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Abstract
Children possess the ability to learn multiple cogni-
tive tasks sequentially, which is a major challenge
toward the long-term goal of artificial general in-
telligence. Existing continual learning frameworks
are usually applicable to Deep Neural Networks
(DNNs) and lack the exploration on more brain-
inspired, energy-efficient Spiking Neural Networks
(SNNs). Drawing on continual learning mecha-
nisms during child growth and development, we
propose Dynamic Structure Development of Spik-
ing Neural Networks (DSD-SNN) for efficient
and adaptive continual learning. When learn-
ing a sequence of tasks, the DSD-SNN dynami-
cally assigns and grows new neurons to new tasks
and prunes redundant neurons, thereby increasing
memory capacity and reducing computational over-
head. In addition, the overlapping shared structure
helps to quickly leverage all acquired knowledge
to new tasks, empowering a single network capa-
ble of supporting multiple incremental tasks (with-
out the separate sub-network mask for each task).
We validate the effectiveness of the proposed model
on multiple class incremental learning and task in-
cremental learning benchmarks. Extensive exper-
iments demonstrated that our model could signif-
icantly improve performance, learning speed and
memory capacity, and reduce computational over-
head. Besides, our DSD-SNN model achieves com-
parable performance with the DNNs-based meth-
ods, and significantly outperforms the state-of-the-
art (SOTA) performance for existing SNNs-based
continual learning methods.

1 Introduction
Children are able to incrementally learn new tasks to acquire
new knowledge, however, this is a major challenge for Deep
Neural Networks (DNNs) and Spiking Neural Networks
(SNNs). When learning a series of different tasks sequen-
tially, DNNs and SNNs forget the previously acquired knowl-
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edge and fall into catastrophic forgetting [French, 1999]. De-
spite some preliminary solutions that have recently been pro-
posed for DNNs-based continual learning, there is still a lack
of in-depth inspiration from brain continual learning mecha-
nisms and exploration on SNNs-based models.

The studies attempt to address the continual learning prob-
lem of DNNs under task incremental learning (recognition
within the classes of a known task) and class incremental
learning (recognition within all learned classes) scenarios.
Related works can be roughly divided into three categories:

a) Regularization. Employing maximum a posterior esti-
mation minimizes the changes of important weights [Li and
Hoiem, 2017; Kirkpatrick et al., 2017; Zenke et al., 2017].
These methods require strong model assumptions, such as the
EWC [Kirkpatrick et al., 2017] supposing that new weights
are updated to local regions of the previous task weights,
which are highly mathematical abstractions and poorly bio-
logically plausibility.

b) Replay and retrospection. Reviewing a portion of the
samples of the old tasks while learning the new task [Lopez-
Paz and Ranzato, 2017; van de Ven et al., 2020; Kemker and
Kanan, 2018], is currently considered as the superior class
incremental learning method. The samples of old tasks are
stored in additional memory space or generated by additional
generation networks, resulting in extra consumption.

c) Dynamic network structure expansion. [Rusu et al.,
2016; Siddiqui and Park, 2021] proposed progressive neural
networks that extend a new network for each task, causing
a linear increase in network scale. To reduce network con-
sumption, a sub-network of the whole is selected for each
task using pruning and growth algorithms [Yoon et al., 2018;
Dekhovich et al., 2023], evolutionary algorithms [Fernando
et al., 2017] or reinforcement learning (RL) algorithms [Xu
and Zhu, 2018; Gao et al., 2022]. However, these methods
require storing a mask for each sub-network, which to some
extent amounts to storing a separate network for each task,
rather than a brain-inspired overall network capable of per-
forming multiple sequential tasks simultaneously.

To the best of our knowledge, there is little research on
SNNs-based continual learning. Spiking neural networks, as
third-generation neural networks [Maass, 1997; Zhao et al.,
2022b], simulate the information processing mechanisms of
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the brain, and thus serve well as an appropriate level of ab-
straction for integrating inspirations from brain multi-scale
biological plasticity to achieve child-like continual learning.
The existing HMN algorithm [Zhao et al., 2022c] uses a DNN
network to decide the sub-network of SNN for each task, and
is only applicable to two-layer fully connected networks for
the N-MNIST dataset. There is still a lack of SNNs-based
continual learning methods that could incorporate in-depth
inspiration from the brain’s continual learning mechanisms,
while achieving comparable performance with DNNs under
complex continual learning scenarios.

Structural development mechanisms allow the brain’s ner-
vous system to dynamically expand and contract, as well as
flexibly allocate and invoke neural circuits for efficient con-
tinual learning [Silva et al., 2009]. Motivated by this, this
paper proposes Dynamic Structure Development of Spiking
Neural Networks (DSD-SNN) for efficient and adaptive con-
tinual learning. DSD-SNN is designed as an SNN architec-
ture that can be dynamically expanded and compressed, em-
powering a single network to learn multiple incremental tasks
simultaneously, overcoming the problem of needing to assign
masks to each task faced by DNNs-based continual learn-
ing methods. We validate the effectiveness of our proposed
model on multiple class incremental learning (CIL) and task
incremental learning (TIL) benchmarks, achieving compara-
ble or better performance on MNIST, N-MNIST, and CIFAR-
100 datasets. Especially, the proposed DSD-SNN model
achieves an accuracy of 77.92%± 0.29% on CIFAR100, only
using 37.48% of the network parameters.

The main contributions of this paper can be summarized as
follows:

• DSD-SNN dynamically grows new neurons to learn
newly arrived tasks, while extremely compressing the
network to increase memory capacity and reduce com-
putational overhead.

• DSD-SNN maximally utilizes the previously learned
tasks to help quickly adapt and infer new tasks, en-
abling efficient and adaptive continual learning (no need
to identify separate sub-network mask for each task).

• The experimental results demonstrate the remarkable su-
periority of DSD-SNN model on performance, learning
speed, memory capacity and computational overhead
compared with the state-of-the-art (SOTA) SNNs-based
continual learning algorithms, and comparable perfor-
mance with DNNs-based continual learning algorithms.

2 Related Work
This paper mainly focuses on dynamic network structure ex-
pansion algorithms based on structural plasticity, which can
be divided into progressive neural networks (PNN) and sub-
network selection algorithms. In fact, the existing network
structure expansion algorithms are mostly DNNs-based con-
tinual learning, with little exploration on SNNs.

Progressive neural networks. [Rusu et al., 2016] first pro-
poses the progressive neural network and applies it to multi-
ple continual reinforcement learning tasks. The PNN expands

a new complete network for each new task and fixes the net-
works of the old tasks. In addition, lateral connections are
introduced between the networks to effectively leverage the
knowledge already learned. PIL [Siddiqui and Park, 2021]
extends the PNN to large-scale convolutional neural networks
for image classification tasks. However, the PNN algorithms
extremely increase the network storage and computational
consumption during continual learning. In contrast, as devel-
opment matures and cognition improves, the number of brain
synapses decreases by more than 50% [Huttenlocher, 1990],
forming a highly sparse brain structure perfect for contin-
ual learning. The PNN blindly expand the structure causing
catastrophic effects in the case of massive sequential tasks.

Sub-network selection algorithm. A part of the network
nodes is selected to be activated for a given task. Path-
Net [Fernando et al., 2017] is first proposed to select path
nodes (each node contains a set of neurons) for each task
using the genetic algorithm. RPS-Net [Rajasegaran et al.,
2019a] randomly activates multiple input-to-output paths
connected by convolutional blocks, and chooses the highest-
performing ones as the final path. In addition, RCL [Xu and
Zhu, 2018] employ additional RL networks to learn the num-
ber of neurons required for a new task, while CLEAS [Gao
et al., 2022] uses RL to directly determine the activation and
death of each neuron. HMN [Zhao et al., 2022c] uses a hy-
brid network learning framework that uses an ANN modu-
lation network to determine the activation of neurons for a
SNN prediction network, but is only applied to small-scale
networks for simple scenarios. A sub-network mask learning
process based on pruning strategy is proposed by [Dekhovich
et al., 2023], which is applied to CIL combined with the re-
play strategy. The above algorithms select sub-networks for
each task separately, failing to maximize the reuse of acquired
knowledge to support new task learning.

To solve this problem, DER [Yan et al., 2021] prunes a
sparse convolutional feature extractor for each task, and then
merges the output of the convolution extractor into the pre-
vious tasks. CLNP [Golkar et al., 2020] grows new neurons
for a new task based on the old network, and DEN [Yoon
et al., 2018] expands when the already learned network is
insufficient for the new task, while reusing the existing neu-
rons. These several works require storing an additional sub-
network mask for each task, which both increases additional
storage consumption and is not consistent with the overall de-
velopmental learning process of the brain.

Considering the various limitations of existing works
above, the DSD-SNN proposed in this paper, which is a pio-
neering algorithm on SNNs-based continual learning, enables
the capacity of a single network to learn multiple sequential
tasks simultaneously, while reusing the acquired knowledge
and significantly increasing the memory capacity.

3 Method
3.1 Continual Learning Definition
We are expected to sequentially learn Γ tasks, Γ =
{T1, ..., TN}. Each task Ti takes the form of a classification
problem with its own dataset: DTi = {(xj , yj)}

NTi
j=1 , where
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Random growth Adaptive pruning Freezing neurons

Task 1
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Figure 1: The DSD-SNN model realizes multi-task incremental learning through random growth, adaptive pruning, and freezing of neurons.

xj ∈ χ, yi ∈ {1, ..., CTi}, χ is the input image space, NTi
and CTi are the number of samples and classes of task Ti.
For the task incremental learning scenario, Ti is knowable in
the testing process, setting requires to optimize:

max
θ

ETi∼Γ[E(xj ,yj)∼Ti [logpθ(yj |xj , Ti)]] (1)

where θ is the network parameters. When Ti is unknown in
testing, more complex class incremental learning scenarios
solve the following problems:

max
θ

ETi∼Γ[E(xj ,yj)∼Ti [logpθ(yj |xj)]] (2)

3.2 DSD-SNN Architecture
The design of the DSD-SNN algorithm is inspired by the
dynamic allocation, reorganization, growth, and pruning of
neurons during efficient continual learning in the brain. As
depicted in Fig. 1, the proposed DSD-SNN model includes
three modules (random growth, adaptive pruning, freezing
neurons) to accomplish multi-task incremental learning.
Random growth. When a new task is coming, the DSD-
SNN model first randomly assigns and grows a portion of
untrained empty neurons to form a new pathway. And the
new task-related classification neurons are added to the output
layer as shown in Fig. 1. Newly grown neurons receive the

output of all non-empty neurons of the previous layer (both
newly grown neurons and already frozen neurons in the previ-
ous tasks). Therefore, all features learned from previous tasks
can be captured and reused by the neural pathways of the new
task. Then, the DSD-SNN algorithm can take full advantage
of the features learned from the previous task to help the new
task converge quickly, while the newly grown neurons can
also focus on learning features specific to the new task.

Adaptive pruning. During the learning process of the cur-
rent task, the DSD-SNN algorithm adaptively detects rel-
atively inactive neurons in the current pathway based on
synaptic activity and prunes those redundant neurons to save
resources. The pruned neurons are re-initialized as empty
neurons that can be assigned to play a more important role
in future tasks. Pruning only targets those neurons that are
newly grown for the current task and does not include neu-
rons that were frozen in the previous tasks. Adaptive pruning
can substantially expand the memory capacity of the network
to learn and memorize more tasks under a fixed scale.

Freezing neurons. The contributing neurons that are re-
tained after pruning will be frozen, enabling the DSD-SNN
model to learn new tasks without forgetting the old tasks.
The frozen neurons can be connected to newly grown neurons
to provide acquired knowledge. During the training of new
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Figure 2: The architecture of the DSD-SNN model.

task Ti, all input synapses of the frozen neuron are no longer
updated, only the newly added output synapses to the new
neurons can be updated. The DSD-SNN model with neuron
growth, pruning, and freezing can memorize previous knowl-
edge and reuse the acquired knowledge to learn new tasks for
efficient continual learning.

The deep SNN with multiple convolutional and fully con-
nected layers is constructed to implement task incremental
learning and class incremental learning, as shown in Fig. 2.
During the training process, we sequentially input training
samples of each task and update the synapses newly added to
the network. In the testing process, test samples of all learned
tasks are fed into our overall multi-task continual learning
network, so that a single DSD-SNN model can achieve all
tasks without the need to identify separate sub-network mask
for each task.

To address more complex class incremental learning, we
add a two-layer network as the task classifier. The task clas-
sifier receives inputs from the classes outputs of the continual
learning network, and outputs which task the current sample
belongs to (as in the red box in Fig. 2). According to the in-
ferred task T̂i obtained from the task classifier, the DSD-SNN
model chooses the maximum output class of the T̂i task in the
continual learning network as the predicted class.

3.3 DSD-SNN Computational Details
So far in this section, we have described how our model ef-
ficiently and adaptively accomplishes continual learning. We
now introduce the detailed growth and pruning scheme that
we use throughout this paper.

Neuronal Growth and Allocation
During brain development, neurons and synapses are first ran-
domly and excessively grown and then reshaped based on the
external experience [Jun and Jin, 2007; Elman et al., 1996].
In the DSD-SNN model, the SNN is first initialized to con-
sist of N l neurons in each layer l. In the beginning, all neu-
rons in the network are unassigned empty neurons Nempty .
When the new task Ti arrives, we randomly grow ρ% × N l

neurons from the empty neurons for each layer, denoted as

Nnew. After training and pruning for task Ti , all retained
neurons Nnew are frozen, added to Nfrozen.

To better utilize the acquired knowledge, the newly grown
neurons N l

new in each layer not only receive the output of the
new growth neurons N l−1

new in the previous layer, but also re-
ceive the output of the frozen neuronsN l−1

frozen in the previous
layer, as follows.

{N l−1
frozen, N

l−1
new} → N l

new (3)

Where → represents the input connections. For the frozen
neurons N l−1

frozen, growth does not add input connections to
avoid interference with the memory of previous tasks.

Note that we do not assign task labels to frozen and new
growth neurons in either the training or testing phase of con-
tinual learning. That is, the DSD-SNN algorithm uses the
entire network containing all neurons that have learned previ-
ous tasks to do prediction and inference. Thus, our model is
able to learn multiple sequential tasks simultaneously without
storing separate sub-network masks.

Neuronal Pruning and Deactivation
Neuroscience researches have demonstrated that after the
overgrowth in infancy, the brain network undergoes a long
pruning process in adolescence, gradually emerging into a
delicate and sparse network [Huttenlocher and others, 1979;
Huttenlocher, 1990; Zhao et al., 2022a]. Among them, input
synapses are important factors to determine the survival of
neurons according to the principle of “use it or lose it” [Furber
et al., 1987; Bruer, 1999; Zhao and Zeng, 2021]. For SNN,
neurons with input synapse weights close to 0 are more dif-
ficult to accumulate membrane potentials beyond the spiking
threshold, resulting in firing spikes less and contributing to
the outputs less. Therefore, we used the sum of input synapse
weights Sli to assess the importance of neurons i in the l layer
as in Eq. 4.

Sli =

Ml−1∑
j=1

Wij (4)
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WhereWij is the synapse weights from presynaptic neuron
j to postsynaptic neuron i,Ml−1 is the number of presynaptic
neurons.

During the training of new tasks, we monitor the impor-
tance of newly grown neurons Nnew and prune redundant
neurons whose values of Si are continuously getting smaller.
Here, we define a pruning function as follows:

φP li = α ∗Norm(Sli)− ρp (5)

P li = γP li + e−
epoch
η φP li (6)

Where Norm(Sli) refers to linearly normalize Sli to 0∼ 1.
α = 2 and ρp control the pruning strength. ρp includes ρc
and ρf for the convolutional and fully connected layers, re-
spectively. P li is initialized to 5. γ = 0.99 and η controls the
update rate as [Han et al., 2022b]. e−

epoch
η decreases expo-

nentially with increasing epoch, which is consistent with the
speed of the pruning process in biological neural networks
that are first fast, then slow, and finally stable [Huttenlocher
and others, 1979; Han et al., 2022a].

The pruning functions are updated at each epoch, then we
prune neurons with the pruning function P li < 0. We struc-
turally prune channels in the convolutional layer and prune
neurons in the fully connected layer, removing their input
connections and output connections.

3.4 SNNs Information Transmission
Different from DNNs, SNNs use spiking neurons with dis-
crete 0/1 output, which are able to integrate spatio-temporal
information. Specifically, we employ the leaky integrate-and-
fire (LIF) neuron model [Abbott, 1999] to transmit and mem-
orize information. In the spatial dimension, LIF neurons in-
tegrate the output of neurons in the previous layer through
input synapses. In the temporal dimension, LIF neurons ac-
cumulate membrane potentials from previous time steps via
internal decay constants τ . Incorporating the spatio-temporal
information, the LIF neuron membrane potential U t,li at time
step t is updated by the following equation:

U t,li = τ(1− U t−1,l
i ) +

Ml−1∑
j=1

WijO
t,l−1
j (7)

When the neuronal membrane potential exceeds the firing
threshold Vth, the neuron fires spike, and its output Ot,li is
equal to 1; Conversely, the neuron outputs 0. The discrete
spiking outputs of LIF neurons conserve consumption as the
biological brain, but hinder gradient-based backpropagation.
To address this problem, [Wu et al., 2018] first proposed the
method of surrogate gradient. In this paper, we use Qgate-
grad [Qin et al., 2020] surrogate gradient method with con-
stant λ = 2 to approximate the spiking gradient, as follows:

Ot,li

U t,li
=

{
0, |U t,li | > 1

λ

−λ2|U t,li |+ λ, |U t,li | ≤ 1
λ

(8)

Overall, We present the specific procedure of our DSD-SNN
algorithm as Algorithm 1.

Algorithm 1: The DSD-SNN Continual Learning.
Input: Dataset DTi for each task Ti;
Initialize empty network Net;
Constant parameters of growth ρ% and pruning ρc, ρf .
Output: Prediction Class in task Ti (TIL) or in all

tasks (CIL).
for each sequential task Ti do

Growing new neurons to Net as Eq. 3;
for epoch = 0; epoch < E; epoch+ + do

SNN forward prediction Net (DTi) as Eq. 7;
SNN backpropagation to update new
connections as Eq. 8;

Assessing importance for newly grown
neurons as Eq. 4;

Calculating the neuronal pruning function as
Eq. 5 and Eq. 6;

Pruning redundant neurons with P li < 0;
end
Freezing retained neurons in Net;

end

4 Experiments
4.1 Datasets and Models
To validate the effectiveness of our DSD-SNN algorithm, we
conduct extensive experiments and analyses on the spatial
MNIST [LeCun et al., 1998], CIFAR100 [Xu et al., 2015]
and neuromorphic temporal N-MNIST datasets [Orchard et
al., 2015] based on the brain-inspired cognitive intelligence
engine BrainCog [Zeng et al., 2022]. The specific experi-
mental datasets and models are as follows:

• Permuted MNIST: We permute the MNIST handwrit-
ten digit dataset to ten tasks via random permutations of
the pixels. Each task contains ten classes, divided into
60,000 training samples and 10,000 test samples. As for
the SNN model, we use the SNN with two convolutional
layers, one fully-connected layer, and the multi-headed
output layer.

• Permuted N-MNIST: We randomly permute the N-
MNIST ( the neuromorphic capture of MNIST) to ten
tasks. And we employ the same sample division and the
same SNN structure as MNIST.

• Split CIFAR100: The more complex natural image
dataset CIFAR100 is trained in several splits including
10 steps (10 new classes per step), 20 steps (5 new
classes per step). SNN model consisting of eight con-
volutional layers, one fully connected and multi-headed
output layer are used to generate the predicted class.

For the task classifier, we use networks containing a hidden
layer with 100 hidden neurons for MNIST and N-MNIST, and
500 hidden neurons for CIFAR100. To recognize tasks better,
we replay 2000 samples for each task as [Rebuffi et al., 2017;
Rajasegaran et al., 2019b; Rajasegaran et al., 2019a]. Our
code is available at https://github.com/BrainCog-X/Brain-
Cog/tree/main/examples/Structural Development/DSD-
SNN.
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4.2 Comparisons of Performance
As shown in Fig. 3a, our DSD-SNN model maintains high ac-
curacy with increasing number of learned tasks. This demon-
strates that the proposed model overcomes catastrophic for-
getting on all MNIST, neuromorphic N-MNIST and more
complex CIFAR100 datasets, achieving robustness and gen-
eralization capability on both TIL and CIL. To validate the
effectiveness of our dynamic structure development module,
we compare the learning process of DSD-SNN with other
DNNs-based continual learning and transfer them to SNN as
Fig. 3b. The experimental results indicate that DSD-SNN re-
alizes superior performance in learning and memorizing more
incremental tasks, exhibiting larger memory capacity com-
pared to the DNNs-based continual learning baselines.

a b

Figure 3: The average accuracy with increasing number of tasks. (a)
Our DSD-SNN for MNIST, N-MNIST and CIFAR100. (b) Compar-
ison of our DSD-SNN with other methods for CIFAR100.

The comparison results of the average accuracy with ex-
isting continual learning algorithms based on DNN and SNN
are shown in Table 1 and Table 2. In the TIL scenario, our
DSD-SNN achieves an accuracy of 97.30% ± 0.09% with a
network parameter compression rate of 34.38% for MNIST,
which outperforms most DNNs-based algorithms such as
EWC [Kirkpatrick et al., 2017], GEM [Lopez-Paz and Ran-
zato, 2017], and RCL [Xu and Zhu, 2018]. In particular,
our algorithm achieves a higher performance improvement of
0.70% over the DEN [Yoon et al., 2018] model (which is also
based on growth and pruning). For the temporal neuromor-
phic N-MNIST dataset, our DSD-SNN algorithm is superior
to the existing HMN algorithm which combines SNN with
DNN [Zhao et al., 2022c]. Meanwhile, our DSD-SNN model
achieves 92.69% ± 0.57% and 96.94% ± 0.05% accuracy in
CIL scenarios for MNIST and N-MNIST, respectively.

Method Dataset Acc

EWC [Kirkpatrick et al., 2017] MNIST 81.60%
GEM [Lopez-Paz and Ranzato, 2017] MNIST 92.00%

DEN [Yoon et al., 2018] MNIST 96.60%
RCL [Xu and Zhu, 2018] MNIST 96.60%

CLNP [Golkar et al., 2020] MNIST 98.42% ± 0.04 %
Our DSD-SNN MNIST 97.30% ± 0.09 %

HMN(SNN+DNN) [Zhao et al., 2022c] N-MNIST 78.18%
Our DSD-SNN N-MNIST 97.06% ± 0.09 %

Table 1: Accuracy of task incremental learning compared to other
works for MNIST and N-MNIST datasets.

From Table 2, our DSD-SNN outperforms PathNet [Fer-
nando et al., 2017], DEN [Yoon et al., 2018], RCL [Xu and

Zhu, 2018] and HNET [Von Oswald et al., 2020], which
are also structural extension methods, in both TIL and CIL
scenarios for 10 steps CIFAR100. iCaRL [Rebuffi et al.,
2017] and DER++ [Yan et al., 2021] achieve higher accu-
racy of 84.20% in TIL scenarios than our 77.92%, but they
are inferior in CIL scenarios (51.40% and 55.30%) than our
60.47%. Moreover, the DSD-SNN compresses the network
to only 37.48% after learning all tasks, further saving energy
consumption. For 20 steps CIFAR100 with more tasks, our
DSD-SNN achieves even higher accuracy 81.17% in TIL sce-
nario and has excellent experimental results consistent with
10 steps. To the best of our knowledge, this is the first time
that the energy-efficient deep SNNs have been used to solve
CIFAR100 continual learning and achieve comparable per-
formance with DNNs.

In summary, the DSD-SNN model significantly outper-
forms the SNNs-based continual learning model on the N-
MNIST dataset. On MNIST and CIFAR100 datasets, the pro-
posed model achieves comparable performance with DNNs-
based models and performs well on both TIL and CIL.

4.3 Effects of Efficient Continual Learning
Fig. 4 depicts the performance of the DSD-SNN model for
task incremental learning on multiple datasets. The experi-
mental results demonstrate that our SNNs-based model could
improve the convergence speed and performance of new tasks
during sequential continual learning, possessing the forward
transfer capability. The newer tasks achieve higher per-
formance from the beginning for MNIST and CIFAR100
datasets, indicating that the previously learned knowledge is
fully utilized to help the new tasks. Also, the new tasks con-
verge to higher performance faster, suggesting that the net-
work has a strong memory capacity to continuously learn and
remember new tasks. Similar comparable results can be ob-
tained on the N-MNIST dataset.

a b

Figure 4: During the continual learning process of each task, the
changes of accuracy with epochs.

4.4 Ablation Studies
Effects of each component. To verify the effectiveness of
the growth and pruning components in DSD-SNN model, we
compare the number of network parameters (Fig. 5a) and per-
formance (Fig. 5b) of DSD-SNN, DSD-SNN without prun-
ing, and DSD-SNN without reused growth during multi-task
continual learning. The experimental results show that the
number of parameters in the DSD-SNN model fluctuates up
and finally stabilizes at 37.48% for CIFAR100, achieving su-
perior accuracy on multi-task continual learning. In contrast,
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Method 10steps TIL Acc (%) 10steps CIL Acc (%) 20steps TIL Acc (%) 20steps CIL Acc (%)

EWC [Kirkpatrick et al., 2017] 61.11 ± 1.43 17.25 ± 0.09 50.04 ± 4.26 4.63 ± 0.04
MAS [Aljundi et al., 2018] 64.77 ± 0.78 17.07 ± 0.12 60.40 ± 1.74 4.66 ± 0.02

PathNet [Fernando et al., 2017] 53.10 18.50 - -
SI [Zenke et al., 2017] 64.81 ± 1.00 17.26 ± 0.11 61.10 ± 0.82 4.63 ± 0.04

DEN [Yoon et al., 2018] 58.10 - - -
RCL [Xu and Zhu, 2018] 59.90 - - -

iCaRL [Rebuffi et al., 2017] 84.20 ± 1.04 51.40 ± 0.99 85.70 ± 0.68 47.80 ± 0.48
HNET [Von Oswald et al., 2020] 63.57 ± 1.03 - 70.48 ± 0.25 -

DER++ [Yan et al., 2021] 84.20 ± 0.47 55.30 ± 0.10 86.60 ± 0.50 46.60 ± 1.44
FOSTER [Wang et al., 2022] - 72.90 - 70.65

DyTox [Douillard et al., 2022] - 73.66 ± 0.02 - 72.27 ± 0.18
Our DSD-SNN 77.92 ± 0.29 60.47 ± 0.72 81.17 ± 0.73 57.39 ± 1.97

Table 2: Accuracy comparisons with DNNs-based algorithms for CIFAR100.

the network scale of the model without pruning rises rapidly
and quickly fills up the memory capacity, leading to a dra-
matic drop in performance after learning six tasks. The above
results reveal that the pruning process of DSD-SNN not only
reduces the computational overhead but also improves the
performance and memory capacity.

For the growth module of DSD-SNN, we eliminate the ad-
dition of connections from frozen neurons to verify the effec-
tiveness of reusing acquired knowledge in improving learning
for new tasks. From Fig. 5a and b, DSD-SNN without reused
growth suffers from catastrophic forgetting when there is no
additional conservation of sub-network masks. The scale of
the non-reused network is very small, and the failure to reuse
acquired knowledge significantly degrades the performance
of the model on each task. Therefore, we can conclude that
reusing and sharing acquired knowledge in our DSD-SNN
model achieves excellent forward transfer capability.

a b

Figure 5: Number of network parameters (a) and accuracy (b) of our
DSD-SNN, non-pruned and non-reused model for CIFAR100.

Effects of different parameters. We analyze the effects of
different growing and pruning parameters (the growth scale ρ
and pruning intensity ρc, ρf ). For the growth parameter ρ, the
results are very close in the range of 5-15% for MNIST in Fig.
6a, as well as in the range of 7.5-15% for CIFAR100 in Fig.
6b. Only in the larger case, there is a performance degradation
in the later learning task (8th task), due to the larger growth
scale of the previous task resulting in insufficient space to
learn new knowledge in the later tasks.

Fig. 6c and d describe the effects of pruning strength ρc,
ρf on performance. The larger ρc, ρf , the more convolutional
channels and fully connected neurons are pruned. We found
that the accuracy is very stable at less than ρc = 0.50, ρf =

a b

c d

Figure 6: The effect of pruning and growth parameters on accuracy
in multi-task continual learning.

1.00 for MNIST and ρc = 0.75, ρf = 1.25 for CIFAR100,
but the accuracy declines at larger ρc, ρf due to the over-
pruning. The DSD-SNN model is more adaptable to pruning
parameters on the CIFAR100 dataset because it has a larger
parameter space of SNN model. These ablation experiments
demonstrate that our DSD-SNN is very robust for different
growth and pruning parameters across multiple datasets.

5 Conclusion
Inspired by the brain development mechanism, we propose
a DSD-SNN model based on dynamic growth and pruning
to enhance efficient continual learning. Applied to both TIL
and CIL scenarios based on the deep SNN, the proposed
model can fully reuse the acquired knowledge to help im-
prove the performance and learning speed of new tasks, and
combine with pruning mechanism to significantly reduce the
computational overhead and enhance the memory capacity.
Our DSD-SNN model belongs to the very few explorations
on SNNs-based continual learning. The proposed algorithm
surpasses the SOTA performance achieved by SNNs-based
continual learning algorithm and achieves comparable perfor-
mance with DNNs-based continual learning algorithms.
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