains
a lot different factors, among which the ability of workers
plays a significant role. Overall, existing work using real
test datasets or theoretical analysis can not fairly evaluate
different aggregation algorithms.

It is usually very expensive to obtain comprehensive and
balanced real datasets and the theoretical analysis of different
algorithms often fail in real environment. In this study, we
focus on automatic test data generation for the evaluation of
aggregation algorithms. We want our generated data follows
closely to the distribution of the real one. There exists
a few work that also investigate using synthetic data. In
[Whitehill et al., 2009], authors use normal distribution to
model workers’ ability, as well as task difficult level. [Li and
Yu, 2014] use beta distribution and one probabilistic model to
fit worker responses. Zhang et al. build a confusion matrix for
worker ability to evaluate algorithms like D&S, etc. [Zhang
et al., 2016b]. All these work use prior knowledge when
modeling worker ability, which will usually fail in real en-
vironment where these prior assumptions are not hold. In this
paper, different with existing work, we build models to learn
worker and task related parameters directly from a few real
data points, and our models allows large scale generation of
comprehensive and balanced datasets for the fair evaluation
of aggregation algorithms.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2985

3 Problem Description
In this section, we describe our problem formulation of
automatic data generation. Our main goal is to generate
data that follow closely to the distribution of real one. The
advantages of our generated datasets could be evaluated in
two perspectives. For common metrics like KL divergence
and Kolmogorov–Smirnov test that are often used to measure
the distance of two distributions, we hope we will have small
KL or KS values when applying to our synthetic datasets
compared with the real ones. Besides, since our main motiva-
tion is conflicting results of different aggregation algorithms
on datasets, we hope these aggregation algorithms will have
more consistent performance on our synthetic datasets.

When considering the similarities between our generated
datasets and real ones. The smaller the KL or KS values we
have the better. Let’s define the automatic generation method
as function g, g: Q → Q′, where Q = {xi|i = 1, ..., n}
is the real dataset, new data Q′ = {xi′ |i′ = 1, ...,m} is
automatically generated from Q, we define the Distribution-
oriented Data Generation problem as follows:

Definition 1 (Distribution-oriented Data Generation prob-
lem–DDG). Let’s use Q to denote the real dataset, g as a
generative function. σ: Rn × Rm → R is a similarity
function that measures the distance of two distributions. The
problem of DDG is to find a function g∗ satisfying:

g∗ = argmax
g

σ(Q, g(Q)), (1)

when Q′ and Q are from the same distribution, we get
the maximum value for σ, and in this case, we find the true
underlying generative model that generates Q. However, this
is usually impossible in practice. Thus, we aim to find a
good enough generative model in the candidate model set.
For example, if we adopt a neural network as our generative
model, we use gradient descent to find some local optimum
on the training set.

KS and KL could be used to measure the distance of
two distributions, but they can not tell us the consistency
of the performance of aggregation algorithms on different
datasets. To be more specific, we try to answer the question:
Is the ranking of different aggregation algorithms regard to
accuracy on one dataset the same (or similar) to that on a
different dataset? Currently, there are no such metrics we can
directly use. In this study, we use subjective judgment and
will go deep into the consistency analysis in the experiment
section.

4 The TDG4Crowd Method
In this section, we first present our TDG4Crowd method,
which can separately learn the feature distributions of in-
stances and annotators, as well as the distribution of corre-
sponding annotations. We then discuss the consideration of
our design and training strategies for our proposed method.

Our proposed method TDG4Crowd is depicted in Figure 1
and it consists of three main modules: 1) Annotator model to
learn the features of annotators. 2) Instance model to learn
the features of instances. 3) Inferring component to infer the

corresponding annotations. Taking a generative approach, we
want to learn rich latent representations for both annotators
and instances. After obtaining these two latent represen-
tations, we could learn the corresponding annotations in a
supervised way.

4.1 Learn the Features of Annotators
For a given crowdsourced dataset, we could learn the latent
variable za of one annotator using the following equation.

p(za|er) =
p(er|za)p(za)∫
p(er|za)dza

. (2)

Here er refers to the feature vector of one annotator. Since
the integral part of evidence cannot be computed directly, we
estimate p(za|er) by variational inference. We want to find
a distribution q(za|er) that could best approximates p(za|er).
To measure the difference or the distance between two distri-
butions, we can use the Kullback-Leibler divergence.

DKL [q(za|er)∥p(za|er)] = Eq[log
q(za|er)
p(za|er)

]. (3)

Use a few rearrangement, we could have the following equa-
tion:

log p(er) =DKL[q(za|er)∥p(za|er)]
+ Eq[log p(er, za)− log q(za|er)],

(4)

since KL divergence is always non-negative, we have

log p(er) ≥ Eq[log p(er, za)− log q(za|er)]. (5)

The term on the right of the inequality is known as the
Evidence Lower Bound, or ELBO for short. We can find a
distribution q that minimizes KL divergence by maximizing
ELBO. We can rewrite ELBO as follows to make it more
clear:

ELBO =Eq[log p(er|za)]−DKL[q(za|er)∥p(za)]. (6)

By maximizing ELBO, the first term on the right side of
Equation 6 makes the data generated from za as close to
the real distribution as possible. Unlike many other models
that usually use one latent variable to represent the ability
of a worker, we learn a random latent vector za based on
VAE. The input is a feature vector of one worker er. In
the simplest case, if there are no other features available, we
could use one-hot encoding. We assume the worker latent
variable follows a multivariable normal distribution, that is
q(za|er) ∼ N(µ, σ2), thus the output of the encoder are
the mean and variance (in implementation, usually use the
log of variance for numerical stability reasons) of q(za|er).
We use a standard Gaussian prior acting as a regularizer.
p(za) ∼ N(0, 1).

DKL[q(za|er)∥p(za)] = DKL[N(µa, σ
2
a)∥N(0, 1)]. (7)

For the backpropagation algorithm to work properly, the
sampling process uses the reparametrization trick, that is
za = µa + σa · ϵ, ϵ ∼ N(0, 1). Thus the actual sampling is
from the standard normal distribution. The decoder’s output
is êr and the reconstruction loss is.

Lrecons = ∥er − êr∥2. (8)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2986

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x58 1024x16
1024x8

Learn the feature of annotators

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x67

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x20

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x20

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ε ∽ N(0,1)

1024x8

1024x8

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x8

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x20

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x59

Learn the feature of instances

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x8192

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x100

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x100

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ε ∽ N(0,1)

1024x50

1024x50

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x50

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x100

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x8192

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

x̄n

ēr

ēr

1024x59
1024x20 1024x20

1024x8

1024x8

1024x8
1024x20

1024x59

ε ∼ N(0,1)

annotator er

1024x1 One-hot

x̄n

1024x8192 1024x100 1024x100
1024x50

1024x50

1024x50
1024x100

1024x8192

ε ∼ N(0,1)

Learn the feature of instancesInstance xn
1024x4x4x512

1024x58

ȳn

1024x16
1024x8

Learn the annotations

Anno. yn

L3

L1

L2

Learn the feature of annotator

1024x4x4x512

1. General Motors Chief
Executive Officer Ed
Whitacre wants Cadillac
to treat customers better .

2. In the late evening of
June 30 , 2002 , Mikhail
Krug was fatally wounded
in his Tver house by
unknown intruders .

3. Dennis Lee Hopper was
born in 1936 , in Dodge
City , Kansas , and spent
much of his youth on the
nearby farm of his

Instance xn

L3

ȳn

yn

1024x1

Annotator er

One-hot

L2

L1

Learn the annotations

Figure 1: The TDG4Crowd framework

Therefore, the loss function for annotators can be expressed
as:

Lanno = Lrecons +DKL[N(µa, σ
2
a)∥N(0, 1)]. (9)

The Lrecons loss makes the model learn a lower dimen-
sional representation of annotators, while the KL divergence
loss makes the representation follow the normal distribution
as close as possible. Please note here we are not directly
optimizing the KL divergence between the real dataset and
the synthetic one.

4.2 Learn the Features of Instances
The process of learning the latent distribution of instances
is similar to that of annotators, that is we also learn latent
representation for instances based on VAE. But for images,
we first use a pre-trained light weight VGG-16 model to
extract the features for each instance. Thus, the input for
the instance model is the pre-processed feature vector, not
raw images. We use xn to represent the feature vector for
instance n. We assume the latent variable for each instance
follows a multivariable normal distribution, thus the output of
the encoder are the mean and variance of q(zi|xn). We use a
standard Gaussian prior acting as a regularizer.

DKL[q(zi|xn)∥p(zi)] = DKL[N(µi, σ
2
i)∥N(0, 1), (10)

the reconstruction loss is the cross entropy between x̂n and
xn.

Lrecons = ∥xn − x̂n∥2. (11)
The loss function for instance model is similar to that of the
annotator model.

Linst = Lrecons +DKL[N(µi, σ
2
i)∥N(0, 1)]. (12)

The Lrecons loss makes the model learn a lower dimen-
sional representation of instances, while the KL divergence
loss makes the representation follow the normal distribution
as close as possible.

4.3 Inferring

One of our goals is to learn a model that could generate
new annotations. The supervised learning component con-
catenates the sampling result of za and zi and send it to a
fully connected network. The output of this fully connected
network is the predicted annotation ŷn for instance xn. We
train this component in a supervised manner and construct
the loss function as follows:

Lcross = ∥yn − ŷn∥2. (13)

The method of TDG4Crowd includes Annotator model, In-
stance model and Inferring component. We first train Annota-
tor model and Instance model separately until the loss of these
two models start to stabilize, then we add in the inferring
component and train them as a whole.

5 Experiments

To evaluate our proposed method, we conduct comprehensive
experiments on both real and synthetic datasets. In this
section, we will first describe the experiment setup. We use
annotations collected through the Appen and AMT crowd-
sourcing platforms. Next, we describe the basesline models
used for comparison. Finally, we compare our proposed
method with other models for generating new data points.
The strategy we use is we regenerate the annotations using the
annotators and instances we already have, instead of sampling
completely new annotators or instances from the standard
normal distribution. That is to say, we use the specific mean
and variance for corresponding worker or task for sampling.
We use half dataset for training and half for testing and
all these regeneration experiments are conducted on the test
dataset.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2987

5.1 Setup
We use two real datasets Labelme 2 and Relation 3 for evalua-
tion. They suffer serious sparsity issues and include instances
with rich features that could help infer worker ability. The de-
tails of these two datasets can be found in appendix. Similar
preprocessing was performed for these two datasets. We use
half of them for training our models and half for testing. All
the results in the following sections are from this test set. To
make sure both the training set and test set have all annotators.
We first index the whole dataset using annotators, then we
randomly select half instances for each annotator.

We consider three real world scenarios in which why
crowdsourced dataset might be imbalanced due to limited
budget. 1) One requester may choose to have high redun-
dancy level and publish fewer instances. In this case, we want
to generate new instances and corresponding annotations.
2) One requester may choose to have low redundancy but
release more instances. Such that we want to generate more
annotators and their annotations on these existing instances.
3) The worst case, one requester only have a few instances
with low redundancy. We need to generate both new instances
and annotators, as well as their annotations. Besides the
above three experiments, we also conduct experiments to see
how existing aggregation algorithms perform on synthetic
datasets. Basically, we try to answer the question: Do
these aggregation algorithms act consistently on the synthetic
datasets derived from real ones?

5.2 Baseline Models
To evaluate the effectiveness of TDG4Crowd, we compare the
following methods for data generation with the real dataset.

– G DS: Derived from the DS model [Dawid and Skene,
1979]. When using DS for aggregation, the ability of
each annotator is estimated according to the EM algo-
rithm. A new annotation is obtained by combining the
annotator’s ability with ground truth.

– G HDS: Derived from the HDS model [Li and Yu,
2014]. It’s a variant of DS. Each annotator is assumed
to have the same accuracy on each class of instance, and
have the same error probability as well.

– G MV: This method is based on MV model [Sheng,
2011]. In the MV model, we regenerate a new annotation
based on the probability of voting and the ground truth.

– G GLAD: Derived from the GLAD model [Whitehill
et al., 2009]. The annotator ability and the instance
difficulty will be obtained using the GLAD algorithm for
aggregation. We regenerate a new annotation based on
these two parameters and the ground truth.

– G IRT: This approach is based on the IRT [Baker et al.,
2017]. We use the joint maximum likelihood function
to estimate the parameters of the IRT model, that is, the
ability of the annotator and the difficulty of the instance.
Once we have these two parameters, we can regenerate
the labels.

2https://fprodrigues.com/deep LabelMe.tar.gz
3https://doi.org/10.5281/zenodo.1472330

1 2 3 4 5 6 7
Task numbers (10³)

10
3

10
2

10
1

KL
 d

iv
er

ge
nc

e

1 2 3 4 5 6 7
Task numbers (10³)

10
2

10
1

KS
 te

st

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
3

10
2

10
1

KL
 d

iv
er

ge
nc

e

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
2

10
1

KS
 te

st

G_DS G_HDS G_MV G_GLAD G_IRT TDG4Crowd

Figure 2: The KL and KS values between the synthetic datasets
and real datasets, with the increasing of the percent of real instance
numbers. Top: LabelMe, Bottom: Relation.

– TDG4Crowd: This is the method we propose in this pa-
per. The feature distributions of annotators and instances
are respectively learned through the Annotator model
and Instance model, and then the Inferring component
is used to learn the annotation distribution.

5.3 Results
Generate instances. In this scenario, the requester sets
high redundancy level but releases fewer instances. Thus,
we want to generate more instances and their annotations.
We keep the number of annotators fixed (59 in our case) and
generate new annotations on new instances. We want to see if
our new generated annotations follow the distribution of the
real dataset. We set the size of our synthetic dataset the same
as the real dataset. For example, if we have 8000 instances
in the real dataset, we first regenerate 7000 instances and
their annotations, together with other 1000 real instances and
annotations, we get one synthetic dataset and compare it with
the real dataset. We then gradually increase the number of
real instances (increase by 1000 each time). To evaluate
the similarity between the synthetic dataset and the real one,
we use KL divergence and Kolmogorov-Smirnov test (KS)
as similarity function σ. Both KL and KS can be used
to measure the similarity between two distributions. The
smaller the value, the more similar these two distributions are.
We calculate the KL and KS between the synthetic dataset
generated by the above six methods and the real dataset.
Since Labelme is an eight-category dataset and Relation is
a thirteen-category dataset, the distribution of each category
might be different. Thus, we calculate the KL and KS for
each category according to the empirical probability distribu-
tion, then weight average all categories. We use the total num-
ber of instances in that category as weights in this study and
the final results are shown in Figure 2. As we can see from
Figure 2, as the percent of real annotations increase in the
synthetic dataset, both the KS and KL values decrease. This
is true for all data generating methods. More importantly, for

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2988

https://fprodrigues.com/deep_LabelMe.tar.gz
https://doi.org/10.5281/zenodo.1472330

5 10 15 20 25 30 35 40 45 50
Annotator numbers

10
3

10
2

10
1

KL
 d

iv
er

ge
nc

e

5 10 15 20 25 30 35 40 45 50
Annotator numbers

10
2

10
1

KS
 te

st

30 45 60 75 90 105 120
Annotator numbers

10
3

10
2

10
1

KL
 d

iv
er

ge
nc

e

30 45 60 75 90 105 120
Annotator numbers

10
3

10
2

10
1

KS
 te

st

G_DS G_HDS G_MV G_GLAD G_IRT TDG4Crowd

Figure 3: The KL and KS values between the synthetic datasets
and real datasets, with the increasing of the percent of real worker
numbers. Top: LabelMe, Bottom: Relation.

all levels, our proposed method TDG4Crowd has the lowest
KL and KS values, indicating that the generated annotations
using our method follows more closely to the distribution of
the real dataset. Among other methods, the performance of
G DS comes next. G MV is among the worst performance,
this could be explained by the fact that G MV does not have
parameters to model the ability of annotators or the difficulty
level of instances.
Generate annotators. In this scenario, the requester pub-
lishes more instances, but with low redundancy. In this
regard, our goal is to generate new annotations for new
annotators. Thus, we keep the number of instances fixed,
but gradually increase the number of real annotators (increase
by 5 each time). Similarly, we use the encoders of VAE
modules to get the mean and variance for each annotator
and instances. The fully connected network is used to get
the annotation predictions. For easy comparison, we set the
size of the synthetic dataset and real dataset the same. The
results are shown in Figure 3. As we can see the overall
trend is similar to the one in Figure 2. With the increase
of the percent of real annotators, the values of KL and KS
start to decrease, which is not very surprising. Among all
these methods, our proposed method TDG4Crowd has the
best performance, G DS comes next. G IRT and G MV are
among the worst performance models.
Generate both instances and annotators. Due to lim-
ited budget, one requester may publish a small number of
instances with low redundancy level. In such cases, the
requester might get a small scale imbalanced dataset. Our
goal is then to generate new instances and annotators, as well
as the corresponding annotations. In this experiment, we
sample annotators and instances through the specific mean
and variance to regenerate annotations. We first pick 1000
instances with real annotations, then compare it with the
regenerated annotations (from the same instances and cor-
responding annotators). We repeat the experiment several
times, each time we increase the size of instances. Again,

1 2 3 4 5 6 7
Task numbers (10³)

10
2

10
1

KL
 d

iv
er

ge
nc

e

1 2 3 4 5 6 7
Task numbers (10³)

10
1

KS
 te

st

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
1

KL
 d

iv
er

ge
nc

e

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
1

KS
 te

st

G_DS G_HDS G_MV G_GLAD G_IRT TDG4Crowd

Figure 4: The KL and KS values between the synthetic datasets and
real datasets, with the increasing of the number of instances, as well
as the number of workers. Top: LabelMe, Bottom: Relation.

we use KL and KS to measure the similarities between the
datasets and the results are shown in Figure 4. As we can see
from this figure, the size of the instances does not have too
much impact on the KS and KL values. In other words, all
these methods have steady performance and the performance
will not decrease in the scenario of large dataset generation.
Among all these methods, our proposed method TDG4Crowd
has the best performance.
Generate unseen annotations. For all above mentioned
experiments, what we did is we regenerate annotations for
those that we already have. The reason for doing so is for
easy comparison with real dataset. In other words, for a
confusion matrix, which is usually very sparse, we did not
fill in the holes. In this experiment, we want to see how
our model will perform fixing the sparsity issue, which is
quite common for crowdsourced datasets. In this setup, we
first pick 1000 instances and their corresponding annotators.
We use our model to generate new annotations that did not
exist before. Then we compare it with the real dataset by
calculating the KL divergence and KS values. We repeat the
experiment several times, each time we increase the number
of instances by 1000 and the results are shown in Figure 5.
We can basically get the same conclusion as from Figure 4.
The overall trend is quite stable, which means the data size
does not have too much impact on the performance of data
generation models. Among all these methods, our proposed
method TDG4Crowd has the best performance.
Aggregation consistency. The main motivation of our
work is that aggregation algorithms like DS, HDS, MV,
GLAD perform inconsistently on different datasets. In Figure
6, we show the rankings of different aggregation algorithms
on real datasets with different scales. We randomly sample
different number of instances and we can see, for the
Labelme dataset, when the number of instances is 1000,
HDS performs the best, then comes GLAD and MV, DS
performs the worst. When we gradually increase the number
of instances, we can see how the rankings change. When

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2989

1 2 3 4 5 6 7
Task numbers (10³)

10
2

10
1

KL
 d

iv
er

ge
nc

e

1 2 3 4 5 6 7
Task numbers (10³)

10
1

KS
 te

st

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
1

KL
 d

iv
er

ge
nc

e

3 4.5 6 7.5 9 10.5 12
Task numbers (10²)

10
1

KS
 te

st

G_DS G_HDS G_MV G_GLAD G_IRT TDG4Crowd

Figure 5: The KL and KS values between the synthetic datasets and
real datasets. The synthetic datasets include those annotations that
do not exist. Top: LabelMe, Bottom: Relation.

1 2 3 4 5 6 7
Task numbers (10³)

0.68

0.70

0.72

0.74

0.76

0.78

0.80

AC
C

1 2 3 4.5 6 7.5 9
Task numbers (10²)

0.60

0.65

0.70

0.75

0.80

0.85

AC
C

MV HDS GLAD DS

Figure 6: Accuracy of different aggregation algorithms on different
size of real datasets. Left: LabelMe, Right: Relation.

we increase the number of instances to around 6000, the
rankings start to stabilize. At this time, DS performs the best,
then comes the GLAD and HDS, MV performs the worst.
We have similar observations for the Relation dataset. We
argue a comprehensive and balanced dataset is crucial for the
assessment of these aggregation algorithms. Figure 7 shows
the performance of different aggregation algorithms on the
synthetic datasets (derived from the LableMe dataset) with
different proportion of real data. In this synthetic dataset,
we generate unseen annotations for existing annotators
and instances, and we gradually increase the number of
real instances in this synthetic dataset. We can see when
there are only 1000 real instances, the performance of these
aggregation algorithms on different synthetic dataset differ
dramatically and the rankings of these aggregation algorithms
are also different from the real dataset. This is especially ture
for the datasets generated using G DS, G HDS, G GLAD
and G IRT. Algorithms on these datasets have much higher
accuracy than those on the real dataset. With the increase
of the percent of real data on these synthetic datasets, the
performance of aggregation algorithms start to get close
to that on the real dataset, and the rankings also start to
converge to the ranking on the real dataset. We have similar
observations for other experiments like only generating

Real G_DS
G_HDS G_MV

G_GLADG_IRT
TDG4Corwd

1000 instances

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

Real G_DS
G_HDS G_MV

G_GLADG_IRT
TDG4Corwd

3000 instances

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

Real G_DS
G_HDS G_MV

G_GLADG_IRT
TDG4Corwd

5000 instances

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

Real G_DS
G_HDS G_MV

G_GLADG_IRT
TDG4Corwd

7000 instances

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AC
C

MV HDS GLAD DS

Figure 7: The performance of different aggregation algorithms on
synthetic datasets for generating unseen annotations (LabelMe)

instances, only generating annotators or generating instances
and annotators. These experiments results could be found in
the appendix.

6 Conclusions

In this paper, we first discuss the problem crowdsourced
datasets may have and how they can fail the evaluation
of different aggregation algorithms. We then propose the
TDG4Crowd method for the automatic generation of com-
prehensive, balanced data and demonstrate how TDG4Crowd
could be used to solve the data issues caused due to budget
constraints under different real world scenarios. We conduct
extensive experiments on image and sentence datasets to
show the effectiveness of our proposed method. By calcu-
lating the KL divergence and KS stats between the synthetic
dataset and the real one, we show that our method is able
to generate dataset that follows more closely to the distri-
bution of real ones, compared with other baseline methods.
The accuracy rankings of existing aggregation algorithms are
calculated on real datasets and synthetic ones. The experi-
mental results also show that the synthetic data generated by
TDG4Crowd is more consistent with the real data from the
ranking perspective. In this study, we use simple annotation
tasks. For future work, we will investigate more challenging
tasks that involve context information.

Acknowledgments

This research has been supported by the National Nature
Foundation of China under grant 61976187, the Natural
Science Foundation of Zhejiang Province under grant
(LZ22F020008, LQ22F020002, LY20F030002) and
Zhejiang Gongshang University ”Digital+” Disciplinary
Construction Management Project (No SZJ2022A001).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2990

References
[Albarqouni et al., 2016] Shadi Albarqouni, Christoph Baur,

Felix Achilles, Vasileios Belagiannis, Stefanie Demirci,
and Nassir Navab. Aggnet: deep learning from crowds for
mitosis detection in breast cancer histology images. IEEE
transactions on medical imaging, pages 1313–1321, 2016.

[Baker et al., 2017] Frank B Baker, Seock-Ho Kim, et al.
The basics of item response theory using R. Springer,
2017.

[Dawid and Skene, 1979] Alexander Philip Dawid and Al-
lan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics), pages 20–
28, 1979.

[Fang et al., 2018] Yili Fang, Hailong Sun, Pengpeng Chen,
and Jinpeng Huai. On the cost complexity of crowd-
sourcing. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1531–
1537, 2018.

[Galal and El-Sharkawi, 2019] Sh Galal and Mohamed E El-
Sharkawi. Trr: Reducing crowdsourcing task redundancy.
In Database and Expert Systems Applications - 30th Inter-
national Conference (DEXA), pages 102–117, 2019.

[Gao et al., 2016] Chao Gao, Yu Lu, and Dengyong Zhou.
Exact exponent in optimal rates for crowdsourcing. In Pro-
ceedings of the 33nd International Conference on Machine
Learning (ICML), pages 603–611, 2016.

[Heinecke and Reyzin, 2019] Shelby Heinecke and Lev
Reyzin. Crowdsourced pac learning under classification
noise. In Proceedings of the 7th AAAI Conference on Hu-
man Computation and Crowdsourcing (HCOMP), pages
41–49, 2019.

[Ho et al., 2013] Chien-Ju Ho, Shahin Jabbari, and Jen-
nifer Wortman Vaughan. Adaptive task assignment for
crowdsourced classification. In Proceedings of the 30th
International Conference on Machine Learning (ICML),
pages 534–542, 2013.

[Imamura et al., 2018] Hideaki Imamura, Issei Sato, and
Masashi Sugiyama. Analysis of minimax error rate for
crowdsourcing and its application to worker clustering
model. In Proceedings of the 35th International Con-
ference on Machine Learning (ICML), pages 2152–2161,
2018.

[Jing et al., 2018] Jing, Zhang, Victor, S, Sheng, Tao, Li,
Xindong, and Wu. Improving crowdsourced label quality
using noise correction. IEEE Transactions on Neural
Networks Learning Systems, pages 1675–1688, 2018.

[Kawase et al., 2019] Yasushi Kawase, Yuko Kuroki, and
Atsushi Miyauchi. Graph mining meets crowdsourcing:
Extracting experts for answer aggregation. In Proceedings
of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1272–1279, 2019.

[Li and Yu, 2014] Hongwei Li and Bin Yu. Error rate bounds
and iterative weighted majority voting for crowdsourcing.
CoRR, abs/1411.4086, 2014.

[Li et al., 2013] Hongwei Li, Bin Yu, and Dengyong Zhou.
Error rate bounds in crowdsourcing models. CoRR,
abs/1307.2674, 2013.

[Liu et al., 2012] Qiang Liu, Jian Peng, and Alexander Ihler.
Variational inference for crowdsourcing. In Proceedings
of the 26th Annual Conference on Neural Information
Processing Systems 2012 (NIPS), pages 701–709, 2012.

[Long and Hua, 2016] Chengjiang Long and Gang Hua.
Multi-class multi-annotator active learning with robust
gaussian process for visual recognition. International
Conference on Computer Vision (ICCV), 2016.

[Mescheder et al., 2017] Lars M. Mescheder, Sebastian
Nowozin, and Andreas Geiger. Adversarial variational
bayes: Unifying variational autoencoders and generative
adversarial networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), pages
2391–2400, 2017.

[Pan et al., 2023] Yigong Pan, Ke Tang, and Guangzhong
Sun. Theoretical guarantee for crowdsourcing learning
with unsure option. Pattern Recognition, page 109316,
2023.

[Rodrigues and Pereira, 2018] Filipe Rodrigues and Fran-
cisco C. Pereira. Deep learning from crowds. In AAAI
conference on artificial intelligence, pages 1611–1618,
2018.

[Roy et al., 2015] Senjuti Basu Roy, Ioanna Lykourentzou,
Saravanan Thirumuruganathan, Sihem Amer-Yahia, and
Gautam Das. Task assignment optimization in knowledge-
intensive crowdsourcing. The VLDB Journal, pages 467–
491, 2015.

[Russell et al., 2008] Bryan C. Russell, Antonio Torralba,
Kevin P. Murphy, and William T. Freeman. Labelme: A
database and web-based tool for image annotation. Inter-
national journal of computer vision, pages 157–173, 2008.

[Sheng et al., 2008] Victor S. Sheng, Foster J. Provost, and
Panagiotis G. Ipeirotis. Get another label? improving
data quality and data mining using multiple, noisy labelers.
In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 614–622, 2008.

[Sheng, 2011] Victor S Sheng. Simple multiple noisy label
utilization strategies. In Proceedings of the 11th IEEE
International Conference on Data Mining (ICDM), pages
635–644, 2011.

[Sinha et al., 2018] Vaibhav B Sinha, Sukrut Rao, and Vi-
neeth N Balasubramanian. Fast dawid-skene: A fast vote
aggregation scheme for sentiment classification. arXiv
preprint arXiv:1803.02781, 2018.

[Snow et al., 2008] Rion Snow, Brendan O’Connor, Daniel
Jurafsky, and Andrew Y. Ng. Cheap and fast - but is it
good? evaluating non-expert annotations for natural lan-
guage tasks. In Proceedings of the 2008 conference on em-
pirical methods in natural language processing (EMNLP),
pages 254–263, 2008.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2991

[Wang and Zhou, 2015] Wei Wang and Zhi-Hua Zhou.
Crowdsourcing label quality: a theoretical analysis. Sci-
ence China Information Sciences, pages 1–12, 2015.

[Wang et al., 2013] Jiannan Wang, Guoliang Li, Tim Kraska,
Michael J. Franklin, and Jianhua Feng. Leveraging tran-
sitive relations for crowdsourced joins. In Proceedings
of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 229–240, 2013.

[Wauthier and Jordan, 2011] Fabian L. Wauthier and
Michael I. Jordan. Bayesian bias mitigation for
crowdsourcing. In Proceedings of the 25th Annual
Conference on Neural Information Processing Systems
2011 (NIPS), pages 1800–1808, 2011.

[Whitehill et al., 2009] Jacob Whitehill, Paul Ruvolo,
Tingfan Wu, Jacob Bergsma, and Javier R. Movellan.
Whose vote should count more: Optimal integration of
labels from labelers of unknown expertise. In Proceedings
of the 23rd Annual Conference on Neural Information
Processing Systems 2009 (NIPS), pages 2035–2043, 2009.

[Yu et al., 2017] Han Yu, Chunyan Miao, Yiqiang Chen, Si-
mon Fauvel, Xiaoming Li, and Victor R Lesser. Algorith-
mic management for improving collective productivity in
crowdsourcing. Scientific reports, page 12541, 2017.

[Zhang et al., 2016a] Jing Zhang, Xindong Wu, and Vic-
tor S. Sheng. Learning from crowdsourced labeled data:
a survey. Artificial Intelligence Review, pages 543–576,
2016.

[Zhang et al., 2016b] Yuchen Zhang, Xi Chen, Dengyong
Zhou, and Michael I. Jordan. Spectral methods meet em:
A provably optimal algorithm for crowdsourcing. Journal
of Machine Learning Research, pages 1–44, 2016.

[Zhang et al., 2019] Hao Zhang, Liangxiao Jiang, and Wen-
qiang Xu. Multiple noisy label distribution propagation for
crowdsourcing. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), pages
1473–1479, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2992

	Introduction
	Related Work
	Problem Description
	The TDG4Crowd Method
	Learn the Features of Annotators
	Learn the Features of Instances
	Inferring

	Experiments
	Setup
	Baseline Models
	Results

	Conclusions

