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Abstract

Spiking neural networks (SNNs) have increasingly
drawn massive research attention due to biologi-
cal interpretability and efficient computation. Re-
cent achievements are devoted to utilizing the sur-
rogate gradient (SG) method to avoid the dilemma
of non-differentiability of spiking activity to di-
rectly train SNNs by backpropagation. However,
the fixed width of the SG leads to gradient vanish-
ing and mismatch problems, thus limiting the per-
formance of directly trained SNNs. In this work,
we propose a novel perspective to unlock the width
limitation of SG, called the learnable surrogate gra-
dient (LSG) method. The LSG method modulates
the width of SG according to the change of the dis-
tribution of the membrane potentials, which is iden-
tified to be related to the decay factors based on our
theoretical analysis. Then we introduce the train-
able decay factors to implement the LSG method,
which can optimize the width of SG automatically
during training to avoid the gradient vanishing and
mismatch problems caused by the limited width
of SG. We evaluate the proposed LSG method on
both image and neuromorphic datasets. Experi-
mental results show that the LSG method can effec-
tively alleviate the blocking of gradient propagation
caused by the limited width of SG when training
deep SNNs directly. Meanwhile, the LSG method
can help SNNs achieve competitive performance on
both latency and accuracy.

1 Introduction
Spiking neural networks (SNNs) are promising for energy ef-
ficient computation under the asynchronous and sparse event-
based manner. SNNs process spatio-temporal information
with discrete spikes, which is highly compatible with neu-
romorphic [Davies et al., 2018] and FPGA devices [Ju et al.,
2020]. However, due to the non-differentiable spiking activ-
ity, it still remains challenges to train high-performance deep
SNNs.
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There are two main methodologies to address the train-
ing problems to avoid the dilemma of non-differentiability.
One is the conversion-based method, which converts the pre-
trained Convolutional neural networks (CNNs) to SNNs with
the same architecture [Hu et al., 2021; Kundu et al., 2021;
Wang et al., 2022b], which usually requires considerable
timesteps to obtain similar information representation and ex-
ists inevitable accuracy loss compared to the original CNNs.
Though these methods enable SNNs to achieve comparable
performance, the demand for vast timesteps would lead to
a large inference latency and high energy consumption prob-
lem. Another is the direct training method using the surrogate
gradient (SG). This method replaces the all-or-nothing gradi-
ents of the spike activity function with different shapes of SG
[Wu et al., 2018; Fang et al., 2021a; Deng et al., 2022] to en-
able gradient backpropagating within a given wider range of
membrane potentials. Though this method is promising for
training deep SNNs with competitive performance under low
latency, it also suffers from the problem of gradient vanishing
or explosion, which causes performance degradation and lim-
its to relatively shallow network architectures. Many works
[Zheng et al., 2021; Fang et al., 2021a; Feng et al., 2022;
Guo et al., 2022b] have been made to solve these problems
and prompt the directly trained SNNs to achieve performance
improvement.

Nevertheless, due to the lack of comprehensive analysis of
the paradigm and difficulty of training SNNs with SG, there
still remains improvement in recent works. On the one hand,
the limited width of SG causes membrane potentials of nu-
merous of neurons to fall into the saturation area where the
approximate derivative is zero or a tiny value, which leads to
the gradient vanishing problem. On the other hand, simply
setting the width of SG to a large value is inappropriate. In
this case, the gradient-available interval will contain values
with a large difference, which will cause the gradient mis-
match problem and enlarge the approximated errors from the
accurate gradients. A proper width of the SG can benefit the
direct training of deep SNNs.

To this end, we propose a novel perspective to design SG
based on analysing the correlation between the width of SG
and the distribution of membrane potential. As the SG is
used as a function to determine which membrane potentials
have gradients, we first analyze the distribution of the mem-
brane potential in forward propagation. Then we identify that
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the distributions of membrane potential are related to the de-
cay factors when given the distribution of pre-synaptic input.
With the change of decay factors, we can accordingly modu-
late the width of SG. When we set the decay factors to train-
able parameters and optimize them during training, the width
of SG can be regarded as learnable equivalently, which is re-
ferred as the learnable surrogate gradients (LSG) method in
this work. We evaluate the LSG method on both standard
image and neuromorphic benchmarks. Experimental results
show that the LSG method can alleviate the blocking of gra-
dient propagation resulted by the limited width of SG. Mean-
while, the LSG can help deep SNNs achieve comparable per-
formance on both latency and accuracy.

2 Related Work
2.1 Training Algorithms of SNNs
Conversion. The conversion method is to convert a pre-
trained CNNs to spiking architecture ([Sengupta et al., 2019;
Hu et al., 2021; Han et al., 2020; Yu et al., 2021]) by ad-
justing parameters of SNN based on the mapping between
the activation values of ANN and spike rates of SNNs in
a layer-wise manner, which avoids the non-differentiability
of SNN training The major drawback of conversion method
is high inference latency and energy consumption. Since
then, some techniques have been proposed to reduce the in-
ference latency, i.e., the spike-norm [Sengupta et al., 2019],
the channel-wise normalization [Kim et al., 2020], the tan-
dem learning [Wu et al., 2021], the dual-phase error optimiza-
tion [Wang et al., 2022b] and so on. But conversion methods
still suffer from the ultra-high latency and could not exploit
the temporal dynamics of SNNs sufficiently, thus limiting the
flexible application of SNNs.
Direct Training. Direct training methods have been de-
veloped rapidly in recent years, and the most popular one
is based on the error backpropagation (BP) algorithm with
the surrogate gradient. In this way, SNNs are treated as
recurrent neural networks and trained with backpropagation
through time (BPTT) [Neftci et al., 2019] to propagate gra-
dients through spatial and temporal domains iteratively. Di-
rect training methods are promising for comparable perfor-
mance under ultra-low latency. In the last few years, this
kind of method realizes from spatial error BP [Haeng et
al., 2016] to spatial-temporal error BP ([Wu et al., 2019;
Shrestha and Orchard, 2018; Gu et al., 2019; Zhang and Li,
2020]) and has reported high performance on image and neu-
romorphic datasets. Recent efforts aim to achieve better per-
formance and deeper network structures. [Zheng et al., 2021]
proposed the STBP-tdBN method to balance the dynamics
of spiking neurons and modified the shortcut connection in
standard residual architectures, which enables direct training
of very deep SNNs on large-scale datasets. [Li et al., 2021a]
quantitatively analyzed the gap between the real gradients and
the surrogate gradients during training SNNs and proposed a
new kind of spiking neuron model to smooth the gradient es-
timation by optimizing the shape of the surrogate gradient
function with finite difference method adaptively. [Feng et
al., 2022] proposed a multi-level firing method based on the
STBP method to enable more efficient gradient propagation





     

Figure 1: Different shapes of SG used in direct training SNNs.

and the incremental expression ability of the neurons. [Guo et
al., 2022b] attempted to rectify the membrane potential dis-
tribution and penalizes the undesired shifts during training to
reduce the quantization errors.

2.2 Surrogate Gradient Design

The non-differentiability of spiking activity ∂oti
∂ut

i
hinders the

application of backpropagation for training SNNs directly.
Surrogate gradients (SG) are proposed to overcome this chal-
lenge, which replaces the derivative of non-differential spike
activation and enable gradients to pass within a wider range
of membrane potentials. We investigate existing shapes of
SG (see Figure 1) as follows: (1) the rectangular [Wu et
al., 2018], (2) the exponential [Shrestha and Orchard, 2018],
(3) the triangular [Deng et al., 2022], (4) the derivative of
a tanh function [Fang et al., 2021b] and (5) the derivative
of a sigmoid function [Zenke and Vogels, 2021]. Though
experiments have shown that the training of SNN is robust
to the shape of SG function, a suitable hyperparameter cri-
teria of the SG function, such as the dampening or sharp-
ness of the shapes of SG [Zenke and Vogels, 2021], plays
the key role in direct training of deep SNNs [Hagenaars et
al., 2021]. Furthermore, optimizing the width (or temper-
ature) of the SG has been proved to be an effective way
to improve the learning of deep SNNs [Li et al., 2021a;
Leng et al., 2022]. Inspired by previous works, we make ef-
forts to explore how to optimize the parameters of SG during
training to achieve superior performance.

2.3 Extended Learnable Parameter in SNNs
To capture the complex dynamics of SNNs during training
effectively, many works have taken efforts to bring in addi-
tional learnable parameters in SNNs. [Rathi and Roy, 2021]
proposed the Diet-SNN to optimize the membrane leak and
the firing threshold jointly. [Fang et al., 2021b] presented the
parametric Leaky Integrate-and-Fire (PLIF) neuron to set the
decay factor to a learnable parameter rather than an empiri-
cal hyperparameter. [Wang et al., 2022a] proposed the learn-
able initial membrane potential mechanism to enable flexible
neuronal mechanisms across layers. Nevertheless, previous
works mainly focus on the learnable neuronal dynamics, and
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to our best knowledge, there is no systematic research on how
to set the shape of SG learnable, which is quite crucial for
training SNNs directly. To this end, we propose an effective
way to design the learnable SG to achieve superior perfor-
mance for direct training SNNs.

3 Preliminaries
3.1 Spiking Neuron Model
We adopt the iterative leaky integrate-and-fire (LIF) model
[Wu et al., 2018] as the basic computational unit in SNN.
The state updating equations are as follows

In+1,t+1
i =

L(n)∑
j=1

wn
ijo

n,t+1
j (1)

un+1,t+1
i = βun+1,t

i (1− on+1,t
i ) + In+1,t+1

i (2)

on+1,t+1
i = Θ(un+1,t+1

i − vth) (3)

where the subscripts n, t, and i indicate that the state of the i-
th neuron in the n-th layer at the t-th time point. L(n) denotes
the number of neurons in n-th layer. I is the pre-synaptic in-
puts, u means the membrane potential, β is the decay factor.
wij is the synaptic weight from the j-th neuron in pre-layer
(n) to the i-th neuron in the post-layer (n + 1). Θ(·) is the
spike function, which satisfies Θ(x) = 0 when x < 0, other-
wise Θ(x) = 1. When the membrane potential u reaches the
threshold vth, the neuron will fire a spike and u is reset to 0
for simplicity.

3.2 Surrogate Gradients Learning in SNNs
The most popular shape of SG is the rectangular function [Wu
et al., 2019; Zheng et al., 2021; Deng et al., 2022], defined
by

∂on,ti

∂un,t
i

≈ h(un,t
i ) =

1

α
sign(|un,t

i − vth| <
α

2
) (4)

where α is a hyperparameter to determine the width of h(·)
and is fixed in all previous works. The gradient-available in-
terval is [vth − α

2 , vth + α
2 ]. In this case, if the width α is set

too large, the gradient-available interval will contain values
with a large difference, which will cause the gradient mis-
match problem and enlarge the approximated errors from the
accurate gradients. On the other hand, if we select a small
width, numerous spiking neurons will fall into the saturation
area outside the rectangular area, and the corresponding ∂on,t

i

∂un,t
i

will be zero due to the limited width of SG as shown in Fig-
ure 2. Hence, the gradients of these neurons will be lost,
which leads to the gradient vanishing and hinders the train-
ing of deep SNNs. So how to choose an appropriate width
of h(·) is essential for training deep SNNs directly [Li et al.,
2021b], which is the main motivation of our work.

3.3 Threshold-Dependent Batch Normalization
The batch normalization [Ioffe and Szegedy, 2015] (BN)
technique can accelerate training and reduce internal covari-
ate shift during the optimization of ANNs. But the BN lay-
ers are not designed for normalizing spatial-temporal data

gradient mismatch

  

gradient vanishing

   

Figure 2: The examples of two undesired width of SG. The shaded
area means the gradient-available interval.

and directly transplanting the BN technique in SNN train-
ing may lead to undesired results. To this end, [Zheng et
al., 2021] modified the feedforward form of the temporal
domain and proposed the threshold-dependent batch normal-
ization (tdBN) method to normalize the pre-synaptic inputs
I in both spatial and temporal domains to make the BN
technique support spatial-temporal information processing.
Let Itk represents the k-th channel feature maps of It, and
Ik = (I1k , I

2
k , . . . , I

T
k ) will be normalized as

Îk =
ηvth(Ik − E[Ik])√

var[Ik] + ϵ
(5)

Ik = γÎk + µ (6)

where E and var compute the mean and variance in channel
dimension, respectively. γ and µ are learnable parameters.
η is a wisely chosen hyperparameter to prevent over-fire and
under-fire. The normalized input after tdBN Ik will be fed
into Eq.2. We adopt the tdBN method to normalize the pre-
synaptic inputs to a normal distribution with a mean of 0.

4 Method
In this section, we will introduce the design details of the
learnable surrogate gradients (LSG) learning and the whole
training process.

4.1 Analysis of Membrane Potential’s Dynamics
Since the SG method can be seen as an approximate function
for the membrane potential u, we start with the analysis of
dynamics about u.

In the forward propagation, the pre-synaptic input I is
normalized by the threshold-dependent batch normalization
(tdBN) [Zheng et al., 2021] method and satisfies I ∼
N(0, v2th). Based on that, we propose Theorem 1 to explain
the detailed dynamics of membrane potential.

Theorem 1. With the iterative LIF model and the tdBN
method, assuming the pre-synaptic input I ∼ N(0, (vth)

2),
we have the membrane potential u ∼ N(0, σ2

mem) and
σ2
mem = g(β) ∗ (vth)2, wherein the g(β) means a directly

proportional function of β and g(β) can be approximated as
(1 + β2).

Proof. The proof of Theorem 1 is presented in Supplemen-
tary Material A.
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Figure 3: Distributions of membrane potential u with different decay
factors β.

We verify Theorem 1 by visualized analysis. In the exper-
iment, we set the pre-synaptic input I ∼ N(0, (0.5)2) and
display the distribution of membrane potential of LIF neu-
rons with different decay factors. As shown in Figure 3, when
given fixed pre-synaptic inputs, neurons with different decay
factors have different variances, which supports the proposi-
tion.

Theorem 1 explains the relation between the decay factors
and the distributions of membrane potential. Given the nor-
malized pre-synaptic input I ∼ N(0, v2th), the distributions
of membrane potential are only determined by the decay fac-
tor. Since the width of SG α in Eq.4 determines which values
of membrane potential have gradients (see Figure 3), once
the decay factor β as well as the distributions of membrane
potential changed, we can accordingly modulate the width of
SG to avoid the problem raised by the limited width α. It is
obvious that there exists a correlation between α and β. We
can formulate a function f(·) to describe this correlation pre-
cisely, namely α = f(β). As a result, if we consider β as
a trainable parameter [Fang et al., 2021b], the width of SG
can be also learned during training, which is referred as the
learnable surrogate gradients (LSG) method.

4.2 Design of Learnable Surrogate Gradients
Based on our analysis, we can identify the basic rules on the
design of LSG learning, which are listed as follows:

(1) The decay factor β of LIF neuron is set as a trainable pa-
rameter and can be optimized automatically during train-
ing, rather than a fixed constant.

(2) The function f(·) needs to be set as a directly propor-
tional function of the decay factor β manually before
training.

(3) Neurons in the same layer in SNNs share one decay fac-
tor, and neurons in different layers have different decay
factors. That means the values of f(β) would be dis-
tinct in different layers during training, which reshapes
the layer-wise width of SG in the training process.

With the three rules, we design the LSG in two steps. First,
we follow previous works [Fang et al., 2021b] and adopt a
trainable parameter b to formulate the decay factor β instead
of the direct optimizing, which is described as

βn = k(bn) =
1

1 + e−bn
(7)

where k(·) is the clamp function to ensure β ∈ (0, 1) and n
indicates the n-th layer. βn is initialized to 0.2 for all layers.
So, the decay factor β can be optimized automatically during
training in a layer-wise manner.

Second, we set the α = f(βn) = 2 ∗ vth
√
1 + β2

n, So
Eq.(4) can be rewritten as

h(un,t
i ) =

1

2 ∗ vth
√
1 + β2

n

sign(|un,t
i −vth| < vth

√
1 + β2

n)

(8)
which means that the gradient-available interval is [vth −
vth

√
1 + β2

n, vth + vth
√
1 + β2

n] and can be adjusted with
the optimization of β during training. We formalize this im-
provement in Theorem 2.
Theorem 2. With the emprical experimental setting α = 1
and vth = 0.5, assume the possibilities of a neuron leading
to gradient vanishing with and without LSG learning are P ∗

and P respectively, then we have P ∗ < P .

Proof. The proof of Theorem 2 is presented in Supplemen-
tary.

In this way, the LSG learning can effectively optimize the
width of the SG during training, so as to further avoid the
problems caused by the limited width of SG.

In conclusion, based on our analysis, we confirm the direct
proportionality relation between the decay factor and the dis-
tribution of membrane potential when given the pre-synaptic,
and we can modulate the width of SG according to the dis-
tribution of membrane potential. Thus, we can consider the
width of SG as a function of the decay factor, and when we
set the decay factor to a trainable parameter, the width of SG
is treated as learnable during training.

4.3 Overall Training Process
In this section, we present the overall training process for
deep SNNs with the LSG learning and STBP algorithm [Wu
et al., 2019].

In the output layer, instead of firing them across time, we
choose to integrate the output as did in recent works [Zheng
et al., 2021; Li et al., 2021a]. The accumulated membrane is
described as follows

ui =
1

T

T∑
t=1

L(N−1)∑
j=1

wn
ijo

n,t
j , i ∈ {1, 2, . . . , c} (9)

where T is the length of timestep and c is the number of
neurons in the output layer, which is equal to the number of
sample classes. Then, we can compute the cross-entropy loss
based on the true label and the output accumulated membrane
of SNN.

With the accumulated membrane of the output layer u =
(u1, u2, . . . , uc) and label vector Y = (y1, y2, . . . , yc), the
loss function is determined by the cross-entropy function,
which is described as

pi =
eui∑c
j=1 e

ui
(10)

L = −
c∑

i=1

yilog(pi) (11)
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Algorithm 1 Overall training process of the SNN with LSG
method in one iteration
Input: Timestep: T ; Threshold: vth; Initial layer-wise decay:
βn; input o = o1, o2, ..., oT ; label Y .
Output: updated wn

ij and bn of the SNN.
Forward:

1: for n = 1 to N do
2: for t = 1 to T do
3: if n < N then
4: In+1,t = wn

conv ⊗ on,t. // Eq.(1)
5: else
6: uN = Accumulate(oN−1,t) // Eq.(9)
7: end if
8: end for
9: I

n ← tdBN(In) // Eq.(5) and Eq.(6)
10: Calculate the spike output ot+1 // Eq.(2) and Eq.(3)
11: Calculate the width of SG f(βn)
12: end for
13: L← CrossEntropy(uN , Y ) // Eq.(10) and Eq.(11)

Backward:
14: for n = N to 1 do
15: for t = T to 1 do
16: ∂L

∂on,t ← GradBackward( ∂L
∂un+1,t ,

∂L
∂un,t+1 ) //

Eq.(12)
17: ∂L

∂un,t ←GradBackward( ∂L
∂on,t ,

∂L
∂un,t+1 , f(βn))

// Eq.(8) and Eq.(13)
18: end for
19: end for
20: Update parameters wn

ij and bn. // Eq.(14), Eq.(15)

where c means the number of classes.
With the STBP algorithm, the gradients can be computed

by

∂L

∂on,ti

=

L(n+1)∑
j=1

∂L

∂un+1,t
j

∂un+1,t
j

∂on,tj

+
∂L

∂un,t+1
i

∂un,t+1
i

∂on,ti

(12)

∂L

∂un,t
i

=
∂L

∂on,ti

∂on,ti

∂un,t
i

+
∂L

∂un,t+1
i

∂un,t+1
i

∂un,t
i

(13)

where on,t and un,t represent the spike and membrane po-
tential of the neuron in n-th layer at t-th time point. Finally,
we can obtain the gradients of weights wn

ij and the trainable
parameter bn as

∂L

∂wn
ij

=
T∑

t=1

∂L

∂un,t
i

∂un,t
i

∂In,ti

∂In,ti

∂wn
ij

=
T∑

t=1

∂L

∂un,t
i

on−1,t
j (14)

∂L

∂bn
=

T∑
t=1

∂L

∂un,t
i

∂un,t
i

∂bn
(15)

With Eq.(10) - Eq.(15), the gradients can be backpropa-
gated along both spatial and temporal domains. Details of the
training algorithm with the LSG method are shown in Algo-
rithm.1.

Dataset Method Accuracy

CIFAR-10
None 92.68%
w/ trainable decay 93.16%
w/ LSG 94.41%

CIFAR-100
None 73.87%
w/ trainable decay 74.12%
w/ LSG 76.22%

CIFAR-DVS
None 73.80%
w/ trainable decay 75.40%
w/ LSG 77.50%

Table 1: Ablation Study for LSG learning on different datasets.

Method Accuracy
SG (α = 0.5) 92.12%
SG (α = 1.0) 92.68%
SG (α = 2.5) 90.68%
SG (α = 5.0) 61.54%
SG (α = 10.0) 30.82%
LSG 94.41%

Table 2: Comparison results with different width of SG on CIFAR-
10 dataset.

5 Experiments
We evaluate our work on both image datasets (CIFAR-
10/100) and the neuromorphic dataset, CIFAR-DVS [Li et al.,
2017]. We first conduct a series of ablation experiments to
verify the effectiveness of the proposed LSG method. Then
we explore how the LSG method alleviates the blocking of
gradient propagation during training. We finally compare our
LSG method with previous methods to illustrate the superi-
ority of our work. Details of the hyperparameter settings and
the network structures are introduced in Supplementary.

5.1 Ablation Study
We conduct a set of ablation experiments to verify the ef-
fectiveness of the proposed LSG learning on CIFAR-10/100
using ResNet-19 [Zheng et al., 2021] with T = 2 and CIFAR-
DVS using VGGSNN [Deng et al., 2022] with T=10 as back-
bones.

Detailed results of different SNNs are illustrated in Table
1. On the CIFAR-10 dataset, SNN with the LSG achieves
94.89% accuracy, surpassing the vanilla one and SNN with
the trainable decay by 1.73% and 1.25% respectively. On the
CIFAR-100 dataset, SNN with the LSG achieves 76.22% ac-
curacy, which is significantly better than SNNs trained with-
out any method and with the trainable decay. The proposed
LSG learning method also demonstrates its superiority on
the CIFAR-DVS dataset. The performance improvements
brought by the LSG method are significant. We can con-
clude the effectiveness of the LSG method for training deep
SNNs. Besides, We record the testing accuracy and loss of
different SNNs on CIFAR-10/100 dataset during training. As
illustrated in Figure 4, the LSG learning method can not only
help SNN achieve better results on both datasets, but also ac-
celerate the convergence speed of network training.
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Figure 4: Recordings of testing accuracy (top row) and loss (bottom
row) when training on CIFA-10/100 datasets with 2 timesteps.
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Figure 5: The proportion of spiking neurons falling into the gradient-
available interval in each convolutional layer.

We also compare the LSG method with SG method having
different widths on CIFAR-10 with ResNet-19 under T=2. As
shown in Table 2, we can see that the width of SG greatly af-
fects the performance of SNNs, and it is catastrophic damage
for SG when the width α is selected inappropriately (α ≥ 5),
which is consistent with our analysis. In contrast, the LSG
method helps SNN achieve the best accuracy, which verifies
that the LSG can effectively optimize the width of SG for
better performance.

5.2 LSG for Gradient Vanishing
In this part, we conduct a series of experiments to demon-
strate that the LSG method can alleviate the blocking of gra-
dient propagation resulted by the limited width of SG. We
apply the ResNet-19 on CIFAR-10 with 2 timesteps.

We first visualize the proportion of spiking neurons of
different SNNs falling into the gradient-available interval in

   

epoch epoch epoch epoch

Figure 6: The change of f(βn) of SNN trained with LSG method
on CIFAR-10.

epoch epoch epoch epoch

   

Figure 7: The change of βn of SNN trained with trainable decay on
CIFAR-10.

each layer in Figure 5. We can see that there is a large propor-
tion of spiking neurons falling out of the gradient-available
interval when SNN is trained without any method, especially
as the layer deepens, which will lead to gradient vanishing.
And the trainable decay method can not alleviate this situ-
ation. For example, in 11th and 16th layers, SNN trained
without any method has a higher proportion than the SNN
trained with the trainable decay method. In contrast, while
trained with the LSG method, SNN can jump out of the
dilemma and ensures a certain proportion of spiking neurons
falling into the gradient-available interval to prevent gradient
vanishing, which shows the potential to train deep SNNs.

To further explore how the LSG method helps SNN jump
out of the dilemma, we record the change curves of f(βn)
during training. We select the 2nd, 6th, 10th, and 16th lay-
ers, for their significantly high proportion of spiking neurons
falling into the gradient-available interval. As shown in Fig-
ure 6, f(βn) of different layers have different curves and fi-
nally converge to different values. It is worth noting that the
f(βn) tends to increase as the layer goes deeper, which does
not occur in SNN trained with trainable decay as shown in
Figure 7. That indicates the LSG method helps SNN to main-
tain enough spiking neurons having gradients in the deep-
layer and alleviate the gradient vanishing problem.

5.3 Comparisons with Other Methods
In this section, we compare our experimental results with pre-
vious works on image datasets and neuromorphic dataset. Re-
sults are illustrated in Table 3. Details of data preprocessing
are introduced in Supplementary. All the experimental re-
sults are averaged over 5 runs.

For CIFAR-10, based on the ResNet-19, our SNN trained
with LSG method achieves 95.52% accuracy with only
6 timesteps and surpasses all the other compared meth-
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Dataset Method Architecture Timestep Accuracy

CIFAR-10

STBP-tdBN [Zheng et al., 2021] ResNet-19 6 93.16%
Conversion [Hu et al., 2021] ResNet-44 350 92.37%
Dspike [Li et al., 2021a] ResNet-18 6 94.25%
PLIF [Fang et al., 2021b] 7-layer CNN 8 93.50%
TET [Deng et al., 2022] ResNet-19 6 94.50%
MLF [Feng et al., 2022] ResNet-19 4 94.25%
RecDis-SNN [Guo et al., 2022b] ResNet-19 2 93.64%
TEBN [Duan et al., 2022] ResNet-19 6 94.71%
IM-Loss [Guo et al., 2022a] ResNet-19 6 95.49%

LSG ResNet-19
6 95.52 ± 0.05%
4 95.17 ± 0.05%
2 94.41 ± 0.08%

CIFAR-100

Conversion [Kundu et al., 2021] VGG-11 100 64.98%
DCT[Garg et al., 2020] VGG-11 48 68.30%
STBP-tdBN [Zheng et al., 2021] ResNet-19 6 71.12%
Dspike [Li et al., 2021a] ResNet-18 6 74.24%
SEW ResNet [Fang et al., 2021a] ResNet-34 4 67.04%
TET [Deng et al., 2022] ResNet-19 6 74.72%
RecDis-SNN [Guo et al., 2022b] ResNet-19 4 76.10%
TEBN [Duan et al., 2022] ResNet-19 6 76.41%
IM-Loss [Guo et al., 2022a] VGG-16 5 70.18%

LSG ResNet-19
6 77.13 ± 0.07%
4 76.85 ± 0.10%
2 76.32 ± 0.12%

CIFAR-DVS

STBP-tdBN [Zheng et al., 2021] ResNet-19 10 67.80%
PLIF [Fang et al., 2021b] 7-layer CNN 20 74.80%
Dspike [Li et al., 2021a] ResNet-18 6 75.45%
TET [Deng et al., 2022] VGGSNN 10 77.40%
MLF [Feng et al., 2022] ResNet-19 10 70.36%
RecDis-SNN [Guo et al., 2022b] ResNet-19 10 72.42%
TEBN [Duan et al., 2022] 7-layer CNN 10 75.10%
IM-Loss [Guo et al., 2022a] ResNet-19 10 72.60%

LSG ResNet-19 10 77.90 ± 0.15%
83.70* ± 0.15%

Table 3: Comparison results with existing works on different datasets.* denotes using the TET loss and data augmentation.

ods. We can notice that under ultra-low latency (T=2), the
LSG method could obtain comparable performance (reach-
ing 94.41%) and outperforms the previous best accuracy by a
margin of 0.77%.

For CIFAR-100, SNN trained with LSG method based on
ResNet-19 achieves the best accuracy of 77.13% with only 6
time steps, which outperforms other recent compared meth-
ods with the same network structure by a margin of 2.41%,
1.03% and 0.72% respectively. It is worth noting that un-
der only 2 timesteps, our method still achieves a better re-
sult (reaching 76.32%) than most of the compared methods,
which illustrates the effectiveness of the LSG method.

For CIFAR-DVS, We downsize the original image size
128× 128 to 48× 48 and sample a slice every 5ms to reduce
the temporal resolution. We use the same timestep [Zheng et
al., 2021; Deng et al., 2022] and network structure [Deng et
al., 2022] as previous works. As illustrated in Table 3, the
VGGSNN trained with the LSG method achieves 77.90% ac-
curacy, which is slightly better than the previous best result
(77.40%) [Deng et al., 2022]. While compared with other
methods, we achieve significantly better result. Further, with
the TET loss and the augmentation technique proposed in

[Deng et al., 2022], the accuracy rises to 83.70%, which out-
performs existing methods by a large margin.

6 Conclusion
In this work, we propose the learnable surrogate gradients
(LSG) method to unlock the width limitation of SG in direct
training SNNs. We first identify the correlation between the
distributions of the membrane potentials and the decay fac-
tors when given the pre-synaptic inputs based on our theoret-
ical analysis. Thus, we can use this correlation to modulate
the width of SG when the decay factors as well as the distri-
butions of the membrane potentials change. When the decay
factors are set to trainable parameters, the width of SG can
be treated as learnable, which is referred as the learnable sur-
rogate gradients (LSG) method. The LSG method can auto-
matically optimize the width of SG during training and avoid
the gradient vanishing and mismatch problems caused by the
limited width of SG. Experimental results and analysis show
that the LSG method can effectively alleviate the blocking
of gradient propagation resulted by the limited width of SG
when training deep SNNs directly, and helps SNNs achieve
competitive performance on both latency and accuracy.
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