
Cognitively Inspired Learning of Incremental Drifting Concepts

Mohammad Rostami , Aram Galstyan
University of Southern California
{mrostami,galstyan}@isi.edu

Abstract
Humans continually expand their learned knowl-
edge to new domains and learn new concepts
without any interference with past learned experi-
ences. In contrast, machine learning models per-
form poorly in a continual learning setting, where
input data distribution changes over time. Inspired
by the nervous system learning mechanisms, we
develop a computational model that enables a deep
neural network to learn new concepts and expand
its learned knowledge to new domains incremen-
tally in a continual learning setting. We rely on
the Parallel Distributed Processing theory to en-
code abstract concepts in an embedding space in
terms of a multimodal distribution. This embed-
ding space is modeled by internal data represen-
tations in a hidden network layer. We also lever-
age the Complementary Learning Systems theory
to equip the model with a memory mechanism to
overcome catastrophic forgetting through imple-
menting pseudo-rehearsal. Our model can generate
pseudo-data points for experience replay and accu-
mulate new experiences to past learned experiences
without causing cross-task interference.

1 Introduction
Humans continually abstract concept classes from their in-
put sensory data to build semantic descriptions, and then up-
date and expand these concepts as more experiences are ac-
cumulated [Widmer and Kubat, 1996], and use them to ex-
press their ideas and communicate with each other [Gennari
et al., 1989; Lake et al., 2015]. For example, “cat” and “dog”
are one of the first concept classes that many children learn
to identify. Most humans expand these concepts as concept
drift occurs, e.g., incorporating many atypical dog breeds into
the “dog” concept, and also incrementally learn new concept
classes, e.g. “horse” and “sheep,” as they acquire more ex-
periences. Although this concept learning procedure occurs
continually in humans, continual and incremental learning of
concept classes remains a major challenge in artificial intelli-
gence (AI). AI models are usually trained on a fixed number
of classes and the data distribution is assumed to be stationary
during model execution. Hence, when an AI model is trained

or updated on sequentially observed tasks with diverse distri-
butions or is trained on new classes, we generally need new
annotated data points from the new classes [Rostami et al.,
2018] and the model also would tend to forget what has been
learned before due to cross-task interference, known as the
phenomenon of catastrophic forgetting [French, 1991].

Inspired by the Parallel Distributed Processing (PDP)
paradigm [McClelland et al., 1986; McClelland and Rogers,
2003], our goal is to enable a deep neural network to learn
drifting concept classes [Gama et al., 2014; Rostami and Gal-
styan, 2023] incrementally and continually in a sequential
learning setting. PDP hypothesizes that abstract concepts are
encoded in higher layers of the nervous system [McClelland
and Rogers, 2003; Saxe et al., 2019]. Similarly, and based
on behavioral similarities between artificial deep neural net-
works and the nervous system [Morgenstern et al., 2014] , we
can assume that the data representations in hidden layers of a
deep network encode semantic concepts with different levels
of abstractions. We model these representations as an embed-
ding space in which semantic similarities between input data
points are encoded in terms of geometric distances [Jiang and
Conrath, 1997], i.e., data points that belong to the same con-
cept class are mapped into separable clusters in the embed-
ding space. When a new concept is abstracted, a new distinct
cluster should be formed in the embedding space to encode
that new class. Incremental concepts learning is feasible by
tracking and remembering the representation clusters that are
formed in the embedding space and by considering their dy-
namics as more experiences are accumulated in new domains.

We benefit from the Complementary Learning Systems
(CLS) theory [McClelland et al., 1995] to mitigate catas-
trophic forgetting. CLS is based on empirical evidences that
suggest experience replay of recently observed patterns dur-
ing sleeping and waking periods in the human brain helps to
accumulate the new experiences to the past learned experi-
ences without causing interference [McClelland et al., 1995;
Robins, 1995]. According to this theory, hippocampus plays
the role of a short-term memory buffer that stores samples
of recent experiences and catastrophic forgetting is prevented
by replaying samples from the hippocampal storage to imple-
ment pseudo-rehearsal in the neocortex during sleeping pe-
riods through enhancing past learned knowledge. Unlike AI
memory buffers that store raw input data point, hippocampal
storage can only store encoded abstract representations.
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Inspired by the above two theories, we expand a base
neural classifier with a decoder network, which is amended
from a hidden layer, to form an autoencoder with the hid-
den layer as its bottleneck. The bottleneck is used to model
the discriminative embedding space. As a result of super-
vised learning, the embedding space becomes discrimina-
tive, i.e. a data cluster is formed for each concept class
in the embedding space [McClelland and Rogers, 2003;
Rostami, 2021b]. These clusters can be considered analogous
to neocortical representations in the brain, where the learned
abstract concepts are encoded [McClelland et al., 1986].
We use a multi-modal distribution to estimate this distribu-
tion [Stan and Rostami, 2021; Rostami, 2021a]. We update
this parametric distribution to accumulate new experiences to
past learned experiences consistently. Since our model is gen-
erative, we can implement the offline memory replay process
to prevent catastrophic forgetting [McClelland et al., 1995;
Rasch and Born, 2013]. When a new task arrives, we draw
random samples from the multi-modal distribution and feed
them into the decoder to generate representative pseudo-data
points. These pseudo-data points are then used to implement
pseudo-rehearsal for experience replay [Robins, 1995].

2 Related Work
Continual learning: the major challenge of continual
learning is tackling catastrophic forgetting. Previous works in
the literature mainly rely on experience replay [Li and Hoiem,
2018]. The core idea of experience replay is to implement
pseudo-rehearsal by replaying representative samples of past
tasks along with the current task data to retain the learned
distributions. Since storing these samples requires a memory
buffer, the challenge is selecting the representative samples to
meet the buffer size limit. For example, selecting uncommon
samples that led to maximum effect in past experiences has
been found to be effective [Schaul et al., 2016]. However,
as more tasks are learned, selecting the effective samples be-
comes more complex. The alternative approach is to use gen-
erative models that behave more similar to humans [French,
1999]. Shin et al. ([Shin et al., 2017]) use a generative adver-
sarial structure to mix the distributions of all tasks. It is also
feasible to couple the distributions of all tasks in the bottle-
neck of an autoencoder [Rostami et al., 2019; Rostami et al.,
2020b]. The shared distribution then can be used to generate
pseudo-samples [Rannen et al., 2017].Weight consolidation
using structural plasticity [Lamprecht and LeDoux, 2004;
Zenke et al., 2017; Kirkpatrick et al., 2017] is another ap-
proach to approximate experience replay. The idea is to iden-
tify important weights that retain knowledge about a task and
then consolidate them according to their relative importance
for past tasks. Continual learning of sequential tasks can be
improved used high-level tasks descriptors to compensate for
data scarcity [Rostami et al., 2020a].

Incremental learning: forgetting in incremental learn-
ingstems from updating the model when new classes are in-
corporated, rather concept drifts in a fixed number of learned
classes. Hence, the goal is to learn new classes such that
knowledge about the past learned classes is not overwritten.
A simple approach is to expand the base network as new

classes are observed. Tree-CNN [Roy et al., 2020] proposes a
hierarchical structure that grows like a tree when new classes
are observed. The idea is to group new classes into feature-
driven super-classes and find the exact label by limiting the
search space. As the network grows, the new data can be
used to train the expanded network. Sarwar et al. [Sarwar et
al., 2019] add new convolutional filters in all layers to learn
the new classes through new parameters. The alternative ap-
proach is to retain the knowledge about old classes in an em-
bedding feature space. Rebuffi et al. [Rebuffi et al., 2017]
proposed iCarl which maps images into a feature space that
remains discriminative as more classes are learned incremen-
tally. A fixed memory buffer is used to store exemplar images
for each observed class. Each time a new class is observed,
these images are used to learn a class-level vector in the fea-
ture space such that the testing images can be classified using
nearest neighbor with respect to these vectors.

Gaussian mixture model : are useful for modeling dis-
tributions that exhibit multiple modes or clusters. GMMs
assume that the data is generated by a mixture of several
Gaussian distributions, each representing a different cluster or
mode in the data. The model is trained by estimating the pa-
rameters of the component Gaussians, including their means
and variances, as well as the mixture weights that determine
the relative contribution of each Gaussian to the overall dis-
tribution. GMMs are widely used in a variety of applications,
including continual learning [Rostami et al., 2019].

Contributions: We develop a unified framework that ad-
dresses challenges of both incremental learning and lifelong
learning. Our idea is based on tracking and consolidating the
multimodal distribution that is formed by the internal data
representations of sequential tasks in hidden layers of a neu-
ral network. We model this distribution as a Gaussian mix-
ture model (GMM) with time-dependent number of compo-
nents. Concept drifts are learned by updating the correspond-
ing GMM component for a particular class and new concepts
are learned by adding new GMM components. We also make
the model generative to implement experience replay.

3 Problem Statement
Consider a learning agent which observes a sequence of ob-
served tasks {Z(t)}Tt=1 [Chen and Liu, 2016] and after learn-
ing each task moves forward to learn the next task. Each task
is a classification problem in a particular domain and each
class represents a concept. The classes for each task can be
new unobserved classes, i.e., necessitating incremental learn-
ing [Rebuffi et al., 2017], or drifted forms of the past learned
classes, i.e., necessitating lifelong learning [Chen and Liu,
2016], or potentially a mixture of both cases. Formally, a
task is characterized by a dataset D(t) = ⟨X(t),Y (t)⟩, where
X(t) = [xt

1, . . . ,x
t
n] ∈ Rd×nt and Y (t) ∈ Rkt×nt are the

data points and one-hot labels, respectively. The goal is to
train a time-dependent classifier function f (t)(·) : Rd →⊂
Rkt - where kt is the number of classes for the t-th task and is
fixed for each task- such that the classifier continually gener-
alizes on the tasks seen so far. The data points x(t)

i ∼ q(t)(x)
are assumed to be drawn i.i.d. from an unknown task distri-
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Figure 1: Block-diagram visualization of the proposed Incremental
Learning System. (Best viewed enlarged on screen and in color.
Enlarged version is included in the Appendix)

bution q(t)(x). Figure 1 visualizes a block-diagram of this
continual and dynamic learning procedure. The agent needs
to expand its knowledge about all the observed concepts such
that it can perform well on all the previous learned domains.

Learning each task in isolation is a standard supervised
learning problem. After selecting a suitable parameter-
ized family of functions f

(t)
θ : Rd → Rkt with learn-

able parameters θ, e.g. a deep neural network with learn-
able weight paramters θ, we can solve for the optimal
parameters using the empirical risk minimization (ERM):
θ̂(t) = argminθ ê

(t)
θ = argminθ

∑
i Ld(f

(t)
θ (x

(t)
i ),y

(t)
i ),

where Ld(·) is a proper loss function. If nt is large
enough, the empirical risk expectation would be a good ap-
proximation of the real expected risk function e(t)(θ) =
Ex∼q(t)(x)(Ld(fθ(t)(x), f(x))). As a result, if the base para-
metric family is rich and complex enough for learning the
task function, then the ERM optimal model generalizes well
on unseen test samples that are drawn from q(t)(x).

For the rest of the paper, we consider the base model fθ(t)

to be a deep neural network with an increasing output size to
encode incrementally observed classes. As stated, we rely on
the PDP paradigm. Hence, we decompose the deep network
into an encoder sub-network ϕv(·) : Rd → Z ⊂ Rf with
learnable parameter v, e.g., convolutional layers of a CNN,
and a classifier sub-network hw(·)kt : Rf → Rkt with learn-
able parameters w, e.g., fully connected layers of a CNN,
where Z denotes the embedding space in which the concepts
will be be formed as separable clusters.

The concepts for each task are known a priori and hence
new nodes are added to the classifier sub-network output to
incorporate the new classes at time t. We use a softmax
layer as the last layer of the classifier subnetwork. Hence,

we can consider the classifier to be a a maximum a posteriori
(MAP) estimator after training. This means that the encoder
network transforms the input data distribution into an inter-
nal multi-modal distribution with kt modes in the embedding
space because the embedding space Z should be concept-
discriminative for good generalization. Each concept class
is represented by a single mode of this distribution. We use a
Gaussian mixture model (GMM) to model and approximate
this distribution (see Figure 1, middle panel). Catastrophic
forgetting is the result of changes in this internal distribution
when changes in the input distribution leads to updating the
internal distribution heuristically. Our idea is to track changes
in the data distribution and update and consolidate the inter-
nal distribution such that the acquired knowledge from past
experiences is not overwritten when learning new tasks.

The main challenge is to adapt the network f (t)θ (·) and the
standard ERM such that we can track the internal distribu-
tion continually and accumulate the new acquired knowledge
consistently to the past learned knowledge with minimum in-
terference. For this purpose, we form a generative model by
amending the base model with a decoder ψu : Z → Rd,
with learnable parameters u. This decoder maps back the
internal representations to reconstruct the input data point in
the input space such that the pair (ϕu, ψu) forms an autoen-
coder. According to our previous discussion, a multi-modal
distribution would be formed in the bottleneck of the autoen-
coder upon learning each task. This distribution encodes the
learned knowledge about the concepts that have been learned
from past experiences so far. If we approximate this dis-
tribution with a GMM, we can generate pseudo-data points
that represent the previously learned concepts and use them
for pseudo-rehearsal. For this purpose, we can simply draw
samples from all modes of the GMM and feed these samples
into the decoder subnetwork to generate a pseudo-dataset (see
Figure 1). After learning each task, we can update the GMM
estimate such that the new knowledge acquired is accumu-
lated to the past gained knowledge consistenly to avoid inter-
ference. By doing this procedure continually, our model is
able to learn drifting concepts incrementally. Figure 1 visual-
izes this repetitive procedure in our setting.

4 Proposed Algorithm
When the first task is learned, there is no prior experience and
hence learning reduces the following:

min
v,w,u

Lc(X
(1),Y (1)) = min

v,w,u

1

n1

n1∑
i=1

(
Ld

(
hw(ϕv

(
x

(1)
i )
)
,y

(1)
i

)
+ γLr

(
ψu

(
ϕv(x

(1)
i )
)
,x

(1)
i

))
,

(1)
where Ld is the discrimination loss, e.g., cross-entropy loss,
Lr is the reconstruction loss for the autoencoder, e.g., ℓ2-
norm, Lc is the combined loss, and γ is a trade-off parameter
between the terms. When the first task is learned, also any
future task, according to the PDP hypothesis, a multi-modal
distribution p(1)(z) =

∑k1

j=1 αjN (Z|µj ,Σj) with k1 com-
ponents is formed in the embedding space. We assume that
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this distribution can be modeled with a GMM. Since the la-
bels for the input task data samples are known, we use MAP
estimation to recover the GMM parameters (see Appendix for
details). Let p̂(1)(z) denotes the estimated distribution.

As subsequent tasks are learned, the internal distribution
should be updated continually to accumulate the new ac-
quired knowledge. Let kt = ktold + ktnew, where ktold de-
notes the number of the previously learned concepts that ex-
ist in the current task and ktnew denotes the number of the
new observed classes. Hence, the total number of learned
concepts until t = T is kTTot =

∑T
t=1 k

t
new. Also, let the

index set NT
Tot = {1, . . . , kTTot} denotes an order on the

classes Cj , with j ∈ NT
Tot, that are observed until t = T .

Let NT = NT
old ∪ NT

new = {i1, . . . , ikT
} ⊂ NT

Tot contains
the kT indices of the existing concepts in Z(T ). To update
the internal distribution after learning Z(T ), the number of
distribution modes should be updated to kTTot. Additionally,
catastrophic forgetting must be mitigated using experience re-
play. We can draw random samples from the GMM distri-
bution zi ∼ p̂(T−1)(z) and then pass each sample through
the decoder ψ(zi) to generate pseudo-data points for pseudo-
rehearsal. Since each particular concept is represented by ex-
actly one mode of the internal GMM distribution, the corre-
sponding pseudo-labels for the generated pseudo-data points
are known. Moreover, the confidence levels for these labels
are also known from the classifier softmax layer. To generate
a clean pseudo-dataset, we can set a threshold τ and only pick
the pseudo-data points for which the model confidence level
is more than τ . We also generate a balanced pseudo-dataset
with respect to the learned classes. Doing so, we ensure suit-
ability of a GMM with kTTot components to estimate the em-
pirical distribution accurately after learning the next tasks.

Let D̃(t) = ⟨ψ(Z̃(t)), Ỹ (t)⟩ denotes the pseudo-dataset,
generated at time t after learning the tasks {Z(s)}t−1

s=1. We
form the following objective to learn the task Z(t), ∀t ≥ 2:

min
v,w,u

Lc(X
(t),Y (t)) + Lc(X̃

(t), Ỹ (t))+

λ
∑

j∈Nt
old

D
(
ϕv(q

(t)(X(t))|Cj), p̂
(t−1)(Z̃(t))|Cj)

)
,

(2)

where D(·, ·) is a probability metric and λ is a parameter.
The first and the second terms in Eq. (2) are combined loss

terms for the current task training dataset and the generated
pseudo-dataset that represent the past tasks, defined similar
to Eq. (1). The second term in Eq. (2) mitigates catastrophic
forgetting through pseudo-rehearsal process. The third term
is a crucial term to guarantee that our method will work in
a lifelong learning setting. This term enforces that each con-
cept is encoded in one mode of the internal distribution across
all tasks. This term is computed on the subset of the con-
cept classes that are shared between the current task and the
pseudo-dataset, i.e, Nt

old, to enforce consistent knowledge ac-
cumulation. Minimizing the probability metric D(·, ·) en-
forces that the internal conditional distribution for the cur-
rent task ϕv(q(t)(·|Cj)), conditioned on a particular shared
concept Cj , to be close to the conditional shared distribution
p(t−1)(·|Cj). Hence, both form a single mode of the inter-
nal distribution and concept drifting is mitigated. Conditional

Algorithm 1 ICLA (λ, γ, τ)

1: Input: labeled training datasets in a sequence
2: D(t) = ({X(t),X(t))} for t =≥ 1
3: Initial Learning: learn the first task via Eq. (1)
4: Fitting GMM:
5: estimate p̂(1)J (·) using {ϕv(x(1)

i ),y
(1)
i }nt

i=1
6: For t ≥ 2
7: Generate the pseudo dataset:
8: D̃(t) = {(x̃(t)

i = ψ(z̃
(t)
i ), ỹ

(t)
i )}

9: (z̃
(t)
i , ỹ

(t)
i ) ∼ p̂(t−1)(·)

10: Task learning:
11: learnable parameters are updated via Eq. (2)
12: Estimating the internal distribution:
13: update p̂(t)(·) with k(t)Tot components via the
14: combined samples {ϕv(x(t)

i ), ϕv(x̃
(t)
i )}nt

i=1
15: EndFor

matching of the two distributions is feasible as we have ac-
cess to pseudo-labels. Adding this term guarantees that we
can continually use a GMM with exactly k(t)Tot components
to capture the internal distribution in this lifelong learning
setting. The remaining task is to select a suitable probabil-
ity metric D(·, ·) for solving Eq. (2). Wasserstein Distance
(WD) metric has been found to be an effective choice for
deep learning due to its applicability for gradient-based op-
timization [Courty et al., 2017]. To reduce the computational
burden of computing WD, we use the Sliced Wasserstein Dis-
tance (SWD) [Bonneel et al., 2015]. (for details on the SWD,
refer to the Appendix). Our Incremental Concept Learning
Algorithm (ICLA) method is summarized in Algorithm 1.

5 Theoretical Analysis
We demonstrate that ICLA minimizes an upperbound for the
expected risk of the learned concept classes across all the pre-
vious tasks for all t. We perform our analysis in the em-
bedding space as an input space and consider the hypothe-
sis class H = {hw(·)|hw(·) : Z → Rk

t ,w ∈ RH}. Let
et(w) denote the real risk for a given function hw(t)(·) ∈ H
when used on task Z(t) data representations in the embed-
ding space. Similarly, ẽt(w) denotes the observed risk for the
function hw(t)(·) when used on the pseudo-task, generated by
sampling the learned GMM distribution p̂(t−1). Finally, let
et,s(w) denote the risk of the model hbmw(t)(·) when used
only on the concept classes in the set Ns ⊂ Nt

Tot, for ∀s ≤ t,
i.e., task specific classes, after learning the task Z(t).

Theorem 1 : Consider two tasks Z(t) and Z(s), where s ≤
t. Let hw(t) be an optimal classifier trained for the Z(t) using
the ICLA algorithm. Then for any d′ > d and ζ <

√
2,

there exists a constant number N0 depending on d′ such that
for any ξ > 0 and min(ñt|Ns

, ns) ≥ max(ξ−(d′+2),1) with
probability at least 1− ξ for hw(t) ∈ H, then:

es(w) ≤et−1,s(w) +W (p̂(t−1)
s , ϕ(q̂(s))) + eC(w

∗)+√(
2 log(

1

ξ
)/ζ
)(√ 1

ñt|Ns

+

√
1

ns

)
,

(3)
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where W (·, ·) denotes the WD metric, ñt|Ns
denotes the

pseudo-task samples that belong to the classes in Ns,
ϕ(q̂(s)(·)) denotes the empirical marginal distribution for
Z(s) in the embedding, p̂(t−1)

s is the conditional empirical
shared distribution when the distribution p̂(t−1)(·) is condi-
tioned to the classes in Ns, and eC(w

∗) denotes the opti-
mal model learned for the combined risk of the tasks on
the shared classes in Ns, i.e., w∗ = argminw eC(θ) =
argminw{et,s(w) + es(w)}. This is a model with the best
performance if the tasks could be learned simultaneously.

Proof : included in the Appendix due to page limit.
We then use Theorem 1 to conclude the following lemma:

Lemma 1 : Consider the ICLA algorithm after learning
Z(T ). Then all tasks t < T and under the conditions of The-
orem 1, we can conclude the following inequality:

et(w) ≤ eT−1,t(w) +W (ϕ(q̂(t)), p̂
(t)
t ) + eC(w

∗)+

T−2∑
s=t

W (p̂
(s)
t , p̂

(s+1)
t ) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ñt|Nt

)
,

(4)

Proof : included in the Appendix due to page limit.
Lemma 1 concludes that when a new task is learned at time

t = T , ICLA updates the model parameters conditioned on
minimizing the upper bound of et for all t < T in Eq. 4. The
last term in Eq. 4 is a small constant term when the number of
training data points is large. If the network is complex enough
so that the PDP hypothesis holds, then the classes would
be separable in the embedding space and in the presence
of enough labeled samples, the terms eT−1,t(w) would be
small because eT−1(w) is minimized using ERM. The term
W (ϕ(q̂(t)), p̂

(t)
t ) would be small because we deliberately fit

the GMM distribution p̂(t) to the distribution ϕ(q̂(t)) in the
embedding space when learning the task Z(t). Existence of
this term indicates that our algorithm requires that internal
distribution can be fit with a GMM distribution with high ac-
curacy and this limits applicability of our algorithm. Note
however, all parametric learning algorithms face this limita-
tion. The term eC(w

∗) is small because we continually match
the distributions in the embedding space class-conditionally.
Hence, if the model is trained on task Z(t) and the pseudo-
task at t − T , it will perform well on both tasks. Note that
this is not trivial because if the wrong classes are matched
across the domains in the embedding space, the term eC(w

∗)
will not be minimal. Finally, the sum term in Eq. 4 indicates
the effect of experience replay. Each term in this sum is mini-
mized at s = t+1 because we draw random samples from p̂

(t)
t

and then train the autoencoder to enforce p̂(t)t ≈ ψ(ϕ(p̂
(t)
t )).

Since all the terms in the upperbound of et(w) in Eq. 4 are
minimized when a new task is learned, catastrophic forgetting
of the previous tasks will be mitigated. Another important in-
tuition from Eq. 4 is that as more tasks are learned after learn-
ing a task, the upperbound becomes looser as more terms are
accumulated in the sum which enhances forgetting. This ob-
servation accords with our intuition about forgetting as more
time passes after initial learning time of a task or concept.

6 Experimental Validation
We validate our method on two sequential task learning set-
tings: incremental learning and continual incremental learn-
ing. Incremental learning is a special case of our learning
setting when each concept class is observed only in one task
and concept drift does not exist. We use this special case
to compare our method against existing incremental learning
approaches.Our implementation is available as a supplement.

Evaluation Methodology : We use the same network
structure for all the methods for fair comparison. To visu-
alize the results, we generate learning curves by plotting the
model performance on the testing split of datasets versus the
training epochs, i.e, to model time. We report the average
performance of five runs. Visualizing learning curves allows
studying temporal aspects of learning. For comparison, we
provide learning curves for: (a) full experience replay (FR)
which stores the whole training data for all the previous tasks
and (b) experience replay using a memory buffer (MB) with a
fixed size, similar to Li et. al ([Li and Hoiem, 2018]). At each
time-step, the buffer stores an equal number of samples per
concept from the previous tasks. When a new task is learned,
a portion of old stored samples are discarded and replaced
with samples from the new task to keep the buffer size fixed.
FR serves as a best achievable upperbound to measure the ef-
fectiveness of our method against the upperbound. For more
details about the experimental setup and all parameteric val-
ues, please refer to the Appendix and the provided code.

6.1 Incremental Learning
The classes are encountered only at one task in incremental
learning. We design two incremental learning experiments
using the MNIST and the Fashion-MNIST datasets. Both
datasets are classification datasets with ten classes. MNIST
dataset consists of gray scale images of handwritten digits and
Fashion-MNIST consists of images of common fashion prod-
ucts. We consider an incremental learning setting with nine
tasks for the MNIST dataset. The first task is a binary clas-
sification of digits 0 and 1 and each subsequent task involves
learning a new digit. The setup for Fashion-MNIST dataset is
similar, but we considered four tasks and each task involves
learning two fashion classes. We use a memory buffer with
the fixed size of 100 for MB. We build an autoencoder by
expanding a VGG-based classifier by mirroring the layers.

Figure 2 presents results for the designed experiments. For
simplicity, we have provided condensed results for all tasks
in a single curve. Each task is learned in 100 epochs and at
each epoch, the model performance is computed as the av-
erage classification rate over all the classes, observed before.
We report performance on the standard testing split of each
dataset for the observed classes. Figure 2a and present the
learning curves for the MNIST experiments. Similarly, Fig-
ure 2b present learning curves for the Fashion-MNIST ex-
periments. We can see in both figures that FR (dashed blue
curves) leads to superior performance. This is according to
expectation but as we discussed, the challenge is the require-
ment for a memory buffer with an unlimited size. The buffer
cannot have a fixed size as the number of data points grows
when more tasks are learned. MB (solid yellow curves) is
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(a) MNIST (b) FMNIST

Figure 2: Learning curves for the incremental learning experiments
(a) MNIST and (b) Fashion-MNIST (FMNIST) datasets; (c) MNIST
performance comparison (Best viewed in color on screen. See Ap-
pendix for enlarged versions.)

initially somewhat effective and comparable with ICLA, but
as more tasks are learned, forgetting effect becomes more se-
vere. This is because fewer data points per task can be stored
in the buffer with fixed size as more tasks are learned. As
a result, the stored samples would not be sufficiently repre-
sentative of the past learned tasks. In comparison, we can
generate as many pseudo-data points as desired.

We can also see in Figure 2a and Figure 2b that ICLA
(dotted green curves) is able to mitigate catastrophic forget-
ting considerably better than MB and the performance dif-
ference between ICLA and MB increases as more tasks are
learned. We also observe that ICLA is more effective for
MNIST dataset. This is because FMNIST data points are
more diverse. As a result, generating pseudo-data points that
look more similar to the original data points is easier for the
MNIST dataset given that we are using the same network
structure for both tasks. Another observation is that the ma-
jor performance degradation for ICLA occurs each time the
network starts to learn a new concept class as initial sudden
drops. This degradation occurs due to the existing distance
between the distributions p̂(T−1)

J,k and ϕ(q(s)) at t = T for
s < T . Although ICLA minimizes this distance, the autoen-
coder is not ideal and this distance is non-zero in practice.

For comparison purpose, we have listed our performance
and a number of methods for incremental learning on MNIST
in Table 1. Two sets of incremental learning tasks have been
designed using MNIST in the literature: 5 tasks (5T) setting
and 2 tasks (2T) setting. In the 2T setting, two tasks are de-
fine involving digits (0−4) and (5−9). In the 5T setting, five
binary classification tasks are defined involving digits (0, 1)
to (8, 9). We have compared our performance against several
methods, representative of prior works: CAB [He and Jaeger,
2018], IMM [Lee et al., 2017], OWM [Zeng et al., 2019],
GEM [Lopez-Paz and Ranzato, 2017], iCarl [Rebuffi et al.,
2017], GSS [Aljundi et al., 2019], DGR [Shin et al., 2017],
and MeRGAN [Wu et al., 2018]. The CAB, IMM, and OWM
methods are based on regularizing the network weights. The
GEM, iCarl, and GSS methods use a memory buffer to store
selected samples. Finally, DGR and MeRGAN methods are
based on generative replay similar to ICLA but use adver-
sarial learning. We have reported the classification accuracy

Method 2T 5T
CAB [He and Jaeger, 2018] 94.9±0.3 -

IMM [Lee et al., 2017] 94.1±0.3 -
OWM [Zeng et al., 2019] 96.3±0.1 -

GEM [Lopez-Paz and Ranzato, 2017] - 78.0
iCarl [Rebuffi et al., 2017] - 81.0
GSS [Aljundi et al., 2019] - 61.0
DGR [Shin et al., 2017] 88.7±2.6 -

MeRGAN [Wu et al., 2018] 97.0 -
ICLA 97.2±0.2 91.6±0.4

Table 1: Classification accuracy for MNIST.

on the ten digit classes after learning the last task in Table 1.
A memory buffer with a fixed size of 100 is used for GEM,
iCarl, and GSS. Following these works, an MLP with two
layers is used as the base model for fair comparison.

We observe in Table 1 that when the buffer size is small,
buffer-based methods perform poorly. Methods based on
weight regularization perform quite well but note that these
methods limit the network learning capacity. As a result,
when the number of tasks grow, the network cannot be used
to learn new tasks. Generative methods, including ICLA,
perform better compared to buffer-based methods and at the
same time do not limit the network learning capacity because
the network weights can change after generating the pseudo-
dataset. Although ICLA has the state-of-the-art performance
for these tasks, there is no superior method for all conditions,
because by changing the experimental setup, e.g., network
structure, dataset, hyper-parameters such as memory buffer,
etc, a different method may have the best performance result.
However, we can conclude that ICLA has a superior perfor-
mance when the network size is small and using a memory
buffer is not possible, i.e., we have limited learning resources.

6.2 Continual Incremental Learning
Permuted MNIST task is a common supervised learning
benchmark for sequential task learning [Kirkpatrick et al.,
2017]. The sequential tasks are generated using the MNIST
dataset. Each task Z(t) is generated by rearranging the pixels
of all images in the dataset using a fixed random predeter-
mined permutation transform and keeping the labels as their
original value. As a result, we can generate many tasks that
are diverse, yet equally difficult. As a result, these tasks
are suitable for performing controlled experiments. Since
no prior work has addressed incremental learning of drifting
concepts, we should design a suitable set of tasks.

We design continual incremental learning tasks that share
common concepts using five permuted MNSIT tasks. The
first task is a binary classification of digits 0 and 1 for the
MNIST dataset. For each subsequent task, we generate a per-
muted MNIST task but include only the previously seen digits
plus two new digits in the natural number order, e.g., the third
task includes permuted versions of digit 0−5. This means that
at each task, new forms of all the previously learned concepts
are encountered, i.e, we need to learn drifting concepts, in ad-
ditional to new tasks. Hence, the model needs to expand its
knowledge about the previously learned concepts while learn-
ing new concepts. We use a memory buffer with size of 30000
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(a) FR vs. MB (b) FR vs. ICLA (c) FR (d) ICLA

Figure 3: Learning curves for the five continual incremental learning tasks, designed using the permuted MNIST tasks (a) FR (solid) vs. MB
(dotted), (b) FR (solid) vs. ICLA (dotted); UMAP visualization of (c) FR and (d) ICLA in the embedding space. (Best viewed in color.)

for MB. Due to the nature of these tasks, we use a multi-layer
perceptron (MLP) network.Figure 3 presents learning curves
for the five designed permuted MNIST tasks. In this figure,
the learning curve for each task is illustrated with a differ-
ent color and different line styles are used to distinguish the
different methods (for enlarged versions, please refer to the
Appendix). At each epoch time-step, model performance is
computed as the average classification rate on the standard
testing split of the current and all the past learned tasks.

Figure 3a presents learning curves for MB (dotted curves)
and FR (solid curves). Unsurprisingly, FR leads to almost
perfect performance. We also observe MB is less effective
in this setting and catastrophic forgetting is severe for MB
beyond the second task. The reason is that the concepts are
more diverse in these tasks. As a result, it is more challeng-
ing to estimate the input distribution using a fixed number
of stored samples that also decrease due to a fixed buffer size.
We can conclude that as tasks become more complex, a larger
memory buffer will be necessary which poses a challenge for
MB. Figure 3b presents learning curves for FR (solid curves)
and MB (dotted curve). As can be seen, ICLA is able to learn
drifting concepts incrementally. Again, major forgetting ef-
fect for ICLA occurs as a sudden performance drop when
learning a new task starts. This observation demonstrates that
an important vulnerability for ICLA is the structure of the au-
toencoder that we build. This can be deduced from our theo-
retical result because an important condition for tightness of
the provided bound in Lemma 1 is that we have: ψ ≈ ϕ−1.
Both our theoretical and experimental results suggest that if
can build auto-encoders that can generate pseudo-data points
with high quality, incremental learning can be performed us-
ing ICLA. In other words, learning quality depends on the
generative power the base network structure. Finally, we also
observe that as more tasks are learned after learning a partic-
ular task, model performance on that particular task degrades
more. This observation is compatible with the nervous sys-
tem as memories fade out when time passes.

In addition to requiring a memory buffer with an unlim-
ited size, we also demonstrate that an issue for FR is inability
to identify concepts across the tasks in the embedding space.
We use the UMAP [McInnes et al., 2018] tool to reduce the
dimensionality of the data representations in the embedding

space to two for 2D data visualization. We illustrated the
testing split of data for all the tasks in the embedding space
Z in Figure 3c for FR and Figure 3d for ICLA when the final
task is learned. In these figures, each color corresponds to
one of the digits {0, 1, . . . , 9}. As expected from the learn-
ing curves, data points for digits form separable clusters for
both methods. This result verifies that the PDP hypothesis
holds in these experiments and hence the internal distribution
can be modeled using a GMM. The important distinction be-
tween FR and ICLA is that FR has led to the generation of
distinct clusters for each concept class per task. This means
that each concept class has not been learned internally as one
concept and FR learns each concepts as several distinct con-
cepts across the domains. This observation also serves as an
ablative study for our method because it demonstrates that
matching distributions class-conditionally in the embedding
space is necessary, as justified by the theoretical analysis.

In figure 3d, we observe that ten clusters for the ten ob-
served concepts are formed when ICLA is used. This obser-
vation demonstrates that ICLA is able to track modes of the
GMM successfully as more tasks are learned. ICLA is also
able to build concept classes that are semantically meaningful
across all tasks based on the labels. This is the reason that we
can learn new classes incrementally in a continual lifelong
learning scenario. In other words, as opposed to FR, ICLA
encodes each cross-task concept in a single mode of the in-
ternal GMM distribution. This allows for expanding concepts
for cross-domain abstraction similar to humans.

7 Conclusions
We developed an algorithm for continual incremental learn-
ing of concepts based on modeling the internal distribution of
input data as a GMM and then updating the GMM as new ex-
periences are acquired. We track this distribution to accumu-
late the new learned knowledge to the past learned knowledge
consistently. We expand the base classifier model to make a
generative model to allow for generating a pseudo-dataset for
pseudo-rehearsal and experience replay. We provided theo-
retical and empirical result to validate our algorithm.

Ethical Statement
We foresee no significant ethical issues for our work.
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Tuia, and Alain Rakotomamonjy. Optimal transport for
domain adaptation. IEEE TPAMI, 39(9):1853–1865, 2017.

[French, 1991] Robert M French. Using semi-distributed
representations to overcome catastrophic forgetting in con-
nectionist networks. In Proceedings of the 13th annual
cognitive science society conference, volume 1, pages
173–178, 1991.

[French, 1999] Robert M French. Catastrophic forgetting
in connectionist networks. Trends in Cog. Sciences,
3(4):128–135, 1999.

[Gama et al., 2014] João Gama, Indrė Žliobaitė, Albert
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